# Vector

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Vector
You are encouraged to solve this task according to the task description, using any language you may know.

Implement a Vector class (or a set of functions) that models a Physical Vector. The four basic operations and a pretty print function should be implemented.

The Vector may be initialized in any reasonable way.

• Start and end points, and direction
• Angular coefficient and value (length)

The four operations to be implemented are:

• Vector - Vector subtraction
• Vector * scalar multiplication
• Vector / scalar division

## 11l

Translation of: D
```T Vector
Float x, y

F (x, y)
.x = x
.y = y

F +(vector)
R Vector(.x + vector.x, .y + vector.y)

F -(vector)
R Vector(.x - vector.x, .y - vector.y)

F *(mult)
R Vector(.x * mult, .y * mult)

F /(denom)
R Vector(.x / denom, .y / denom)

F String()
R ‘(#., #.)’.format(.x, .y)

print(Vector(5, 7) + Vector(2, 3))
print(Vector(5, 7) - Vector(2, 3))
print(Vector(5, 7) * 11)
print(Vector(5, 7) / 2)```
Output:
```(7, 10)
(3, 4)
(55, 77)
(2.5, 3.5)
```

## Action!

```INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

DEFINE X_="+0"
DEFINE Y_="+6"

TYPE Vector=[CARD x1,x2,x3,y1,y2,y3]

PROC PrintVec(Vector POINTER v)
Print("[") PrintR(v X_)
Print(",") PrintR(v Y_) Print("]")
RETURN

PROC VecIntInit(Vector POINTER v INT ix,iy)
IntToReal(ix,v X_)
IntToReal(iy,v Y_)
RETURN

PROC VecRealInit(Vector POINTER v REAL POINTER rx,ry)
RealAssign(rx,v X_)
RealAssign(ry,v Y_)
RETURN

PROC VecStringInit(Vector POINTER v CHAR ARRAY sx,sy)
ValR(sx,v X_)
ValR(sy,v Y_)
RETURN

RETURN

PROC VecSub(Vector POINTER v1,v2,res)
RealSub(v1 X_,v2 X_,res X_) ;res.x=v1.x-v2.x
RealSub(v1 Y_,v2 Y_,res Y_) ;res.y=v1.y-v2.y
RETURN

PROC VecMult(Vector POINTER v REAL POINTER a Vector POINTER res)
RealMult(v X_,a,res X_) ;res.x=v.x*a
RealMult(v Y_,a,res Y_) ;res.y=v.y*a
RETURN

PROC VecDiv(Vector POINTER v REAL POINTER a Vector POINTER res)
RealDiv(v X_,a,res X_) ;res.x=v.x/a
RealDiv(v Y_,a,res Y_) ;res.y=v.y/a
RETURN

PROC Main()
Vector v1,v2,res
REAL s

Put(125) PutE() ;clear the screen
VecStringInit(v1,"12.3","-4.56")
VecStringInit(v2,"9.87","654.3")
ValR("0.1",s)

PrintVec(v1) Print(" + ") PrintVec(v2)
Print(" =") PutE() PrintVec(res) PutE() PutE()

VecSub(v1,v2,res)
PrintVec(v1) Print(" - ") PrintVec(v2)
Print(" =") PutE() PrintVec(res) PutE() PutE()

VecMult(v1,s,res)
PrintVec(v1) Print(" * ") PrintR(s)
Print(" = ") PrintVec(res) PutE() PutE()

VecDiv(v1,s,res)
PrintVec(v1) Print(" / ") PrintR(s)
Print(" = ") PrintVec(res)
RETURN```
Output:
```[12.3,-4.56] + [9.87,654.3] = [22.17,649.74]

[12.3,-4.56] - [9.87,654.3] = [2.43,-658.86]

[12.3,-4.56] * .1 = [1.23,-0.456]

[12.3,-4.56] / .1 = [123,-45.6]
```

