# Nonoblock

Nonoblock
You are encouraged to solve this task according to the task description, using any language you may know.

Nonoblock is a chip off the old Nonogram puzzle.

Given
• The number of cells in a row.
• The size of each, (space separated), connected block of cells to fit in the row, in left-to right order.

• show all possible positions.
• show the number of positions of the blocks for the following cases within the row.
• show all output on this page.
• use a "neat" diagram of the block positions.

Enumerate the following configurations
1.   5   cells   and   [2, 1]   blocks
2.   5   cells   and   []   blocks   (no blocks)
3.   10   cells   and   [8]   blocks
4.   15   cells   and   [2, 3, 2, 3]   blocks
5.   5   cells   and   [2, 3]   blocks   (should give some indication of this not being possible)

Example

Given a row of five cells and a block of two cells followed by a block of one cell - in that order, the example could be shown as:

```   |_|_|_|_|_| # 5 cells and [2, 1] blocks
```

And would expand to the following 3 possible rows of block positions:

```   |A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|
```

Note how the sets of blocks are always separated by a space.

Note also that it is not necessary for each block to have a separate letter. Output approximating

This:

```                       |#|#|_|#|_|
|#|#|_|_|#|
|_|#|#|_|#|
```

This would also work:

```                       ##.#.
##..#
.##.#
```

An algorithm
• Find the minimum space to the right that is needed to legally hold all but the leftmost block of cells (with a space between blocks remember).
• The leftmost cell can legitimately be placed in all positions from the LHS up to a RH position that allows enough room for the rest of the blocks.
• for each position of the LH block recursively compute the position of the rest of the blocks in the remaining space to the right of the current placement of the LH block.

(This is the algorithm used in the Nonoblock#Python solution).

Reference

## 11l

Translation of: Python
```F nonoblocks([Int] &blocks, Int cells) -> [[(Int, Int)]]
[[(Int, Int)]] r
I blocks.empty | blocks[0] == 0
r [+]= [(0, 0)]
E
assert(sum(blocks) + blocks.len - 1 <= cells, ‘Those blocks will not fit in those cells’)
V (blength, brest) = (blocks[0], blocks[1..])
V minspace4rest = sum(brest.map(b -> 1 + b))

L(bpos) 0 .. cells - minspace4rest - blength
I brest.empty
r [+]= [(bpos, blength)]
E
V offset = bpos + blength + 1
L(subpos) nonoblocks(&brest, cells - offset)
V rest = subpos.map((bp, bl) -> (@offset + bp, bl))
V vec = [(bpos, blength)] [+] rest
r [+]= vec
R r

F pblock(vec, cells)
‘Prettyprints each run of blocks with a different letter A.. for each block of filled cells’
V vector = [‘_’] * cells
L(bp_bl) vec
V ch = L.index + ‘A’.code
V (bp, bl) = bp_bl
L(i) bp .< bp + bl
vector[i] = I vector[i] == ‘_’ {Char(code' ch)} E Char(‘?’)
R ‘|’vector.join(‘|’)‘|’

L(blocks, cells) [
([2, 1], 5),
([Int](), 5),
([8], 10),
([2, 3, 2, 3], 15)
]
print("\nConfiguration:\n    #. ## #. cells and #. blocks".format(pblock([(Int, Int)](), cells), cells, blocks))
print(‘  Possibilities:’)
V nb = nonoblocks(&blocks, cells)
L(vector) nb
print(‘    ’pblock(vector, cells))
print(‘  A total of #. Possible configurations.’.format(nb.len))```
Output:
```
Configuration:
|_|_|_|_|_| # 5 cells and [2, 1] blocks
Possibilities:
|A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and [] blocks
Possibilities:
|_|_|_|_|_|
A total of 1 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_| # 10 cells and [8] blocks
Possibilities:
|A|A|A|A|A|A|A|A|_|_|
|_|A|A|A|A|A|A|A|A|_|
|_|_|A|A|A|A|A|A|A|A|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| # 15 cells and [2, 3, 2, 3] blocks
Possibilities:
|A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
|A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
|A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
|A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
|A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
|A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
|A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
|A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
|A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
|A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
|_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
|_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
|_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
|_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
|_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|
A total of 15 Possible configurations.
```

## Action!

```DEFINE MAX_BLOCKS="10"
DEFINE NOT_FOUND="255"

BYTE FUNC GetBlockAtPos(BYTE p BYTE ARRAY blocks,pos INT count)
INT i
FOR i=0 TO count-1
DO
IF p>=pos(i) AND p<pos(i)+blocks(i) THEN
RETURN (i)
FI
OD
RETURN (NOT_FOUND)

PROC PrintResult(BYTE cells BYTE ARRAY blocks,pos INT count)
BYTE i,b

Print("[")
FOR i=0 TO cells-1
DO
b=GetBlockAtPos(i,blocks,pos,count)
IF b=NOT_FOUND THEN
Put('.)
ELSE
Put(b+'A)
FI
OD
PrintE("]")
RETURN

BYTE FUNC LeftMostPos(BYTE cells BYTE ARRAY blocks,pos INT count,startFrom)
INT i

FOR i=startFrom TO count-1
DO
pos(i)=pos(i-1)+blocks(i-1)+1
IF pos(i)+blocks(i)>cells THEN
RETURN (0)
FI
OD
RETURN (1)

BYTE FUNC MoveToRight(BYTE cells BYTE ARRAY blocks,pos INT count,startFrom)
pos(startFrom)==+1
IF pos(startFrom)+blocks(startFrom)>cells THEN
RETURN (0)
FI
RETURN (LeftMostPos(cells,blocks,pos,count,startFrom+1))

PROC Process(BYTE cells BYTE ARRAY blocks INT count)
BYTE ARRAY pos(MAX_BLOCKS)
BYTE success
INT current

IF count=0 THEN
PrintResult(cells,blocks,pos,count)
RETURN
FI

pos(0)=0
success=LeftMostPos(cells,blocks,pos,count,1)
IF success=0 THEN
PrintE("No solutions")
RETURN
FI
current=count-1
WHILE success
DO
PrintResult(cells,blocks,pos,count)
DO
success=MoveToRight(cells,blocks,pos,count,current)
IF success THEN
current=count-1
ELSE
current==-1
IF current<0 THEN
EXIT
FI
FI
UNTIL success
OD
OD
RETURN

PROC Test(BYTE cells BYTE ARRAY blocks INT count)
BYTE CH=\$02FC ;Internal hardware value for last key pressed
INT i

PrintB(cells) Print(" cells [")
FOR i=0 TO count-1
DO
PrintB(blocks(i))
IF i<count-1 THEN
Put(32)
FI
OD
PrintE("]")

Process(cells,blocks,count)

PutE()
PrintE("Press any key to continue...")
DO UNTIL CH#\$FF OD
CH=\$FF
PutE()
RETURN

PROC Main()
BYTE ARRAY t1=[2 1],t2=[],t3=[8],t4=[2 3 2 3],t5=[2 3]

Test(5,t1,2)
Test(5,t2,0)
Test(10,t3,1)
Test(15,t4,4)
Test(5,t5,2)
RETURN```
Output:
```5 cells [2 1]
[AA.B.]
[AA..B]
[.AA.B]

Press any key to continue...

5 cells []
[.....]

Press any key to continue...

10 cells [8]
[AAAAAAAA..]
[.AAAAAAAA.]
[..AAAAAAAA]

Press any key to continue...

15 cells [2 3 2 3]
[AA.BBB.CC.DDD..]
[AA.BBB.CC..DDD.]
[AA.BBB.CC...DDD]
[AA.BBB..CC.DDD.]
[AA.BBB..CC..DDD]
[AA.BBB...CC.DDD]
[AA..BBB.CC.DDD.]
[AA..BBB.CC..DDD]
[AA..BBB..CC.DDD]
[AA...BBB.CC.DDD]
[.AA.BBB.CC.DDD.]
[.AA.BBB.CC..DDD]
[.AA.BBB..CC.DDD]
[.AA..BBB.CC.DDD]
[..AA.BBB.CC.DDD]

Press any key to continue...

5 cells [2 3]
No solutions

Press any key to continue...
```

## AutoHotkey

```;-------------------------------------------
NonoBlock(cells, blocks){
result := [], line := ""
for i, v in blocks
B .= v ", "
output := cells " cells and [" Trim(B, ", ") "] blocks`n"

if ((Arr := NonoBlockCreate(cells, blocks)) = "Error")
return output "No Solution`n"
for i, v in arr
line.= v ";"
result[line] := true
result := NonoBlockRecurse(Arr, result)
output .= NonoBlockShow(result)
return output
}
;-------------------------------------------
; create cells+1 size array, stack blocks to left with one gap in between
; gaps are represented by negative number
; stack extra gaps to far left
; for example : 6 cells and [2, 1] blocks
; returns [-2, 2, -1, 1, 0, 0, 0]
NonoBlockCreate(cells, blocks){
Arr := [], B := blocks.Count()
if !B									; no blocks
return [0-cells, 0]
for i, v in blocks{
total += v
Arr.InsertAt(1, blocks[B-A_Index+1])
Arr.InsertAt(1, -1)
}
if (cells < total + B-1)				; not possible
return "Error"
Arr[1] := total + B-1 - cells
loop % cells - Arr.Count() + 1
Arr.Push(0)
return Arr
}
;-------------------------------------------
; shift negative numbers from left to right recursively.
; preserve at least one gap between blocks.
; [-2, 2, -1, 1, 0, 0, 0]
; [-1, 2, -2, 1, 0, 0, 0]
NonoBlockRecurse(Arr, result, pos:= 1){
i := pos-1
while (i < Arr.count())
{
if ((B:=Arr[++i])>=0) || (B=-1 && i>1)
continue
if (i=Arr.count()-1)
return result
Arr[i] := ++B, Arr[i+2] := Arr[i+2] -1
result := NonoBlockRecurse(Arr.Clone(), result, i)
line := []
for k, v in Arr
line.=v ";"
result[line] := true
}
return result
}
;-------------------------------------------
; represent positve numbers by a block of "#", negative nubmers by a block of "."
NonoBlockShow(result){
for line in result{
i := A_Index
nLine := ""
for j, val in StrSplit(line, ";")
loop % Abs(val)
nLine .= val > 0 ? "#" : "."
output .= nLine "`n"
}
Sort, output, U
return output
}
;-------------------------------------------
```

Examples:

```Results .= NonoBlock(5, [2, 1])		"------------`n"
Results .= NonoBlock(5, [])		"------------`n"
Results .= NonoBlock(10, [8])		"------------`n"
Results .= NonoBlock(15, [2, 3, 2, 3])	"------------`n"
Results .= NonoBlock(5, [2, 3])		"------------`n"
MsgBox, 262144, , % Results
return
```
Output:
```---------------------------
5 cells and [2, 1] blocks
##.#.
##..#
.##.#
------------
5 cells and [] blocks
.....
------------
10 cells and [8] blocks
########..
.########.
..########
------------
15 cells and [2, 3, 2, 3] blocks
##.###.##.###..
##.###.##..###.
##.###.##...###
##.###..##.###.
##.###..##..###
##.###...##.###
##..###.##.###.
##..###.##..###
##..###..##.###
##...###.##.###
.##.###.##.###.
.##.###.##..###
.##.###..##.###
.##..###.##.###
..##.###.##.###
------------
5 cells and [2, 3] blocks
No Solution
------------```

## C

```#include <stdio.h>
#include <string.h>

void nb(int cells, int total_block_size, int* blocks, int block_count,
char* output, int offset, int* count) {
if (block_count == 0) {
printf("%2d  %s\n", ++*count, output);
return;
}
int block_size = blocks[0];
int max_pos = cells - (total_block_size + block_count - 1);
total_block_size -= block_size;
cells -= block_size + 1;
++blocks;
--block_count;
for (int i = 0; i <= max_pos; ++i, --cells) {
memset(output + offset, '.', max_pos + block_size);
memset(output + offset + i, '#', block_size);
nb(cells, total_block_size, blocks, block_count, output,
offset + block_size + i + 1, count);
}
}

void nonoblock(int cells, int* blocks, int block_count) {
printf("%d cells and blocks [", cells);
for (int i = 0; i < block_count; ++i)
printf(i == 0 ? "%d" : ", %d", blocks[i]);
printf("]:\n");
int total_block_size = 0;
for (int i = 0; i < block_count; ++i)
total_block_size += blocks[i];
if (cells < total_block_size + block_count - 1) {
printf("no solution\n");
return;
}
char output[cells + 1];
memset(output, '.', cells);
output[cells] = '\0';
int count = 0;
nb(cells, total_block_size, blocks, block_count, output, 0, &count);
}

int main() {
int blocks1[] = {2, 1};
nonoblock(5, blocks1, 2);
printf("\n");

nonoblock(5, NULL, 0);
printf("\n");

int blocks2[] = {8};
nonoblock(10, blocks2, 1);
printf("\n");

int blocks3[] = {2, 3, 2, 3};
nonoblock(15, blocks3, 4);
printf("\n");

int blocks4[] = {2, 3};
nonoblock(5, blocks4, 2);

return 0;
}
```
Output:
```5 cells and blocks [2, 1]:
1  ##.#.
2  ##..#
3  .##.#

5 cells and blocks []:
1  .....

10 cells and blocks [8]:
1  ########..
2  .########.
3  ..########

15 cells and blocks [2, 3, 2, 3]:
1  ##.###.##.###..
2  ##.###.##..###.
3  ##.###.##...###
4  ##.###..##.###.
5  ##.###..##..###
6  ##.###...##.###
7  ##..###.##.###.
8  ##..###.##..###
9  ##..###..##.###
10  ##...###.##.###
11  .##.###.##.###.
12  .##.###.##..###
13  .##.###..##.###
14  .##..###.##.###
15  ..##.###.##.###

5 cells and blocks [2, 3]:
no solution
```

## C#

This solution uses a StringBuilder. Spaces are moved from right to left and the problem is then solved recursively.

```using System;
using System.Linq;
using System.Text;

public static class Nonoblock
{
public static void Main() {
Positions(5, 2,1);
Positions(5);
Positions(10, 8);
Positions(15, 2,3,2,3);
Positions(5, 2,3);
}

public static void Positions(int cells, params int[] blocks) {
if (cells < 0 || blocks == null || blocks.Any(b => b < 1)) throw new ArgumentOutOfRangeException();
Console.WriteLine(\$"{cells} cells with [{string.Join(", ", blocks)}]");
if (blocks.Sum() + blocks.Length - 1 > cells) {
Console.WriteLine("No solution");
return;
}
var spaces = new int[blocks.Length + 1];
int total = -1;
for (int i = 0; i < blocks.Length; i++) {
total += blocks[i] + 1;
spaces[i+1] = total;
}
spaces[spaces.Length - 1] = cells - 1;
var sb = new StringBuilder(string.Join(".", blocks.Select(b => new string('#', b))).PadRight(cells, '.'));
Iterate(sb, spaces, spaces.Length - 1, 0);
Console.WriteLine();
}

private static void Iterate(StringBuilder output, int[] spaces, int index, int offset) {
Console.WriteLine(output.ToString());
if (index <= 0) return;
int count = 0;
while (output[spaces[index] - offset] != '#') {
count++;
output.Remove(spaces[index], 1);
output.Insert(spaces[index-1], '.');
spaces[index-1]++;
Iterate(output, spaces, index - 1, 1);
}
if (offset == 0) return;
spaces[index-1] -= count;
output.Remove(spaces[index-1], count);
output.Insert(spaces[index] - count, ".", count);
}

}
```
Output:
```5 cells with [2, 1]
##.#.
##..#
.##.#

5 cells with []
.....

10 cells with [8]
########..
.########.
..########

15 cells with [2, 3, 2, 3]
##.###.##.###..
##.###.##..###.
##.###..##.###.
##..###.##.###.
.##.###.##.###.
##.###.##...###
##.###..##..###
##..###.##..###
.##.###.##..###
##.###...##.###
##..###..##.###
.##.###..##.###
##...###.##.###
.##..###.##.###
..##.###.##.###

5 cells with [2, 3]
No solution```

## C++

```#include <iomanip>
#include <iostream>
#include <algorithm>
#include <numeric>
#include <string>
#include <vector>

typedef std::pair<int, std::vector<int> > puzzle;

class nonoblock {
public:
void solve( std::vector<puzzle>& p ) {
for( std::vector<puzzle>::iterator i = p.begin(); i != p.end(); i++ ) {
counter = 0;
std::cout << " Puzzle: " << ( *i ).first << " cells and blocks [ ";
for( std::vector<int>::iterator it = ( *i ).second.begin(); it != ( *i ).second.end(); it++ )
std::cout << *it << " ";
std::cout << "] ";
int s = std::accumulate( ( *i ).second.begin(), ( *i ).second.end(), 0 ) + ( ( *i ).second.size() > 0 ? ( *i ).second.size() - 1 : 0 );
if( ( *i ).first - s < 0 ) {
std::cout << "has no solution!\n\n\n";
continue;
}
std::cout << "\n Possible configurations:\n\n";
std::string b( ( *i ).first, '-' );
solve( *i, b, 0 );
std::cout << "\n\n";
}
}

private:
void solve( puzzle p, std::string n, int start ) {
if( p.second.size() < 1 ) {
output( n );
return;
}
std::string temp_string;
int offset,
this_block_size = p.second[0];

int space_need_for_others = std::accumulate( p.second.begin() + 1, p.second.end(), 0 );
space_need_for_others += p.second.size() - 1;

int space_for_curr_block = p.first - space_need_for_others - std::accumulate( p.second.begin(), p.second.begin(), 0 );

std::vector<int> v1( p.second.size() - 1 );
std::copy( p.second.begin() + 1, p.second.end(), v1.begin() );
puzzle p1 = std::make_pair( space_need_for_others, v1 );

for( int a = 0; a < space_for_curr_block; a++ ) {
temp_string = n;

if( start + this_block_size > n.length() ) return;

for( offset = start; offset < start + this_block_size; offset++ )
temp_string.at( offset ) = 'o';

if( p1.first ) solve( p1, temp_string, offset + 1 );
else output( temp_string );

start++;
}
}
void output( std::string s ) {
char b = 65 - ( s.at( 0 ) == '-' ? 1 : 0 );
bool f = false;
std::cout << std::setw( 3 ) << ++counter << "\t|";
for( std::string::iterator i = s.begin(); i != s.end(); i++ ) {
b += ( *i ) == 'o' && f ? 1 : 0;
std::cout << ( ( *i ) == 'o' ? b : '_' ) << "|";
f = ( *i ) == '-' ? true : false;
}
std::cout << "\n";
}

unsigned counter;
};

int main( int argc, char* argv[] )
{
std::vector<puzzle> problems;
std::vector<int> blocks;
blocks.push_back( 2 ); blocks.push_back( 1 );
problems.push_back( std::make_pair( 5, blocks ) );
blocks.clear();
problems.push_back( std::make_pair( 5, blocks ) );
blocks.push_back( 8 );
problems.push_back( std::make_pair( 10, blocks ) );
blocks.clear();
blocks.push_back( 2 ); blocks.push_back( 3 );
problems.push_back( std::make_pair( 5, blocks ) );
blocks.push_back( 2 ); blocks.push_back( 3 );
problems.push_back( std::make_pair( 15, blocks ) );

nonoblock nn;
nn.solve( problems );

return 0;
}
```
Output:
``` Puzzle: 5 cells and blocks [ 2 1 ]
Possible configurations:

1     |A|A|_|B|_|
2     |A|A|_|_|B|
3     |_|A|A|_|B|

Puzzle: 5 cells and blocks [ ]
Possible configurations:

1     |_|_|_|_|_|

Puzzle: 10 cells and blocks [ 8 ]
Possible configurations:

1     |A|A|A|A|A|A|A|A|_|_|
2     |_|A|A|A|A|A|A|A|A|_|
3     |_|_|A|A|A|A|A|A|A|A|

Puzzle: 5 cells and blocks [ 2 3 ] has no solution!

Puzzle: 15 cells and blocks [ 2 3 2 3 ]
Possible configurations:

1     |A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
2     |A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
3     |A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
4     |A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
5     |A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
6     |A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
7     |A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
8     |A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
9     |A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
10     |A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
11     |_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
12     |_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
13     |_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
14     |_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
15     |_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|

```

## D

Translation of: python
```import std.stdio, std.array, std.algorithm, std.exception, std.conv,
std.concurrency, std.range;

struct Solution { uint pos, len; }

Generator!(Solution[]) nonoBlocks(in uint[] blocks, in uint cells) {
return new typeof(return)({
if (blocks.empty || blocks[0] == 0) {
yield([Solution(0, 0)]);
} else {
enforce(blocks.sum + blocks.length - 1 <= cells,
"Those blocks cannot fit in those cells.");
immutable firstBl = blocks[0];
const restBl = blocks.dropOne;

// The other blocks need space.
immutable minS = restBl.map!(b => b + 1).sum;

// Slide the start position from left to max RH
// index allowing for other blocks.
foreach (immutable bPos; 0 .. cells - minS - firstBl + 1) {
if (restBl.empty) {
// No other blocks to the right so just yield
// this one.
yield([Solution(bPos, firstBl)]);
} else {
// More blocks to the right so create a sub-problem
// of placing the restBl blocks in the cells one
// space to the right of the RHS of this block.
immutable offset = bPos + firstBl + 1;
immutable newCells = cells - offset;

// Recursive call to nonoBlocks yields multiple
// sub-positions.
foreach (const subPos; nonoBlocks(restBl, newCells)) {
// Remove the offset from sub block positions.
auto rest = subPos.map!(sol => Solution(offset + sol.pos, sol.len));

// Yield this block plus sub blocks positions.
yield(Solution(bPos, firstBl) ~ rest.array);
}
}
}
}
});
}

/// Pretty prints each run of blocks with a
/// different letter for each block of filled cells.
string show(in Solution[] vec, in uint nCells) pure {
auto result = ['_'].replicate(nCells);
foreach (immutable i, immutable sol; vec)
foreach (immutable j; sol.pos .. sol.pos + sol.len)
result[j] = (result[j] == '_') ? to!char('A' + i) : '?';
return '[' ~ result ~ ']';
}

void main() {
static struct Problem { uint[] blocks; uint nCells; }

immutable Problem[] problems = [{[2, 1], 5},
{[], 5},
{[8], 10},
{[2, 3, 2, 3], 15},
{[4, 3], 10},
{[2, 1], 5},
{[3, 1], 10},
{[2, 3], 5}];

foreach (immutable prob; problems) {
writefln("Configuration (%d cells and %s blocks):",
prob.nCells, prob.blocks);
show([], prob.nCells).writeln;
"Possibilities:".writeln;
auto nConfigs = 0;
foreach (const sol; nonoBlocks(prob.tupleof)) {
show(sol, prob.nCells).writeln;
nConfigs++;
}
writefln("A total of %d possible configurations.", nConfigs);
writeln;
}
}
```
Output:
```Configuration (5 cells and [2, 1] blocks):
[_____]
Possibilities:
[AA_B_]
[AA__B]
[_AA_B]
A total of 3 possible configurations.

Configuration (5 cells and [] blocks):
[_____]
Possibilities:
[_____]
A total of 1 possible configurations.

Configuration (10 cells and [8] blocks):
[__________]
Possibilities:
[AAAAAAAA__]
[_AAAAAAAA_]
[__AAAAAAAA]
A total of 3 possible configurations.

Configuration (15 cells and [2, 3, 2, 3] blocks):
[_______________]
Possibilities:
[AA_BBB_CC_DDD__]
[AA_BBB_CC__DDD_]
[AA_BBB_CC___DDD]
[AA_BBB__CC_DDD_]
[AA_BBB__CC__DDD]
[AA_BBB___CC_DDD]
[AA__BBB_CC_DDD_]
[AA__BBB_CC__DDD]
[AA__BBB__CC_DDD]
[AA___BBB_CC_DDD]
[_AA_BBB_CC_DDD_]
[_AA_BBB_CC__DDD]
[_AA_BBB__CC_DDD]
[_AA__BBB_CC_DDD]
[__AA_BBB_CC_DDD]
A total of 15 possible configurations.

Configuration (10 cells and [4, 3] blocks):
[__________]
Possibilities:
[AAAA_BBB__]
[AAAA__BBB_]
[AAAA___BBB]
[_AAAA_BBB_]
[_AAAA__BBB]
[__AAAA_BBB]
A total of 6 possible configurations.

Configuration (5 cells and [2, 1] blocks):
[_____]
Possibilities:
[AA_B_]
[AA__B]
[_AA_B]
A total of 3 possible configurations.

Configuration (10 cells and [3, 1] blocks):
[__________]
Possibilities:
[AAA_B_____]
[AAA__B____]
[AAA___B___]
[AAA____B__]
[AAA_____B_]
[AAA______B]
[_AAA_B____]
[_AAA__B___]
[_AAA___B__]
[_AAA____B_]
[_AAA_____B]
[__AAA_B___]
[__AAA__B__]
[__AAA___B_]
[__AAA____B]
[___AAA_B__]
[___AAA__B_]
[___AAA___B]
[____AAA_B_]
[____AAA__B]
[_____AAA_B]
A total of 21 possible configurations.

Configuration (5 cells and [2, 3] blocks):
[_____]
Possibilities:
object.Exception @nonoblock.d(17): Those blocks cannot fit in those cells.
----------------
0x0040AC17 in pure @safe void std.exception.bailOut(immutable(char)[], uint, const(char[]))
...```

## EchoLisp