## ALGOL 68

```# the standard mode COMPLEX is a two element vector #
MODE VECTOR = COMPLEX;
# the operations required for the task plus many others are provided as standard for COMPLEX and REAL items #
# the two components are fields called "re" and "im" #
# we can define a "pretty-print" operator: #
# returns a formatted representation of the vector #
OP TOSTRING = ( VECTOR a )STRING: "[" + TOSTRING re OF a + ", " + TOSTRING im OF a + "]";
# returns a formatted representation of the scaler #
OP TOSTRING = ( REAL a )STRING: fixed( a, 0, 4 );

# test the operations #
VECTOR a = 5 I 7, b = 2 I 3; # note the use of the I operator to construct a COMPLEX from two scalers #
print( ( "a+b : ", TOSTRING ( a + b  ), newline ) );
print( ( "a-b : ", TOSTRING ( a - b  ), newline ) );
print( ( "a*11: ", TOSTRING ( a * 11 ), newline ) );
print( ( "a/2 : ", TOSTRING ( a / 2  ), newline ) )```
Output:
```a+b : [7.0000, 10.0000]
a-b : [3.0000, 4.0000]
a*11: [55.0000, 77.0000]
a/2 : [2.5000, 3.5000]
```

## BASIC256

Translation of: Ring
```arraybase 1
dim vect1(2)
vect1[1] = 5 : vect1[2] = 7
dim vect2(2)
vect2[1] = 2 : vect2[2] = 3
dim vect3(vect1[?])

subroutine showarray(vect3)
print "[";
svect\$ = ""
for n = 1 to vect3[?]
svect\$ &= vect3[n] & ", "
next n
svect\$ = left(svect\$, length(svect\$) - 2)
print svect\$;
print "]"
end subroutine

for n = 1 to vect1[?]
vect3[n] = vect1[n] + vect2[n]
next n
print "[" & vect1[1] & ", " & vect1[2] & "] + [" & vect2[1] & ", " & vect2[2] & "] = ";
call showarray(vect3)

for n = 1 to vect1[?]
vect3[n] = vect1[n] - vect2[n]
next n
print "[" & vect1[1] & ", " & vect1[2] & "] - [" & vect2[1] & ", " & vect2[2] & "] = ";
call showarray(vect3)

for n = 1 to vect1[?]
vect3[n] = vect1[n] * 11
next n
print "[" & vect1[1] & ", " & vect1[2] & "] * " & 11 & "     = ";
call showarray(vect3)

for n = 1 to vect1[?]
vect3[n] = vect1[n] / 2
next n
print "[" & vect1[1] & ", " & vect1[2] & "] / " & 2 & "      = ";
call showarray(vect3)
end
```
Output:
```[5, 7] + [2, 3] = [7, 10]
[5, 7] - [2, 3] = [3, 4]
[5, 7] *  11    = [55, 77]
[5, 7] /  2     = [2.5, 3.5]```

## BQN

BQN's arrays are treated like vectors by default, and all arithmetic operations vectorize when given appropriate length arguments. This means that vector functionality is a builtin-in feature of BQN.

```   5‿7 + 2‿3
⟨7 10⟩
5‿7 - 2‿3
⟨3 4⟩
5‿7 × 11
⟨55 77⟩
5‿7 ÷ 2
⟨2.5 3.5⟩```

## C

j cap or hat j is not part of the ASCII set, thus û ( 150 ) is used in it's place.

```#include<stdio.h>
#include<math.h>

#define pi M_PI

typedef struct{
double x,y;
}vector;

vector initVector(double r,double theta){
vector c;

c.x = r*cos(theta);
c.y = r*sin(theta);

return c;
}

vector c;

c.x = a.x + b.x;
c.y = a.y + b.y;

return c;
}

vector subtractVector(vector a,vector b){
vector c;

c.x = a.x - b.x;
c.y = a.y - b.y;

return c;
}

vector multiplyVector(vector a,double b){
vector c;

c.x = b*a.x;
c.y = b*a.y;

return c;
}

vector divideVector(vector a,double b){
vector c;

c.x = a.x/b;
c.y = a.y/b;

return c;
}

void printVector(vector a){
printf("%lf %c %c %lf %c",a.x,140,(a.y>=0)?'+':'-',(a.y>=0)?a.y:fabs(a.y),150);
}

int main()
{
vector a = initVector(3,pi/6);
vector b = initVector(5,2*pi/3);

printf("\nVector a : ");
printVector(a);

printf("\n\nVector b : ");
printVector(b);

printf("\n\nSum of vectors a and b : ");

printf("\n\nDifference of vectors a and b : ");
printVector(subtractVector(a,b));

printf("\n\nMultiplying vector a by 3 : ");
printVector(multiplyVector(a,3));

printf("\n\nDividing vector b by 2.5 : ");
printVector(divideVector(b,2.5));

return 0;
}
```

Output:

```
Vector a : 2.598076 î + 1.500000 û

Vector b : -2.500000 î + 4.330127 û

Sum of vectors a and b : 0.098076 î + 5.830127 û

Difference of vectors a and b : 5.098076 î - 2.830127 û

Multiplying vector a by 3 : 7.794229 î + 4.500000 û

Dividing vector b by 2.5 : -1.000000 î + 1.732051 û
```

## C#

```using System;
using System.Collections.Generic;
using System.Linq;

namespace RosettaVectors
{
public class Vector
{
public double[] store;
public Vector(IEnumerable<double> init)
{
store = init.ToArray();
}
public Vector(double x, double y)
{
store = new double[] { x, y };
}
static public Vector operator+(Vector v1, Vector v2)
{
return new Vector(v1.store.Zip(v2.store, (a, b) => a + b));
}
static public Vector operator -(Vector v1, Vector v2)
{
return new Vector(v1.store.Zip(v2.store, (a, b) => a - b));
}
static public Vector operator *(Vector v1, double scalar)
{
return new Vector(v1.store.Select(x => x * scalar));
}
static public Vector operator /(Vector v1, double scalar)
{
return new Vector(v1.store.Select(x => x / scalar));
}
public override string ToString()
{
return string.Format("[{0}]", string.Join(",", store));
}
}
class Program
{
static void Main(string[] args)
{
var v1 = new Vector(5, 7);
var v2 = new Vector(2, 3);
Console.WriteLine(v1 + v2);
Console.WriteLine(v1 - v2);
Console.WriteLine(v1 * 11);
Console.WriteLine(v1 / 2);
// Works with arbitrary size vectors, too.
var lostVector = new Vector(new double[] { 4, 8, 15, 16, 23, 42 });
Console.WriteLine(lostVector * 7);
}
}
}
```
Output:
```[7,10]
[3,4]
[55,77]
[2.5,3.5]
[28,56,105,112,161,294]```

## C++

```#include <iostream>
#include <cmath>
#include <cassert>
using namespace std;

#define PI 3.14159265359

class Vector
{
public:
Vector(double ix, double iy, char mode)
{
if(mode=='a')
{
x=ix*cos(iy);
y=ix*sin(iy);
}
else
{
x=ix;
y=iy;
}
}
Vector(double ix,double iy)
{
x=ix;
y=iy;
}
Vector operator+(const Vector& first)
{
return Vector(x+first.x,y+first.y);
}
Vector operator-(Vector first)
{
return Vector(x-first.x,y-first.y);
}
Vector operator*(double scalar)
{
return Vector(x*scalar,y*scalar);
}
Vector operator/(double scalar)
{
return Vector(x/scalar,y/scalar);
}
bool operator==(Vector first)
{
return (x==first.x&&y==first.y);
}
void v_print()
{
cout << "X: " << x << " Y: " << y;
}
double x,y;
};

int main()
{
Vector vec1(0,1);
Vector vec2(2,2);
Vector vec3(sqrt(2),45*PI/180,'a');
vec3.v_print();
assert(vec1+vec2==Vector(2,3));
assert(vec1-vec2==Vector(-2,-1));
assert(vec1*5==Vector(0,5));
assert(vec2/2==Vector(1,1));
return 0;
}
```
Output:
```X: 1 Y: 1
```