```;; size is the remaining # of cells
;; blocks is the list of remaining blocks size
;; cells is a stack where we push 0 = space or block size.
(define (nonoblock size blocks into: cells)
(cond
((and (empty? blocks) (= 0 size)) (print-cells (stack->list cells)))

((<= size 0) #f) ;; no hope - cut search
((> (apply + blocks) size)  #f) ;; no hope - cut search

(else
(push cells 0) ;; space
(nonoblock (1- size) blocks  cells)
(pop cells)

(when (!empty? blocks)
(when (stack-empty? cells) ;; first one (no space is allowed)
(push cells (first blocks))
(nonoblock  (- size (first blocks)) (rest blocks) cells)
(pop cells))

(push cells 0) ;; add space before
(push cells (first blocks))
(nonoblock  (- size (first blocks) 1) (rest blocks) cells)
(pop cells)
(pop cells)))))

(string-delimiter "")
(define block-symbs #( ?  📦 💣 💊  🍒 🌽 📘 📙 💰 🍯 ))

(define (print-cells cells)
(writeln (string-append "|"
(for/string ((cell cells))
(if (zero? cell) "_"
(for/string ((i cell)) [block-symbs cell]))) "|")))

(for ((test nonotest))
(define size (first test))
(define blocks (second test))
(printf "\n size:%d blocks:%d" size blocks)
(if
(> (+ (apply + blocks)(1- (length blocks))) size)
(writeln "❌ no solution for" size blocks)
(nonoblock size blocks (stack 'cells)))))
```
Output:
```(define nonotest '((5 (2 1)) (5 ()) (10 (8)) (15 (2 3 2 3)) (5 (2 3))))

size:5 blocks:(2 1)
|💣💣__📦|
|💣💣_📦_|
|_💣💣_📦|

size:5 blocks:()
|_____|

size:10 blocks:(8)
|__💰💰💰💰💰💰💰💰|
|💰💰💰💰💰💰💰💰__|
|_💰💰💰💰💰💰💰💰_|

size:15 blocks:(2 3 2 3)
|__💣💣_💊💊💊_💣💣_💊💊💊|
|💣💣___💊💊💊_💣💣_💊💊💊|
|💣💣__💊💊💊__💣💣_💊💊💊|
|💣💣__💊💊💊_💣💣__💊💊💊|
|💣💣__💊💊💊_💣💣_💊💊💊_|
|💣💣_💊💊💊___💣💣_💊💊💊|
|💣💣_💊💊💊__💣💣__💊💊💊|
|💣💣_💊💊💊__💣💣_💊💊💊_|
|💣💣_💊💊💊_💣💣___💊💊💊|
|💣💣_💊💊💊_💣💣__💊💊💊_|
|💣💣_💊💊💊_💣💣_💊💊💊__|
|_💣💣__💊💊💊_💣💣_💊💊💊|
|_💣💣_💊💊💊__💣💣_💊💊💊|
|_💣💣_💊💊💊_💣💣__💊💊💊|
|_💣💣_💊💊💊_💣💣_💊💊💊_|

size:5 blocks:(2 3)
❌ no solution for     5     (2 3)
```

## Elixir

Translation of: Ruby
```defmodule Nonoblock do
def solve(cell, blocks) do
width = Enum.sum(blocks) + length(blocks) - 1
if cell < width do
raise "Those blocks will not fit in those cells"
else
nblocks(cell, blocks, "")
end
end

defp nblocks(cell, _, position) when cell<=0, do:
display(String.slice(position, 0..cell-1))
defp nblocks(cell, blocks, position) when length(blocks)==0 or hd(blocks)==0, do:
display(position <> String.duplicate(".", cell))
defp nblocks(cell, blocks, position) do
rest = cell - Enum.sum(blocks) - length(blocks) + 2
[bl | brest] = blocks
Enum.reduce(0..rest-1, 0, fn i,acc ->
acc + nblocks(cell-i-bl-1, brest, position <> String.duplicate(".", i) <> String.duplicate("#",bl) <> ".")
end)
end

defp display(str) do
IO.puts nonocell(str)
1                           # number of positions
end

def nonocell(str) do                  # "##.###..##" -> "|A|A|_|B|B|B|_|_|C|C|"
slist = String.to_char_list(str) |> Enum.chunk_by(&(&1==?.)) |> Enum.map(&List.to_string(&1))
chrs = Enum.map(?A..?Z, &List.to_string([&1]))
result = nonocell_replace(slist, chrs, "")
|> String.replace(".", "_")
|> String.split("") |> Enum.join("|")
"|" <> result
end

defp nonocell_replace([], _, result), do: result
defp nonocell_replace([h|t], chrs, result) do
if String.first(h) == "#" do
[c | rest] = chrs
nonocell_replace(t, rest, result <> String.replace(h, "#", c))
else
nonocell_replace(t, chrs, result <> h)
end
end
end

conf = [{ 5, [2, 1]},
{ 5, []},
{10, [8]},
{15, [2, 3, 2, 3]},
{ 5, [2, 3]}       ]
Enum.each(conf, fn {cell, blocks} ->
try do
IO.puts "Configuration:"
IO.puts "#{Nonoblock.nonocell(String.duplicate(".",cell))} # #{cell} cells and #{inspect blocks} blocks"
IO.puts "Possibilities:"
count = Nonoblock.solve(cell, blocks)
IO.puts "A total of #{count} Possible configurations.\n"
rescue
e in RuntimeError -> IO.inspect e
end
end)
```
Output:
```Configuration:
|_|_|_|_|_| # 5 cells and [2, 1] blocks
Possibilities:
|A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and [] blocks
Possibilities:
|_|_|_|_|_|
A total of 1 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_| # 10 cells and '\b' blocks
Possibilities:
|A|A|A|A|A|A|A|A|_|_|
|_|A|A|A|A|A|A|A|A|_|
|_|_|A|A|A|A|A|A|A|A|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| # 15 cells and [2, 3, 2, 3] blocks
Possibilities:
|A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
|A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
|A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
|A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
|A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
|A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
|A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
|A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
|A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
|A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
|_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
|_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
|_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
|_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
|_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|
A total of 15 Possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and [2, 3] blocks
Possibilities:
%RuntimeError{message: "Those blocks will not fit in those cells"}
```

## Go

Translation of: Kotlin
```package main

import (
"fmt"
"strings"
)

func printBlock(data string, le int) {
a := []byte(data)
sumBytes := 0
for _, b := range a {
sumBytes += int(b - 48)
}
fmt.Printf("\nblocks %c, cells %d\n", a, le)
if le-sumBytes <= 0 {
fmt.Println("No solution")
return
}
prep := make([]string, len(a))
for i, b := range a {
prep[i] = strings.Repeat("1", int(b-48))
}
for _, r := range genSequence(prep, le-sumBytes+1) {
fmt.Println(r[1:])
}
}

func genSequence(ones []string, numZeros int) []string {
if len(ones) == 0 {
return []string{strings.Repeat("0", numZeros)}
}
var result []string
for x := 1; x < numZeros-len(ones)+2; x++ {
skipOne := ones[1:]
for _, tail := range genSequence(skipOne, numZeros-x) {
result = append(result, strings.Repeat("0", x)+ones[0]+tail)
}
}
return result
}

func main() {
printBlock("21", 5)
printBlock("", 5)
printBlock("8", 10)
printBlock("2323", 15)
printBlock("23", 5)
}
```
Output:
```blocks [2 1], cells 5
11010
11001
01101

blocks [], cells 5
00000

blocks [8], cells 10
1111111100
0111111110
0011111111

blocks [2 3 2 3], cells 15
110111011011100
110111011001110
110111011000111
110111001101110
110111001100111
110111000110111
110011101101110
110011101100111
110011100110111
110001110110111
011011101101110
011011101100111
011011100110111
011001110110111
001101110110111

blocks [2 3], cells 5
No solution
```

## J

Implementation:

```nonoblock=:4 :0
s=. 1+(1+x)-+/1+y
pad=.1+(#~ s >+/"1)((1+#y)#s) #: i.s^1+#y
~.pad (_1}.1 }. ,. #&, 0 ,. 1 + i.@#@])"1]y,0
)

neat=: [: (#~ # \$ 0 1"_)@": {&(' ',65}.a.)&.>
```

```   neat 5 nonoblock 2 1
│A│A│ │B│ │
│A│A│ │ │B│
│ │A│A│ │B│
neat 5 nonoblock ''
│ │ │ │ │ │
neat 10 nonoblock 8
│A│A│A│A│A│A│A│A│ │ │
│ │A│A│A│A│A│A│A│A│ │
│ │ │A│A│A│A│A│A│A│A│
neat 15 nonoblock 2 3 2 3
│A│A│ │B│B│B│ │C│C│ │D│D│D│ │ │
│A│A│ │B│B│B│ │C│C│ │ │D│D│D│ │
│A│A│ │B│B│B│ │C│C│ │ │ │D│D│D│
│A│A│ │B│B│B│ │ │C│C│ │D│D│D│ │
│A│A│ │B│B│B│ │ │C│C│ │ │D│D│D│
│A│A│ │B│B│B│ │ │ │C│C│ │D│D│D│
│A│A│ │ │B│B│B│ │C│C│ │D│D│D│ │
│A│A│ │ │B│B│B│ │C│C│ │ │D│D│D│
│A│A│ │ │B│B│B│ │ │C│C│ │D│D│D│
│A│A│ │ │ │B│B│B│ │C│C│ │D│D│D│
│ │A│A│ │B│B│B│ │C│C│ │D│D│D│ │
│ │A│A│ │B│B│B│ │C│C│ │ │D│D│D│
│ │A│A│ │B│B│B│ │ │C│C│ │D│D│D│
│ │A│A│ │ │B│B│B│ │C│C│ │D│D│D│
│ │ │A│A│ │B│B│B│ │C│C│ │D│D│D│
neat 5 nonoblock 2 3
```

## Java

Works with: Java version 8
```import java.util.*;
import static java.util.Arrays.stream;
import static java.util.stream.Collectors.toList;

public class Nonoblock {

public static void main(String[] args) {
printBlock("21", 5);
printBlock("", 5);
printBlock("8", 10);
printBlock("2323", 15);
printBlock("23", 5);
}

static void printBlock(String data, int len) {
int sumChars = data.chars().map(c -> Character.digit(c, 10)).sum();
String[] a = data.split("");

System.out.printf("%nblocks %s, cells %s%n", Arrays.toString(a), len);
if (len - sumChars <= 0) {
System.out.println("No solution");
return;
}

List<String> prep = stream(a).filter(x -> !"".equals(x))
.map(x -> repeat(Character.digit(x.charAt(0), 10), "1"))
.collect(toList());

for (String r : genSequence(prep, len - sumChars + 1))
System.out.println(r.substring(1));
}

// permutation generator, translated from Python via D
static List<String> genSequence(List<String> ones, int numZeros) {
if (ones.isEmpty())
return Arrays.asList(repeat(numZeros, "0"));

List<String> result = new ArrayList<>();
for (int x = 1; x < numZeros - ones.size() + 2; x++) {
List<String> skipOne = ones.stream().skip(1).collect(toList());
for (String tail : genSequence(skipOne, numZeros - x))
result.add(repeat(x, "0") + ones.get(0) + tail);
}
return result;
}

static String repeat(int n, String s) {
StringBuilder sb = new StringBuilder();
for (int i = 0; i < n; i++)
sb.append(s);
return sb.toString();
}
}
```
```blocks [2, 1], cells 5
11010
11001
01101

blocks [], cells 5
00000

blocks [8], cells 10
1111111100
0111111110
0011111111

blocks [2, 3, 2, 3], cells 15
110111011011100
110111011001110
110111011000111
110111001101110
110111001100111
110111000110111
110011101101110
110011101100111
110011100110111
110001110110111
011011101101110
011011101100111
011011100110111
011001110110111
001101110110111

blocks [2, 3], cells 5
No solution```

## JavaScript

```const compose = (...fn) => (...x) => fn.reduce((a, b) => c => a(b(c)))(...x);
const inv = b => !b;
const arrJoin = str => arr => arr.join(str);
const mkArr = (l, f) => Array(l).fill(f);
const sumArr = arr => arr.reduce((a, b) => a + b, 0);
const sumsTo = val => arr => sumArr(arr) === val;
const zipper = arr => (p, c, i) => arr[i] ? [...p, c, arr[i]] : [...p, c];
const zip = (a, b) => a.reduce(zipper(b), []);
const zipArr = arr => a => zip(a, arr);
const hasInner = v => arr => arr.slice(1, -1).indexOf(v) >= 0;
const choose = (even, odd) => n => n % 2 === 0 ? even : odd;
const toBin = f => arr => arr.reduce(
(p, c, i) => [...p, ...mkArr(c, f(i))], []);

const looper = (arr, max, acc = [[...arr]], idx = 0) => {
if (idx !== arr.length) {
const b = looper([...arr], max, acc, idx + 1)[0];
if (b[idx] !== max) {
b[idx] = b[idx] + 1;
acc.push(looper([...b], max, acc, idx)[0]);
}
}
return [arr, acc];
};

const gapPerms = (grpSize, numGaps, minVal = 0) => {
const maxVal = numGaps - grpSize * minVal + minVal;
return maxVal <= 0
? (grpSize === 2 ? [[0]] : [])
: looper(mkArr(grpSize, minVal), maxVal)[1];
}

const test = (cells, ...blocks) => {
const grpSize = blocks.length + 1;
const numGaps = cells - sumArr(blocks);

// Filter functions
const sumsToTrg = sumsTo(numGaps);
const noInnerZero = compose(inv, hasInner(0));

// Output formatting
const combine = zipArr([...blocks]);
const choices = toBin(choose(0, 1));
const output = compose(console.log, arrJoin(''), choices, combine);

console.log(`\n\${cells} cells. Blocks: \${blocks}`);
gapPerms(grpSize, numGaps)
.filter(noInnerZero)
.filter(sumsToTrg)
.map(output);
};

test(5, 2, 1);
test(5);
test(5, 5);
test(5, 1, 1, 1);
test(10, 8);
test(15, 2, 3, 2, 3);
test(10, 4, 3);
test(5, 2, 3);
```
Output:
```5 cells. Blocks: 2,1
11010
11001
01101

5 cells. Blocks:
00000

5 cells. Blocks: 5
11111

5 cells. Blocks: 1,1,1
10101

10 cells. Blocks: 8
1111111100
0111111110
0011111111

15 cells. Blocks: 2,3,2,3
110111011011100
110111011001110
110111011000111
110111001101110
110111001100111
110111000110111
110011101101110
110011101100111
110011100110111
110001110110111
011011101101110
011011101100111
011011100110111
011001110110111
001101110110111

10 cells. Blocks: 4,3
1111011100
1111001110
1111000111
0111101110
0111100111
0011110111

5 cells. Blocks: 2,3

```

## jq

Works with jq, the C implementation of jq

Works with gojq, the Go implementation of jq

Works with jaq, the Rust implementation of jq

```def sum(stream): reduce stream as \$x (0; . + \$x);

def genSequence(\$ones; \$numZeros):
if \$ones|length == 0 then "." * \$numZeros
else range(1; \$numZeros - (\$ones|length) + 2) as \$x
| genSequence(\$ones[1:]; \$numZeros - \$x) as \$tail
|  "." * \$x + \$ones[0] + \$tail
end;

def printBlock(\$data; \$len):
sum(\$data | explode[] |  . - 48) as \$sumChars
| "\nblocks \(\$data), cells \(\$len)",
(if \$len - \$sumChars <= 0
then "No solution"
else ( \$data | explode | map( "1" * (. - 48) ) ) as \$prep
| genSequence(\$prep; \$len - \$sumChars + 1)[1:]
end) ;

printBlock(  "21";  5),
printBlock(    "";  5),
printBlock(   "8"; 10),
printBlock("2323"; 15),
printBlock(  "23";  5)```
Output:
```blocks 21, cells 5
11.1.
11..1
.11.1

blocks , cells 5
.....

blocks 8, cells 10
11111111..
.11111111.
..11111111

blocks 2323, cells 15
11.111.11.111..
11.111.11..111.
11.111.11...111
11.111..11.111.
11.111..11..111
11.111...11.111
11..111.11.111.
11..111.11..111
11..111..11.111
11...111.11.111
.11.111.11.111.
.11.111.11..111
.11.111..11.111
.11..111.11.111
..11.111.11.111

blocks 23, cells 5
No solution
```

## Julia

```minsized(arr) = join(map(x->"#"^x, arr), ".")
minlen(arr) = sum(arr) + length(arr) - 1

function sequences(blockseq, numblanks)
if isempty(blockseq)
return ["." ^ numblanks]
elseif minlen(blockseq) == numblanks
return minsized(blockseq)
else
result = Vector{String}()
for leftspace in 0:(numblanks - minlen(blockseq))
header = "." ^ leftspace * "#" ^ blockseq[1] * "."
rightspace = numblanks - length(header)
push!(result, rightspace <= 0 ? header[1:numblanks] : header * "." ^ rightspace)
elseif minlen(allbuthead) == rightspace
else
map(x -> push!(result, header * x), sequences(allbuthead, rightspace))
end
end
end
result
end

function nonoblocks(bvec, len)
println("With blocks \$bvec and \$len cells:")
len < minlen(bvec) ? println("No solution") : for seq in sequences(bvec, len) println(seq) end
end

nonoblocks([2, 1], 5)
nonoblocks(Vector{Int}([]), 5)
nonoblocks([8], 10)
nonoblocks([2, 3, 2, 3], 15)
nonoblocks([2, 3], 5)
```
Output:
```
With blocks [2, 1] and 5 cells:
##.#.
##..#
.##.#
With blocks Int64[] and 5 cells:
.....
With blocks [8] and 10 cells:
########..
.########.
..########
With blocks [2, 3, 2, 3] and 15 cells:
##.###.##.###..
##.###.##..###.
##.###.##...###
##.###..##.###.
##.###..##..###
##.###...##.###
##..###.##.###.
##..###.##..###
##..###..##.###
##...###.##.###
.##.###.##.###.
.##.###.##..###
.##.###..##.###
.##..###.##.###
..##.###.##.###
With blocks [2, 3] and 5 cells:
No solution

```

## Kotlin

Translation of: Java
```// version 1.2.0

fun printBlock(data: String, len: Int) {
val a = data.toCharArray()
val sumChars = a.map { it.toInt() - 48 }.sum()
println("\nblocks \${a.asList()}, cells \$len")
if (len - sumChars <= 0) {
println("No solution")
return
}
val prep = a.map { "1".repeat(it.toInt() - 48) }
for (r in genSequence(prep, len - sumChars + 1)) println(r.substring(1))
}

fun genSequence(ones: List<String>, numZeros: Int): List<String> {
if (ones.isEmpty()) return listOf("0".repeat(numZeros))
val result = mutableListOf<String>()
for (x in 1 until numZeros - ones.size + 2) {
val skipOne = ones.drop(1)
for (tail in genSequence(skipOne, numZeros - x)) {
result.add("0".repeat(x) + ones[0] + tail)
}
}
return result
}

fun main(args: Array<String>) {
printBlock("21", 5)
printBlock("", 5)
printBlock("8", 10)
printBlock("2323", 15)
printBlock("23", 5)
}
```
Output:
```blocks [2, 1], cells 5
11010
11001
01101

blocks [], cells 5
00000

blocks [8], cells 10
1111111100
0111111110
0011111111

blocks [2, 3, 2, 3], cells 15
110111011011100
110111011001110
110111011000111
110111001101110
110111001100111
110111000110111
110011101101110
110011101100111
110011100110111
110001110110111
011011101101110
011011101100111
011011100110111
011001110110111
001101110110111

blocks [2, 3], cells 5
No solution
```

## Lua

```local examples = {
{5, {2, 1}},
{5, {}},
{10, {8}},
{15, {2, 3, 2, 3}},
{5, {2, 3}},
}

function deep (blocks, iBlock, freedom, str)
if iBlock == #blocks then -- last
for takenFreedom = 0, freedom do
print (str..string.rep("0", takenFreedom) .. string.rep("1", blocks[iBlock]) .. string.rep("0", freedom - takenFreedom))
total = total + 1
end
else
for takenFreedom = 0, freedom do
local str2 = str..string.rep("0", takenFreedom) .. string.rep("1", blocks[iBlock]) .. "0"
deep (blocks, iBlock+1, freedom-takenFreedom, str2)
end
end
end

function main (cells, blocks) -- number, list
local str = "	"
print (cells .. ' cells and {' .. table.concat(blocks, ', ') .. '} blocks')
local freedom = cells - #blocks + 1 -- freedom
for iBlock = 1, #blocks do
freedom = freedom - blocks[iBlock]
end
if #blocks == 0 then
print ('no blocks')
print (str..string.rep("0", cells))
total = 1
elseif freedom < 0 then
print ('no solutions')
else
print ('Possibilities:')
deep (blocks, 1, freedom, str)
end
end

for i, example in ipairs (examples) do
print ("\n--")
total = 0
main (example[1], example[2])
print ('A total of ' .. total .. ' possible configurations.')
end
```
Output:
```--
5 cells and {2, 1} blocks
Possibilities:
11010
11001
01101
A total of 3 possible configurations.

--
5 cells and {} blocks
no blocks
00000
A total of 1 possible configurations.

--
10 cells and {8} blocks
Possibilities:
1111111100
0111111110
0011111111
A total of 3 possible configurations.

--
15 cells and {2, 3, 2, 3} blocks
Possibilities:
110111011011100
110111011001110
110111011000111
110111001101110
110111001100111
110111000110111
110011101101110
110011101100111
110011100110111
110001110110111
011011101101110
011011101100111
011011100110111
011001110110111
001101110110111
A total of 15 possible configurations.