## CLU

```% Parameterized vector class
vector = cluster [T: type] is make, add, sub, mul, div,
get_x, get_y, to_string
% The inner type must support basic math
where T has add: proctype (T,T) returns (T)
signals (overflow, underflow),
sub: proctype (T,T) returns (T)
signals (overflow, underflow),
mul: proctype (T,T) returns (T)
signals (overflow, underflow),
div: proctype (T,T) returns (T)
signals (zero_divide, overflow, underflow)
rep = struct [x,y: T]

% instantiate
make = proc (x,y: T) returns (cvt)
return(rep\${x:x, y:y})
end make

add = proc (a,b: cvt) returns (cvt)
signals (overflow, underflow)
return(rep\${x: up(a).x + up(b).x,
y: up(a).y + up(b).y})
resignal overflow, underflow

sub = proc (a,b: cvt) returns (cvt)
signals (overflow, underflow)
return(rep\${x: up(a).x - up(b).x,
y: up(a).y - up(b).y})
resignal overflow, underflow
end sub

% scalar multiplication and division
mul = proc (a: cvt, b: T) returns (cvt)
signals (overflow, underflow)
return(rep\${x: up(a).x*b, y: up(a).y*b})
resignal overflow, underflow
end mul

div = proc (a: cvt, b: T) returns (cvt)
signals (zero_divide, overflow, underflow)
return(rep\${x: up(a).x/b, y: up(a).y/b})
resignal zero_divide, overflow, underflow
end div

% accessors
get_x = proc (v: cvt) returns (T) return(v.x) end get_x
get_y = proc (v: cvt) returns (T) return(v.y) end get_y

% we can't just use T\$unparse for pretty-printing, since
% for floats it always prints the exponential form, and
% that's not very pretty.
% passing in a conversion function at the moment of
% generating the string form is the least bad way.
to_string = proc (v: cvt, f: proctype (T) returns (string))
returns (string)
return("(" || f(v.x) || ", " || f(v.y) || ")")
end to_string
end vector

% this function formats a real somewhat neatly without needing
% extra parameters
format_real = proc (r: real) returns (string)
return(f_form(r, 2, 4))
end format_real

start_up = proc ()
vr = vector[real]  % use real numbers
po: stream := stream\$primary_output()

% vectors
a: vr := vr\$make(5.0, 7.0)
b: vr := vr\$make(2.0, 3.0)

% do some math
a_plus_b:   vr := a + b
a_minus_b:  vr := a - b
a_times_11: vr := a * 11.0
a_div_2:    vr := a / 2.0

% show the results
stream\$putl(po, "     a = " || vr\$to_string(a, format_real))
stream\$putl(po, "     b = " || vr\$to_string(b, format_real))
stream\$putl(po, " a + b = " || vr\$to_string(a_plus_b, format_real))
stream\$putl(po, " a - b = " || vr\$to_string(a_minus_b, format_real))
stream\$putl(po, "a * 11 = " || vr\$to_string(a_times_11, format_real))
stream\$putl(po, " a / 2 = " || vr\$to_string(a_div_2, format_real))
end start_up```
Output:
```     a = (5.0000, 7.0000)
b = (2.0000, 3.0000)
a + b = (7.0000, 10.0000)
a - b = (3.0000, 4.0000)
a * 11 = (55.0000, 77.0000)
a / 2 = (2.5000, 3.5000)```

## D

```import std.stdio;

void main() {
writeln(VectorReal(5, 7) + VectorReal(2, 3));
writeln(VectorReal(5, 7) - VectorReal(2, 3));
writeln(VectorReal(5, 7) * 11);
writeln(VectorReal(5, 7) / 2);
}

alias VectorReal = Vector!real;
struct Vector(T) {
private T x, y;

this(T x, T y) {
this.x = x;
this.y = y;
}

auto opBinary(string op : "+")(Vector rhs) const {
return Vector(x + rhs.x, y + rhs.y);
}

auto opBinary(string op : "-")(Vector rhs) const {
return Vector(x - rhs.x, y - rhs.y);
}

auto opBinary(string op : "/")(T denom) const {
return Vector(x / denom, y / denom);
}

auto opBinary(string op : "*")(T mult) const {
return Vector(x * mult, y * mult);
}

void toString(scope void delegate(const(char)[]) sink) const {
import std.format;
sink.formattedWrite!"(%s, %s)"(x, y);
}
}
```
Output:
```(7, 10)
(3, 4)
(55, 77)
(2.5, 3.5)```

## Delphi

```program Vector;

{\$APPTYPE CONSOLE}

{\$R *.res}

uses
System.Math.Vectors,
SysUtils;

procedure VectorToString(v: TVector);
begin
WriteLn(Format('(%.1f + i%.1f)', [v.X, v.Y]));
end;

var
a, b: TVector;

begin
a := TVector.Create(5, 7);
b := TVector.Create(2, 3);
VectorToString(a + b);
VectorToString(a - b);
VectorToString(a * 11);
VectorToString(a / 2);

end

.
```
Output:
```(7,0 + i10,0)
(3,0 + i4,0)
(55,0 + i77,0)
(2,5 + i3,5)
```

## F#

```open System

let add (ax, ay) (bx, by) =
(ax+bx, ay+by)

let sub (ax, ay) (bx, by) =
(ax-bx, ay-by)

let mul (ax, ay) c =
(ax*c, ay*c)

let div (ax, ay) c =
(ax/c, ay/c)

[<EntryPoint>]
let main _ =
let a = (5.0, 7.0)
let b = (2.0, 3.0)

printfn "%A" (sub a b)
printfn "%A" (mul a 11.0)
printfn "%A" (div a 2.0)
0 // return an integer exit code
```

## Factor

It should be noted the `math.vectors` vocabulary has words for treating any sequence like a vector. For instance:

```(scratchpad) USE: math.vectors
(scratchpad) { 1 2 } { 3 4 } v+

--- Data stack:
{ 4 6 }
```

However, in the spirit of the task, we will implement our own vector data structure. In addition to arithmetic and prettyprinting, we define a convenient literal syntax for making new vectors.