--
5 cells and {2, 3} blocks
no solutions
A total of 0 possible configurations.
```

## M2000 Interpreter

### Recursive

```Module NonoBlock {
Form 80,40
Flush
Print "Nonoblock"
Data 5, (2, 1)
Data 5, (,)
Data 10, (8,)
Data 15, (2,3,2,3)
Data 5, (2,3)
Def BLen(a\$)=(Len(a\$)-1)/2
Function UseLetter(arr) {
Dim Base 0, Res\$(Len(arr))
Link Res\$() to Res()
Def Ord\$(a\$)=ChrCode\$(Chrcode(a\$)+1)
L\$="A"
i=each(arr)
While i {
Res\$(i^)=String\$("|"+L\$, Array(i))+"|"
L\$=Ord\$(L\$)
}
=Res()
}
Count=0
For i=1 to 5
Blocks=UseLetter(Blocks)
Print str\$(i,"")+".", "Cells=";Cells, "", iF(len(Blocks)=0->("Empty",), Blocks)
PrintRow( "|", Cells, Blocks, &Count)
CheckCount()
Next I
Sub CheckCount()
If count=0 Then Print " Impossible"
count=0
End Sub
Sub PrintRow(Lpart\$, Cells, Blocks, &Comp)
If len(Blocks)=0 Then Comp++ :Print Format\$("{0::-3} {1}", Comp, lpart\$+String\$("_|", Cells)):  Exit Sub
If Cells<=0 Then Exit Sub
Local TotalBlocksLength=0, Sep_Spaces=-1
Local Block=Each(Blocks), block\$
While Block {
Block\$=Array\$(Block)
TotalBlocksLength+=Blen(Block\$)
Sep_Spaces++
}
Local MaxLengthNeed=TotalBlocksLength+Sep_Spaces
If MaxLengthNeed>Cells Then Exit Sub
block\$=Array\$(Car(Blocks))
local temp=Blen(block\$)
block\$=Mid\$(Block\$, 2)
If Len(Blocks)>1 Then block\$+="_|" :temp++
PrintRow(Lpart\$+block\$, Cells-temp, Cdr(Blocks), &Comp)
PrintRow(lpart\$+String\$("_|", 1), Cells-1,Blocks, &Comp)
End Sub
}
NonoBlock```
Output:
```Nonoblock
1.    Cells=5 |A|A| |B|
1 |A|A|_|B|_|
2 |A|A|_|_|B|
3 |_|A|A|_|B|
2.    Cells=5 Empty
1 |_|_|_|_|_|
3.    Cells=10 |A|A|A|A|A|A|A|A|
1 |A|A|A|A|A|A|A|A|_|_|
2 |_|A|A|A|A|A|A|A|A|_|
3 |_|_|A|A|A|A|A|A|A|A|
4.    Cells=15 |A|A| |B|B|B| |C|C| |D|D|D|
1 |A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
2 |A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
3 |A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
4 |A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
5 |A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
6 |A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
7 |A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
8 |A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
9 |A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
10 |A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
11 |_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
12 |_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
13 |_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
14 |_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
15 |_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|
5.    Cells=5 |A|A| |B|B|B|
Impossible

```

### Non Recursive

```Module Nonoblock (n, m) {
Print "Cells:",n," Blocks:",m
Dim n(1 to n), m(1 to m), sp(1 to m*2), sk(1 to m*2), part(1 to m)
queue=0
If m>0 Then {
Print "Block Size:",
For i=1 to m {
Print m(i),
}
Print
part(m)=m(m)
If m>1 Then {
For i=m-1 to 1 {
part(i)=m(i)+part(i+1)+1
}
}
}
If part(1)>n Then {
Print "Impossible"
} Else {
p1=0
l=0
Counter=0
While p1<=n-part(1) {
k=0
p=p1+1
For i=1 to n {
n(i)=0
}
flag=True
Repeat {
While k<m {
k++
l=0
While l<m(k) and p<=n {
l++
n(p)=1
p++
}
If p<n Then {
n(p)=0
p++
If k<m Then {
If p+part(k+1)<n+1 Then {
queue++
sp(queue)=p
sk(queue)=k
}
}
}
}
flag=True
If l=m(k)  Then {
counter++
Print Str\$(counter,"0000  ");
For i=1 to n {
Print n(i);" ";
}
Print
If queue>0 Then  {
p=sp(queue)
k=sk(queue)
queue--
For i=p to n {
n(i)=0
}
p++
If k<m Then {
If p+part(k+1)<n+1 Then {
queue++
sp(queue)=p
' sk(queue)=k
}
}
flag=False
}
}
} Until flag
p1++
If k=0 Then Exit
}
}
}

Nonoblock 5,2,2,1
Nonoblock 5,0
Nonoblock 10,1,8
Nonoblock 15,4,2,3,2,3
Nonoblock 5,2,3,2```

## Mathematica /Wolfram Language

```ClearAll[SpacesDistributeOverN, Possibilities]
SpacesDistributeOverN[s_, p_] :=
Flatten[
Permutations /@ (Join[#, ConstantArray[0, p - Length[#]]] & /@
IntegerPartitions[s, p]), 1]
Possibilities[hint_, len_] :=
Module[{p = hint, l = len, b = Length[hint], Spaces, out},
Spaces = # + (Prepend[Append[ConstantArray[1, b - 1], 0],
0]) & /@ (SpacesDistributeOverN[l - Total@p - (b - 1), b + 1]);
out = Flatten /@ (
Riffle[#, Map[Table[1, {#}] &, p, {1}]] & /@
Map[Table[0, {#}] &, Spaces, {2}]);
StringJoin @@@ (out /. {0 -> ".", 1 -> "#"})
]
Possibilities[{}, len_] := Module[{},
{StringJoin[ConstantArray[".", len]]}
]
Possibilities[{2, 1}, 5]
Possibilities[{}, 5]
Possibilities[{8}, 10]
Possibilities[{2, 3, 2, 3}, 15]
Possibilities[{2, 3}, 5]
```
Output:
```{".##.#", "##..#", "##.#."}
{"....."}
{"..########", "########..", ".########."}
{"..##.###.##.###", "##...###.##.###", "##.###...##.###", "##.###.##...###", "##.###.##.###..", ".##..###.##.###", ".##.###..##.###", ".##.###.##..###", ".##.###.##.###.", "##..###..##.###", "##..###.##..###", "##..###.##.###.", "##.###..##..###", "##.###..##.###.", "##.###.##..###."}
{}```

## Nim

Translation of: Go
```import math, sequtils, strformat, strutils

proc genSequence(ones: seq[string]; numZeroes: Natural): seq[string] =
if ones.len == 0: return @[repeat('0', numZeroes)]
for x in 1..(numZeroes - ones.len + 1):
let skipOne = ones[1..^1]
for tail in genSequence(skipOne, numZeroes - x):
result.add repeat('0', x) & ones[0] & tail

proc printBlock(data: string; length: Positive) =

let a = mapIt(data, ord(it) - ord('0'))
let sumBytes = sum(a)

echo &"\nblocks {(\$a)[1..^1]} cells {length}"
if length - sumBytes <= 0:
echo "No solution"
return

var prep: seq[string]
for b in a: prep.add repeat('1', b)

for r in genSequence(prep, length - sumBytes + 1):
echo r[1..^1]

when isMainModule:
printBlock("21", 5)
printBlock("", 5)
printBlock("8", 10)
printBlock("2323", 15)
printBlock("23", 5)
```
Output:
```blocks [2, 1] cells 5
11010
11001
01101

blocks [] cells 5
00000

blocks [8] cells 10
1111111100
0111111110
0011111111

blocks [2, 3, 2, 3] cells 15
110111011011100
110111011001110
110111011000111
110111001101110
110111001100111
110111000110111
110011101101110
110011101100111
110011100110111
110001110110111
011011101101110
011011101100111
011011100110111
011001110110111
001101110110111

blocks [2, 3] cells 5
No solution```

## Pascal

A console application in Free Pascal, created with the Lazarus IDE.

With 15 cells and [2,3,2,3] blocks, it's a question of how to distribute 5 gap characters among 5 gaps (including the 2 gaps at the ends). To allow for the requirement that the 3 inner gaps must be strictly positive, we can reduce the size of each inner gap by 1, provided we remember to restore the deleted gap character when printing the result. Then 2 gap characters need to be distributed among 5 non-negative gaps. In general, for integers n > 0 and s, the task amounts to finding all arrays of n non-negative integers that sum to s. An iterative method is shown below.

```program Nonoblock;
uses SysUtils;

// Working through solutions to the problem:
// Fill an array z[] with non-negative integers
//  whose sum is the passed-in integer s.
function GetFirstSolution( var z : array of integer;
s : integer) : boolean;
var
j : integer;
begin
result := (s >= 0) and (High(z) >= 0);  // failed if s < 0 or array is empty
if result then begin // else initialize to solution 0, ..., 0, s
j := High(z);  z[j] := s;
while (j > 0) do begin
dec(j);      z[j] := 0;
end;
end;
end;

// Next solution: return true for success, false if no more solutions.
// Solutions are generated in lexicographic order.
function GetNextSolution( var z : array of integer) : boolean;
var
h, j : integer;
begin
h := High(z);
j := h; // find highest index j such that z[j] > 0.
while (j > 0) and (z[j] = 0) do dec(j);
result := (j > 0);   // if index is 0, or there is no such index, failed
if result then begin // else update caller's array to give next solution
inc(z[j - 1]);
z[h] := z[j] - 1;
if (j < h) then z[j] := 0;
end;
end;

// Procedure to print solutions to nonoblock task on RosettaCode
procedure PrintSolutions( nrCells : integer;
blockSizes : array of integer);
const // cosmetic
MARGIN = 4;
GAP_CHAR = '.';
BLOCK_CHAR = '#';
var
sb : SysUtils.TStringBuilder;
nrBlocks, blockSum, gapSum : integer;
gapSizes : array of integer;
i, nrSolutions : integer;
begin
nrBlocks := Length( blockSizes);

// Print a title, showing the number of cells and the block sizes
sb := SysUtils.TStringBuilder.Create();
sb.AppendFormat('%d cells; blocks [', [nrCells]);
for i := 0 to nrBlocks - 1 do begin
if (i > 0) then sb.Append(',');
sb.Append( blockSizes[i]);
end;
sb.Append(']');
WriteLn( sb.ToString());

blockSum := 0; // total of block sizes
for i := 0 to nrBlocks - 1 do inc( blockSum, blockSizes[i]);

gapSum := nrCells - blockSum;
// Except in the trivial case of no blocks,
// we reduce the size of each inner gap by 1.
if nrBlocks > 0 then dec( gapSum, nrBlocks - 1);

// Work through all solutions and print them nicely.
nrSolutions := 0;
SetLength( gapSizes, nrBlocks + 1); // include the gap at each end
if GetFirstSolution( gapSizes, gapSum) then begin
repeat
inc( nrSolutions);
sb.Clear();
sb.Append( ' ', MARGIN);
for i := 0 to nrBlocks - 1 do begin
sb.Append( GAP_CHAR, gapSizes[i]);
// We reduced the inner gaps by 1; now we restore the deleted char.
if (i > 0) then sb.Append( GAP_CHAR);
sb.Append( BLOCK_CHAR, blockSizes[i]);
end;
sb.Append( GAP_CHAR, gapSizes[nrBlocks]);
WriteLn( sb.ToString());
until not GetNextSolution( gapSizes);
end;
sb.Free();
WriteLn( SysUtils.Format( 'Number of solutions = %d', [nrSolutions]));
WriteLn('');
end;

// Main program
begin
PrintSolutions( 5, [2,1]);
PrintSolutions( 5, []);
PrintSolutions( 10, [8]);
PrintSolutions( 15, [2,3,2,3]);
PrintSolutions( 5, [2,3]);
end.
```
Output:
```5 cells; blocks [2,1]
##.#.
##..#
.##.#
Number of solutions = 3

5 cells; blocks []
.....
Number of solutions = 1

10 cells; blocks [8]
########..
.########.
..########
Number of solutions = 3

15 cells; blocks [2,3,2,3]
##.###.##.###..
##.###.##..###.
##.###.##...###
##.###..##.###.
##.###..##..###
##.###...##.###
##..###.##.###.
##..###.##..###
##..###..##.###
##...###.##.###
.##.###.##.###.
.##.###.##..###
.##.###..##.###
.##..###.##.###
..##.###.##.###
Number of solutions = 15

5 cells; blocks [2,3]
Number of solutions = 0
```

## Perl

```use strict;
use warnings;

while( <DATA> )
{
print "\n\$_", tr/\n/=/cr;
my (\$cells, @blocks) = split;
my \$letter = 'A';
\$_ = join '.', map { \$letter++ x \$_ } @blocks;
\$cells < length and print("no solution\n"), next;
\$_ .= '.' x (\$cells - length) . "\n";
1 while print, s/^(\.*)\b(.*?)\b(\w+)\.\B/\$2\$1.\$3/;
}

__DATA__
5 2 1
5
10 8
15 2 3 2 3
5 2 3
```
Output:
```5 2 1
=====
AA.B.
AA..B
.AA.B

5
=
.....

10 8
====
AAAAAAAA..
.AAAAAAAA.
..AAAAAAAA

15 2 3 2 3
==========
AA.BBB.CC.DDD..
AA.BBB.CC..DDD.
AA.BBB..CC.DDD.
AA..BBB.CC.DDD.
.AA.BBB.CC.DDD.
AA.BBB.CC...DDD
AA.BBB..CC..DDD
AA..BBB.CC..DDD
.AA.BBB.CC..DDD
AA.BBB...CC.DDD
AA..BBB..CC.DDD
.AA.BBB..CC.DDD
AA...BBB.CC.DDD
.AA..BBB.CC.DDD
..AA.BBB.CC.DDD

5 2 3
=====
no solution

```

## Phix

```with javascript_semantics
function nobr(sequence res, string neat, integer ni, integer ch, sequence blocks)
if length(blocks)=0 then
res = append(res,neat)
else
integer b = blocks[1]
blocks = blocks[2..\$]
integer l = (sum(blocks)+length(blocks)-1)*2,
e = length(neat)-l-b*2
for i=ni to e by 2 do
for j=i to i+b*2-2 by 2 do
neat[j] = ch
end for
res = nobr(res,neat,i+b*2+2,ch+1,blocks)
neat[i] = ' '
end for
end if
return res
end function

function nonoblock(integer len, sequence blocks)
string neat = "|"&join(repeat(' ',len),'|')&"|"
return nobr({},neat,2,'A',blocks)
end function

sequence tests = {{5,{2,1}},
{5,{}},
{10,{8}},
{15,{2, 3, 2, 3}},
{10,{4, 3}},
{5,{2,1}},
{10,{3, 1}},
{5,{2, 3}}}
integer len
sequence blocks, res
for i=1 to length(tests) do
{len,blocks} = tests[i]
string ti = sprintf("%d cells with blocks %s",{len,sprint(blocks)})
printf(1,"%s\n%s\n",{ti,repeat('=',length(ti))})
res = nonoblock(len,blocks)
if length(res)=0 then
printf(1,"No solutions.\n")
else
for ri=1 to length(res) do
printf(1,"%3d:  %s\n",{ri,res[ri]})
end for
end if
printf(1,"\n")
end for
```
Output:
```5 cells with blocks {2,1}
=========================
1:  |A|A| |B| |
2:  |A|A| | |B|
3:  | |A|A| |B|

5 cells with blocks {}
======================
1:  | | | | | |

10 cells with blocks {8}
========================
1:  |A|A|A|A|A|A|A|A| | |
2:  | |A|A|A|A|A|A|A|A| |
3:  | | |A|A|A|A|A|A|A|A|

15 cells with blocks {2,3,2,3}
==============================
1:  |A|A| |B|B|B| |C|C| |D|D|D| | |
2:  |A|A| |B|B|B| |C|C| | |D|D|D| |
3:  |A|A| |B|B|B| |C|C| | | |D|D|D|
4:  |A|A| |B|B|B| | |C|C| |D|D|D| |
5:  |A|A| |B|B|B| | |C|C| | |D|D|D|
6:  |A|A| |B|B|B| | | |C|C| |D|D|D|
7:  |A|A| | |B|B|B| |C|C| |D|D|D| |
8:  |A|A| | |B|B|B| |C|C| | |D|D|D|
9:  |A|A| | |B|B|B| | |C|C| |D|D|D|
10:  |A|A| | | |B|B|B| |C|C| |D|D|D|
11:  | |A|A| |B|B|B| |C|C| |D|D|D| |
12:  | |A|A| |B|B|B| |C|C| | |D|D|D|
13:  | |A|A| |B|B|B| | |C|C| |D|D|D|
14:  | |A|A| | |B|B|B| |C|C| |D|D|D|
15:  | | |A|A| |B|B|B| |C|C| |D|D|D|

10 cells with blocks {4,3}
==========================
1:  |A|A|A|A| |B|B|B| | |
2:  |A|A|A|A| | |B|B|B| |
3:  |A|A|A|A| | | |B|B|B|
4:  | |A|A|A|A| |B|B|B| |
5:  | |A|A|A|A| | |B|B|B|
6:  | | |A|A|A|A| |B|B|B|

5 cells with blocks {2,1}
=========================
1:  |A|A| |B| |
2:  |A|A| | |B|
3:  | |A|A| |B|

10 cells with blocks {3,1}
==========================
1:  |A|A|A| |B| | | | | |
2:  |A|A|A| | |B| | | | |
3:  |A|A|A| | | |B| | | |
4:  |A|A|A| | | | |B| | |
5:  |A|A|A| | | | | |B| |
6:  |A|A|A| | | | | | |B|
7:  | |A|A|A| |B| | | | |
8:  | |A|A|A| | |B| | | |
9:  | |A|A|A| | | |B| | |
10:  | |A|A|A| | | | |B| |
11:  | |A|A|A| | | | | |B|
12:  | | |A|A|A| |B| | | |
13:  | | |A|A|A| | |B| | |
14:  | | |A|A|A| | | |B| |
15:  | | |A|A|A| | | | |B|
16:  | | | |A|A|A| |B| | |
17:  | | | |A|A|A| | |B| |
18:  | | | |A|A|A| | | |B|
19:  | | | | |A|A|A| |B| |
20:  | | | | |A|A|A| | |B|
21:  | | | | | |A|A|A| |B|

5 cells with blocks {2,3}
=========================
No solutions.
```

## Python

```def nonoblocks(blocks, cells):
if not blocks or blocks[0] == 0:
yield [(0, 0)]
else:
assert sum(blocks) + len(blocks)-1 <= cells, \
'Those blocks will not fit in those cells'
blength, brest = blocks[0], blocks[1:]      # Deal with the first block of length
minspace4rest = sum(1+b for b in brest)     # The other blocks need space
# Slide the start position from left to max RH index allowing for other blocks.
for bpos in range(0, cells - minspace4rest - blength + 1):
if not brest:
# No other blocks to the right so just yield this one.
yield [(bpos, blength)]
else:
# More blocks to the right so create a *sub-problem* of placing
# the brest blocks in the cells one space to the right of the RHS of
# this block.
offset = bpos + blength +1
nonoargs = (brest, cells - offset)  # Pre-compute arguments to nonoargs
# recursive call to nonoblocks yields multiple sub-positions
for subpos in nonoblocks(*nonoargs):
# Remove the offset from sub block positions
rest = [(offset + bp, bl) for bp, bl in subpos]
# Yield this block plus sub blocks positions
vec = [(bpos, blength)] + rest
yield vec

def pblock(vec, cells):
'Prettyprints each run of blocks with a different letter A.. for each block of filled cells'
vector = ['_'] * cells
for ch, (bp, bl) in enumerate(vec, ord('A')):
for i in range(bp, bp + bl):
vector[i] = chr(ch) if vector[i] == '_' else'?'
return '|' + '|'.join(vector) + '|'

if __name__ == '__main__':
for blocks, cells in (
([2, 1], 5),
([], 5),
([8], 10),
([2, 3, 2, 3], 15),
# ([4, 3], 10),
# ([2, 1], 5),
# ([3, 1], 10),
([2, 3], 5),
):
print('\nConfiguration:\n    %s # %i cells and %r blocks' % (pblock([], cells), cells, blocks))
print('  Possibilities:')
for i, vector in enumerate(nonoblocks(blocks, cells)):
print('   ', pblock(vector, cells))
print('  A total of %i Possible configurations.' % (i+1))
```
Output:
```Configuration:
|_|_|_|_|_| # 5 cells and [2, 1] blocks
Possibilities:
|A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and [] blocks
Possibilities:
|_|_|_|_|_|
A total of 1 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_| # 10 cells and [8] blocks
Possibilities:
|A|A|A|A|A|A|A|A|_|_|
|_|A|A|A|A|A|A|A|A|_|
|_|_|A|A|A|A|A|A|A|A|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| # 15 cells and [2, 3, 2, 3] blocks
Possibilities:
|A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
|A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
|A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
|A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
|A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
|A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
|A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
|A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
|A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
|A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
|_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
|_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
|_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
|_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
|_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|
A total of 15 Possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and [2, 3] blocks
Possibilities:
Traceback (most recent call last):
File "C:/Users/Paddy/Google Drive/Code/nonoblocks.py", line 104, in <module>
for i, vector in enumerate(nonoblocks(blocks, cells)):
File "C:/Users/Paddy/Google Drive/Code/nonoblocks.py", line 60, in nonoblocks
'Those blocks will not fit in those cells'
AssertionError: Those blocks will not fit in those cells```

## Racket

This implementation does not "error" on the impossible case.

Knowing that there are no solutions (empty result list) is good enough.

Also, the blocks are not identified. I suppose they could be easily enough, but in the nonogram task, these patterns are converted to bit-fields shortly after the nonoblock generation, and bits have no names (sad, but true).

```#lang racket
(require racket/trace)

(define add1-to-car (match-lambda [(cons (app add1 p1) t) (cons p1 t)]))

;; inputs:
;;   cells  -- available cells
;;   blocks -- list of block widths
;; output:
;;   gap-block+gaps
;;   where gap-block+gaps is:
;;   (list gap)                            -- a single gap
;;   (list gap block-width gap-block+gaps) -- padding to left, a block, right hand side
(define (nonoblock cells blocks)
(match* ((- cells (apply + (length blocks) -1 blocks)) #| padding available on both sides |# blocks)
[(_ (list)) (list (list cells))] ; generates an empty list of padding

[((? negative?) _) null] ; impossible to satisfy

[((and avp
;; use add1 with in-range because we actually want from 0 to available-padding
;; without add1, in-range iterates from 0 to (available-padding - 1)
(list block))
(for/list ((l-pad (in-range 0 avp+1)))
(define r-pad (- avp l-pad)) ; what remains goes to right

[((app add1 avp+1) (list block more-blocks ...))
(for*/list ((l-pad (in-range 0 avp+1))
(cells-- (in-value (- cells block l-pad 1)))
(r-blocks (in-value (nonoblock cells-- more-blocks)))
(r-block (in-list r-blocks)))
(list* l-pad block (add1-to-car r-block)))])) ; put a single space pad on left of r-block

(define (neat rslt)
(define dots (curryr make-string #\.))
(define Xes (curryr make-string #\X))
(define inr
(match-lambda
[(list 0 (app Xes b) t ...)
(string-append b (inr t))]
[(list (app dots p) (app Xes b) t ...)
(string-append p b (inr t))]
[(list (app dots p)) p]))
(define (neat-row r)
(string-append "|" (inr r) "|"))
(string-join (map neat-row rslt) "\n"))

(define (tst c b)
(define rslt (nonoblock c b))
(define rslt-l (length rslt))
(printf "~a cells, ~a blocks => ~a~%~a~%" c b
(match rslt-l
[0 "impossible"]
[1 "1 solution"]
[(app (curry format "~a solutions") r) r])
(neat rslt)))

(module+ test
(tst  5 '[2 1])
(tst  5 '[])
(tst 10 '[8])
(tst 15 '[2 3 2 3])
(tst  5 '[2 3]))
```
Output:
```5 cells, (2 1) blocks => 3 solutions
|XX.X.|
|XX..X|
|.XX.X|
5 cells, () blocks => 1 solution
|.....|
10 cells, (8) blocks => 3 solutions
|XXXXXXXX..|
|.XXXXXXXX.|
|..XXXXXXXX|
15 cells, (2 3 2 3) blocks => 15 solutions
|XX.XXX.XX.XXX..|
|XX.XXX.XX..XXX.|
|XX.XXX.XX...XXX|
|XX.XXX..XX.XXX.|
|XX.XXX..XX..XXX|
|XX.XXX...XX.XXX|
|XX..XXX.XX.XXX.|
|XX..XXX.XX..XXX|
|XX..XXX..XX.XXX|
|XX...XXX.XX.XXX|
|.XX.XXX.XX.XXX.|
|.XX.XXX.XX..XXX|
|.XX.XXX..XX.XXX|
|.XX..XXX.XX.XXX|
|..XX.XXX.XX.XXX|
5 cells, (2 3) blocks => impossible
```

## Raku

(formerly Perl 6)

Translation of: Perl
```for (5, [2,1]), (5, []), (10, [8]), (5, [2,3]), (15, [2,3,2,3]) -> (\$cells, @blocks) {
say \$cells, ' cells with blocks: ', @blocks ?? join ', ', @blocks !! '∅';
my \$letter = 'A';
my \$row = join '.', map { \$letter++ x \$_ }, @blocks;
say "no solution\n" and next if \$cells < \$row.chars;
say \$row ~= '.' x \$cells - \$row.chars;
say \$row while \$row ~~ s/^^ (\.*) <|w> (.*?) <|w> (\w+) \.<!|w> /\$1\$0.\$2/;
say '';
}
```
Output:
```5 cells with blocks: 2, 1
AA.B.
AA..B
.AA.B

5 cells with blocks: ∅
.....

10 cells with blocks: 8
AAAAAAAA..
.AAAAAAAA.
..AAAAAAAA

5 cells with blocks: 2, 3
no solution

15 cells with blocks: 2, 3, 2, 3
AA.BBB.CC.DDD..
AA.BBB.CC..DDD.
AA.BBB..CC.DDD.
AA..BBB.CC.DDD.
.AA.BBB.CC.DDD.
AA.BBB.CC...DDD
AA.BBB..CC..DDD
AA..BBB.CC..DDD
.AA.BBB.CC..DDD
AA.BBB...CC.DDD
AA..BBB..CC.DDD
.AA.BBB..CC.DDD
AA...BBB.CC.DDD
.AA..BBB.CC.DDD
..AA.BBB.CC.DDD```

## REXX

```/*REXX program enumerates all possible configurations (or an error) for nonogram puzzles*/
\$.=;    \$.1=  5   2 1
\$.2=  5
\$.3= 10   8
\$.4= 15   2 3 2 3
\$.5=  5   2 3
do  i=1  while \$.i\==''
parse var  \$.i   N  blocks                 /*obtain  N  and  blocks   from array. */
N= strip(N);     blocks= space(blocks)     /*assign stripped   N   and   blocks.  */
call nono                                  /*incoke NONO subroutine for heavy work*/
end   /*i*/
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
nono: say copies('=', 70)                                 /*display seperator for title.*/
say 'For '   N   " cells  and blocks of: "   blocks /*display the title for output*/
z=                                                  /*assign starter value for Z. */
do w=1  for words(blocks)                       /*process each of the blocks. */
z= z copies('#', word(blocks,w) )               /*build a string for 1st value*/
end   /*w*/                                     /*Z  now has a leading blank. */
#= 1                                                /*number of positions (so far)*/
z= translate( strip(z), ., ' ');   L= length(z)     /*change blanks to periods.   */
if L>N  then do;   say '***error***  invalid blocks for number of cells.';   return
end
@.0=;           @.1= z;         !.=0       /*assign default and the first position*/
z= pad(z)                                  /*fill─out (pad) the value with periods*/

do prepend=1  while words(blocks)\==0   /*process all the positions (leading .)*/
new= . || @.prepend                     /*create positions with leading dots.  */
if length(new)>N  then leave            /*Length is too long?  Then stop adding*/
call add                                /*add position that has a leading dot. */
end   /*prepend*/                       /* [↑]  prepend positions with dots.   */

do   k=1  for N                         /*process each of the positions so far.*/
do c=1  for N                         /*   "      "   "  "  position blocks. */
if @.c==''  then iterate              /*if string is null,  skip the string. */
p= loc(@.c, k)                        /*find location of block in position.  */
if p==0 | p>=N  then iterate          /*Location zero or out─of─range?  Skip.*/
new= strip( insert(., @.c, p),'T',.)  /*insert a dot and strip trailing dots.*/
if strip(new,'T',.)=@.c  then iterate /*Is it the same value?  Then skip it. */
if length(new)<=N  then call add      /*Is length OK?   Then add position.   */
end   /*k*/
end     /*c*/
say
say '─position─'  center("value", max(7, length(z) ), '─')  /*show hdr for output.*/

do m=1  for #
say center(m, 10)   pad(@.m)      /*display the index count and position.*/
end   /*m*/
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
loc:  _=0; do arg(2); _=pos('#.',pad(arg(1)),_+1); if _==0  then return 0; end; return _+1
add:  if !.new==1  then return;  #= # + 1;     @.#= new;    !.new=1;    return
pad:  return  left( arg(1), N, .)
```
output   when using the default inputs:
```======================================================================
For  5  cells  and blocks of:  2 1

─position─ ─value─
1      ##.#.
2      .##.#
3      ##..#
======================================================================
For  5  cells  and blocks of:

─position─ ─value─
1      .....
======================================================================
For  10  cells  and blocks of:  8

─position─ ──value───
1      ########..
2      .########.
3      ..########
======================================================================
For  15  cells  and blocks of:  2 3 2 3

─position─ ─────value─────
1      ##.###.##.###..
2      .##.###.##.###.
3      ..##.###.##.###
4      ##..###.##.###.
5      .##..###.##.###
6      ##...###.##.###
7      ##.###..##.###.
8      .##.###..##.###
9      ##..###..##.###
10     ##.###...##.###
11     ##.###.##..###.
12     .##.###.##..###
13     ##..###.##..###
14     ##.###..##..###
15     ##.###.##...###
======================================================================
For  5  cells  and blocks of:  2 3
***error***  invalid blocks for number of cells.
```

## Ruby

Simple version:

```def nonoblocks(cell, blocks)
raise 'Those blocks will not fit in those cells' if cell < blocks.inject(0,:+) + blocks.size - 1
nblock(cell, blocks, '', [])
end

def nblock(cell, blocks, position, result)
if cell <= 0
result << position[0..cell-1]
elsif blocks.empty? or blocks[0].zero?
result << position + '.' * cell
else
rest = cell - blocks.inject(:+) - blocks.size + 2
bl, *brest = blocks
rest.times.inject(result) do |res, i|
nblock(cell-i-bl-1, brest, position + '.'*i + '#'*bl + '.', res)
end
end
end

conf = [[ 5, [2, 1]],
[ 5, []],
[10, [8]],
[15, [2, 3, 2, 3]],
[ 5, [2, 3]],      ]
conf.each do |cell, blocks|
begin
puts "#{cell} cells and #{blocks} blocks"
result = nonoblocks(cell, blocks)
puts result, result.size, ""
rescue => e
p e
end
end
```
Output:
```5 cells and [2, 1] blocks
##.#.
##..#
.##.#
3

5 cells and [] blocks
.....
1

10 cells and [8] blocks
########..
.########.
..########
3

15 cells and [2, 3, 2, 3] blocks
##.###.##.###..
##.###.##..###.
##.###.##...###
##.###..##.###.
##.###..##..###
##.###...##.###
##..###.##.###.
##..###.##..###
##..###..##.###
##...###.##.###
.##.###.##.###.
.##.###.##..###
.##.###..##.###
.##..###.##.###
..##.###.##.###
15

5 cells and [2, 3] blocks
#<RuntimeError: Those blocks will not fit in those cells>
```

### Class version

The output form consulted the one of the python.

```class NonoBlock
def initialize(cell, blocks)
raise 'Those blocks will not fit in those cells' if cell < blocks.inject(0,:+) + blocks.size - 1
@result = []
nonoblocks(cell, blocks, '')
end

def result(correct=true)
correct ? @result.map(&:nonocell) : @result
end

private
def nonoblocks(cell, blocks, position)
if cell <= 0
@result << position[0..cell-1]
elsif blocks.empty? or blocks[0].zero?
@result << position + '.' * cell
else
rest = cell - blocks.inject(0,:+) - blocks.size + 2
bl, *brest = blocks
rest.times do |i|
nonoblocks(cell-i-bl-1, brest, position + '.'*i + '#'*bl + '.')
end
end
end
end

class String
def nonocell                  # "##.###..##" -> "|A|A|_|B|B|B|_|_|C|C|"
chr = ('A'..'Z').each
s = tr('.','_').gsub(/#+/){|sharp| chr.next * sharp.size}
"|#{s.chars.join('|')}|"
end
end

if __FILE__ == \$0
conf = [[ 5, [2, 1]],
[ 5, []],
[10, [8]],
[15, [2, 3, 2, 3]],
[ 5, [2, 3]]       ]
conf.each do |cell, blocks|
begin
puts "Configuration:",
"#{('.'*cell).nonocell} # #{cell} cells and #{blocks} blocks",
"Possibilities:"
result = NonoBlock.new(cell, blocks).result
puts result,
"A total of #{result.size} Possible configurations.", ""
rescue => e
p e
end
end
end
```
Output:
```Configuration:
|_|_|_|_|_| # 5 cells and [2, 1] blocks
Possibilities:
|A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and [] blocks
Possibilities:
|_|_|_|_|_|
A total of 1 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_| # 10 cells and [8] blocks
Possibilities:
|A|A|A|A|A|A|A|A|_|_|
|_|A|A|A|A|A|A|A|A|_|
|_|_|A|A|A|A|A|A|A|A|
A total of 3 Possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| # 15 cells and [2, 3, 2, 3] blocks
Possibilities:
|A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
|A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
|A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
|A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
|A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
|A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
|A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
|A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
|A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
|A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
|_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
|_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
|_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
|_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
|_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|
A total of 15 Possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and [2, 3] blocks
Possibilities:
#<RuntimeError: Those blocks will not fit in those cells>
```

## Rust

Works with: Rust version 1.29.2
```struct Nonoblock {
width: usize,
config: Vec<usize>,
spaces: Vec<usize>,
}

impl Nonoblock {
pub fn new(width: usize, config: Vec<usize>) -> Nonoblock {
Nonoblock {
width: width,
config: config,
spaces: Vec::new(),
}
}

pub fn solve(&mut self) -> Vec<Vec<i32>> {
let mut output: Vec<Vec<i32>> = Vec::new();
self.spaces = (0..self.config.len()).fold(Vec::new(), |mut s, i| {
s.push(match i {
0 => 0,
_ => 1,
});
s
});
if self.spaces.iter().sum::<usize>() + self.config.iter().sum::<usize>() <= self.width {
'finished: loop {
match self.spaces.iter().enumerate().fold((0, vec![0; self.width]), |mut a, (i, s)| {
(0..self.config[i]).for_each(|j| a.1[a.0 + j + *s] = 1 + i as i32);
return (a.0 + self.config[i] + *s, a.1);
}) {
(_, out) => output.push(out),
}
let mut i: usize = 1;
'calc: loop {
let len = self.spaces.len();
if i > len {
break 'finished;
} else {
self.spaces[len - i] += 1
}
if self.spaces.iter().sum::<usize>() + self.config.iter().sum::<usize>() > self.width {
self.spaces[len - i] = 1;
i += 1;
} else {
break 'calc;
}
}
}
}
output
}
}

fn main() {
let mut blocks = [
Nonoblock::new(5, vec![2, 1]),
Nonoblock::new(5, vec![]),
Nonoblock::new(10, vec![8]),
Nonoblock::new(15, vec![2, 3, 2, 3]),
Nonoblock::new(5, vec![2, 3]),
];

for block in blocks.iter_mut() {
println!("{} cells and {:?} blocks", block.width, block.config);
println!("{}",(0..block.width).fold(String::from("="), |a, _| a + "=="));
let solutions = block.solve();
if solutions.len() > 0 {
for solution in solutions.iter() {
println!("{}", solution.iter().fold(String::from("|"), |s, f| s + &match f {
i if *i > 0 => (('A' as u8 + ((*i - 1) as u8) % 26) as char).to_string(),
_ => String::from("_"),
}+ "|"));
}
} else {
println!("No solutions. ");
}
println!();
}
}
```
Output:
```5 cells and [2, 1] blocks
===========
|A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|

5 cells and [] blocks
===========
|_|_|_|_|_|

10 cells and [8] blocks
=====================
|A|A|A|A|A|A|A|A|_|_|
|_|A|A|A|A|A|A|A|A|_|
|_|_|A|A|A|A|A|A|A|A|

15 cells and [2, 3, 2, 3] blocks
===============================
|A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
|A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
|A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
|A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
|A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
|A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
|A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
|A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
|A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
|A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
|_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
|_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
|_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
|_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
|_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|

5 cells and [2, 3] blocks
===========
No solutions.
```

## Swift

```import Foundation

func nonoblock(cells: Int, blocks: [Int]) {
print("\(cells) cells and blocks \(blocks):")
let totalBlockSize = blocks.reduce(0, +)
if cells < totalBlockSize + blocks.count - 1 {
print("no solution")
return
}

func solve(cells: Int, index: Int, totalBlockSize: Int, offset: Int) {
if index == blocks.count {
count += 1
print("\(String(format: "%2d", count))  \(String(output))")
return
}
let blockSize = blocks[index]
let maxPos = cells - (totalBlockSize + blocks.count - index - 1)
let t = totalBlockSize - blockSize
var c = cells - (blockSize + 1)
for pos in 0...maxPos {
fill(value: ".", offset: offset, count: maxPos + blockSize)
fill(value: "#", offset: offset + pos, count: blockSize)
solve(cells: c, index: index + 1, totalBlockSize: t,
offset: offset + blockSize + pos + 1)
c -= 1
}
}

func fill(value: Character, offset: Int, count: Int) {
output.replaceSubrange(offset..<offset+count,
with: repeatElement(value, count: count))
}

var output: [Character] = Array(repeating: ".", count: cells)
var count = 0
solve(cells: cells, index: 0, totalBlockSize: totalBlockSize, offset: 0)
}

nonoblock(cells: 5, blocks: [2, 1])
print()

nonoblock(cells: 5, blocks: [])
print()

nonoblock(cells: 10, blocks: [8])
print()

nonoblock(cells: 15, blocks: [2, 3, 2, 3])
print()

nonoblock(cells: 5, blocks: [2, 3])
```
Output:
```5 cells and blocks [2, 1]:
1  ##.#.
2  ##..#
3  .##.#

5 cells and blocks []:
1  .....

10 cells and blocks [8]:
1  ########..
2  .########.
3  ..########

15 cells and blocks [2, 3, 2, 3]:
1  ##.###.##.###..
2  ##.###.##..###.
3  ##.###.##...###
4  ##.###..##.###.
5  ##.###..##..###
6  ##.###...##.###
7  ##..###.##.###.
8  ##..###.##..###
9  ##..###..##.###
10  ##...###.##.###
11  .##.###.##.###.
12  .##.###.##..###
13  .##.###..##.###
14  .##..###.##.###
15  ..##.###.##.###

5 cells and blocks [2, 3]:
no solution
```

## Tcl

Works with: Tcl version 8.6
Library: Tcllib (Package: generator)
Translation of: Python
```package require Tcl 8.6
package require generator

generator define nonoblocks {blocks cells} {
set sum [tcl::mathop::+ {*}\$blocks]
if {\$sum == 0 || [lindex \$blocks 0] == 0} {
generator yield {{0 0}}
return
} elseif {\$sum + [llength \$blocks] - 1 > \$cells} {
error "those blocks will not fit in those cells"
}

set brest [lassign \$blocks blen]
for {set bpos 0} {\$bpos <= \$cells - \$sum - [llength \$brest]} {incr bpos} {
if {![llength \$brest]} {
generator yield [list [list \$bpos \$blen]]
return
}
set offset [expr {\$bpos + \$blen + 1}]
generator foreach subpos [nonoblocks \$brest [expr {\$cells - \$offset}]] {
generator yield [linsert [lmap b \$subpos {
lset b 0 [expr {[lindex \$b 0] + \$offset}]
}] 0 [list \$bpos \$blen]]
}
}
}

if {[info script] eq \$::argv0} {
proc pblock {cells {vec {}}} {
set vector [lrepeat \$cells "_"]
set ch 64
foreach b \$vec {
incr ch
lassign \$b bp bl
for {set i \$bp} {\$i < \$bp + \$bl} {incr i} {
lset vector \$i [format %c \$ch]
}
}
return |[join \$vector "|"]|
}
proc flist {items} {
return [format "\[%s\]" [join \$items ", "]]
}
foreach {blocks cells} {
{2 1} 5
{} 5
{8} 10
{2 3 2 3} 15
{2 3} 5
} {
puts "\nConfiguration:"
puts [format "%s # %d cells and %s blocks" \
[pblock \$cells] \$cells [flist \$blocks]]
puts "  Possibilities:"
set i 0
try {
generator foreach vector [nonoblocks \$blocks \$cells] {
puts "    [pblock \$cells \$vector]"
incr i
}
puts "  A total of \$i possible configurations"
} on error msg {
puts "    --> ERROR: \$msg"
}
}
}

package provide nonoblock 1
```
Output:
```
Configuration:
|_|_|_|_|_| # 5 cells and [2, 1] blocks
Possibilities:
|A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|
A total of 3 possible configurations

Configuration:
|_|_|_|_|_| # 5 cells and [] blocks
Possibilities:
|_|_|_|_|_|
A total of 1 possible configurations

Configuration:
|_|_|_|_|_|_|_|_|_|_| # 10 cells and [8] blocks
Possibilities:
|A|A|A|A|A|A|A|A|_|_|
|_|A|A|A|A|A|A|A|A|_|
|_|_|A|A|A|A|A|A|A|A|
A total of 3 possible configurations

Configuration:
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| # 15 cells and [2, 3, 2, 3] blocks
Possibilities:
|A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
|A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
|A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
|A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
|A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
|A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
|A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
|A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
|A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
|A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
|_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
|_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
|_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
|_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
|_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|
A total of 15 possible configurations

Configuration:
|_|_|_|_|_| # 5 cells and [2, 3] blocks
Possibilities:
--> ERROR: those blocks will not fit in those cells
```

## Wren

Translation of: Kotlin
Library: Wren-math
```import "./math" for Nums

var genSequence // recursive
genSequence = Fn.new { |ones, numZeros|
if (ones.isEmpty) return ["0" * numZeros]
var result = []
for (x in 1...numZeros - ones.count + 2) {
var skipOne = ones[1..-1]
for (tail in genSequence.call(skipOne, numZeros - x)) {
result.add("0" * x + ones[0] + tail)
}
}
return result
}

var printBlock = Fn.new { |data, len|
var a = data.toList
var sumChars = Nums.sum(a.map { |c| c.bytes[0] - 48 }.toList)
System.print("\nblocks %(a), cells %(len)")
if (len - sumChars <= 0) {
System.print("No solution")
return
}
var prep = a.map { |c| "1" * (c.bytes[0] - 48) }.toList
for (r in genSequence.call(prep, len - sumChars + 1)) {
System.print(r[1..-1])
}
}

printBlock.call("21", 5)
printBlock.call("", 5)
printBlock.call("8", 10)
printBlock.call("2323", 15)
printBlock.call("23", 5)
```
Output:
```blocks [2, 1], cells 5
11010
11001
01101

blocks [], cells 5
00000

blocks [8], cells 10
1111111100
0111111110
0011111111

blocks [2, 3, 2, 3], cells 15
110111011011100
110111011001110
110111011000111
110111001101110
110111001100111
110111000110111
110011101101110
110011101100111
110011100110111
110001110110111
011011101101110
011011101100111
011011100110111
011001110110111
001101110110111

blocks [2, 3], cells 5
No solution
```

## zkl

Translation of: Python
```fcn nonoblocks(blocks,cells){
if(not blocks or blocks[0]==0) vm.yield( T(T(0,0)) );
else{
if(not ( blocks.sum(0) + blocks.len() -1<=cells ))
throw(Exception.AssertionError("Those blocks will not fit in those cells"));
blength,brest:=blocks[0], blocks[1,*];      # Deal with the first block of length
minspace4rest:=brest.reduce('+(1),0);       # The other blocks need space
# Slide the start position from left to max RH index allowing for other blocks.
foreach bpos in (cells - minspace4rest - blength +1){
if(not brest) # No other blocks to the right so just yield this one.
vm.yield(T(T(bpos,blength)));
else{
# More blocks to the right so create a *sub-problem* of placing
# the brest blocks in the cells one space to the right of the RHS of
# this block.
offset:=bpos + blength +1;
# recursive call to nonoblocks yields multiple sub-positions
foreach subpos in (Utils.Generator(nonoblocks,brest,cells - offset)){
# Remove the offset from sub block positions
rest:=subpos.pump(List,'wrap([(bp,bl)]){ T(offset + bp, bl) });
# Yield this block plus sub blocks positions
vm.yield(T( T(bpos,blength) ).extend(rest) );
}
}
}
}
}
# Pretty print each run of blocks with a different letter for each block of filled cells
fcn pblock(vec,cells){
vector,ch:=cells.pump(List(),"_".copy), ["A".."Z"];
vec.apply2('wrap([(a,b)]){ a.walker(b).pump(Void,vector.set.fp1(ch.next())) });
String("|",vector.concat("|"),"|");
}```
```foreach blocks,cells in (T( T(T(2,1),5), T(T,5), T(T(8),10), T(T(2,3,2,3),15),
T(T(2,3),5) )){
println("\nConfiguration:\n    %s # %d cells and %s blocks"
.fmt(pblock(T,cells),cells,blocks));
println("  Possibilities:");
Utils.Generator(nonoblocks,blocks,cells).reduce('wrap(n,vector){
println("    ",pblock(vector,cells));
n+1
},0)
: println("  A total of %d possible configurations.".fmt(_));
}```
Output:
```Configuration:
|_|_|_|_|_| # 5 cells and L(2,1) blocks
Possibilities:
|A|A|_|B|_|
|A|A|_|_|B|
|_|A|A|_|B|
A total of 3 possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and L() blocks
Possibilities:
|_|_|_|_|_|
A total of 1 possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_| # 10 cells and L(8) blocks
Possibilities:
|A|A|A|A|A|A|A|A|_|_|
|_|A|A|A|A|A|A|A|A|_|
|_|_|A|A|A|A|A|A|A|A|
A total of 3 possible configurations.

Configuration:
|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_| # 15 cells and L(2,3,2,3) blocks
Possibilities:
|A|A|_|B|B|B|_|C|C|_|D|D|D|_|_|
|A|A|_|B|B|B|_|C|C|_|_|D|D|D|_|
|A|A|_|B|B|B|_|C|C|_|_|_|D|D|D|
|A|A|_|B|B|B|_|_|C|C|_|D|D|D|_|
|A|A|_|B|B|B|_|_|C|C|_|_|D|D|D|
|A|A|_|B|B|B|_|_|_|C|C|_|D|D|D|
|A|A|_|_|B|B|B|_|C|C|_|D|D|D|_|
|A|A|_|_|B|B|B|_|C|C|_|_|D|D|D|
|A|A|_|_|B|B|B|_|_|C|C|_|D|D|D|
|A|A|_|_|_|B|B|B|_|C|C|_|D|D|D|
|_|A|A|_|B|B|B|_|C|C|_|D|D|D|_|
|_|A|A|_|B|B|B|_|C|C|_|_|D|D|D|
|_|A|A|_|B|B|B|_|_|C|C|_|D|D|D|
|_|A|A|_|_|B|B|B|_|C|C|_|D|D|D|
|_|_|A|A|_|B|B|B|_|C|C|_|D|D|D|
A total of 15 possible configurations.

Configuration:
|_|_|_|_|_| # 5 cells and L(2,3) blocks
Possibilities:
VM#2 caught this unhandled exception:
AssertionError : Those blocks will not fit in those cells
<stack traces deleted>
```