```USING: accessors arrays kernel math parser prettyprint
prettyprint.custom sequences ;
IN: rosetta-code.vector

TUPLE: vec { x real read-only } { y real read-only } ;
C: <vec> vec

<PRIVATE

: parts ( vec -- x y ) [ x>> ] [ y>> ] bi ;
: devec ( vec1 vec2 -- x1 y1 x2 y2 ) [ parts ] bi@ rot swap ;

: binary-op ( vec1 vec2 quot -- vec3 )
[ devec ] dip 2bi@ <vec> ; inline

: scalar-op ( vec1 scalar quot -- vec2 )
[ parts ] 2dip curry bi@ <vec> ; inline

PRIVATE>

SYNTAX: VEC{ \ } [ first2 <vec> ] parse-literal ;

: v+ ( vec1 vec2   -- vec3 ) [ + ] binary-op ;
: v- ( vec1 vec2   -- vec3 ) [ - ] binary-op ;
: v* ( vec1 scalar -- vec2 ) [ * ] scalar-op ;
: v/ ( vec1 scalar -- vec2 ) [ / ] scalar-op ;

M: vec pprint-delims drop \ VEC{ \ } ;
M: vec >pprint-sequence parts 2array ;
M: vec pprint* pprint-object ;
```

We demonstrate the use of vectors in a new file, since parsing words can't be used in the same file where they're defined.

```USING: kernel formatting prettyprint rosetta-code.vector
sequences ;
IN: rosetta-code.vector

: demo ( a b quot -- )
3dup [ unparse ] tri@ rest but-last
"%16s %16s%3s= " printf call . ; inline

VEC{ -8.4 1.35 } VEC{ 10 11/123 } [ v+ ] demo
VEC{ 5 3 } VEC{ 4 2 } [ v- ] demo
VEC{ 4 -8 } 2 [ v* ] demo
VEC{ 5 7 } 2 [ v/ ] demo

! You can still make a vector without the literal syntax of
! course.

5 2 <vec> 1.3 [ v* ] demo
```
Output:
```VEC{ -8.4 1.35 } VEC{ 10 11/123 } v+ = VEC{ 1.6 1.439430894308943 }
VEC{ 5 3 }       VEC{ 4 2 } v- = VEC{ 1 1 }
VEC{ 4 -8 }                2 v* = VEC{ 8 -16 }
VEC{ 5 7 }                2 v/ = VEC{ 2+1/2 3+1/2 }
VEC{ 5 2 }              1.3 v* = VEC{ 6.5 2.6 }
```

## Forth

Works with: gforth version 0.7.3

This is integer only implementation. A vector is two numbers on the stack. "pretty print" is just printing the two numbers in the desired order.

```: v. swap . . ;
: v* swap over * >r * r> ;
: v/ swap over / >r / r> ;
: v+ >r swap >r + r> r> + ;
: v- >r swap >r - r> r> - ;
```
Output:

As Forth is REPL, to add (1 , 2) to (3 , 4), just type `1 2 3 4 v+ v.` (followed by [Enter]):

`1 2 3 4 v+ v. 4 6  ok`

To substract (1 , 4) from (3 , 5), just type `3 5 1 4 v- v.` (followed by [Enter]):

`3 5 1 4 v- v. 2 1  ok`

To multiply (2 , 4) by 3, just type `2 4 3 v* v.` (followed by [Enter]):

`2 4 3 v* v. 6 12  ok`

To divide (12 , 33) by 3, just type `12 33 3 v/ v.` (followed by [Enter]):

`12 33 3 v/ v. 4 11  ok`

## Fortran

```MODULE ROSETTA_VECTOR
IMPLICIT NONE

TYPE VECTOR
REAL :: X, Y
END TYPE VECTOR

INTERFACE OPERATOR(+)
END INTERFACE

INTERFACE OPERATOR(-)
MODULE PROCEDURE VECTOR_SUB
END INTERFACE

INTERFACE OPERATOR(/)
MODULE PROCEDURE VECTOR_DIV
END INTERFACE

INTERFACE OPERATOR(*)
MODULE PROCEDURE VECTOR_MULT
END INTERFACE

CONTAINS

TYPE(VECTOR), INTENT(IN) :: VECTOR_1, VECTOR_2

FUNCTION VECTOR_SUB(VECTOR_1, VECTOR_2)
TYPE(VECTOR), INTENT(IN) :: VECTOR_1, VECTOR_2
TYPE(VECTOR) :: VECTOR_SUB
VECTOR_SUB%X = VECTOR_1%X-VECTOR_2%X
VECTOR_SUB%Y = VECTOR_1%Y-VECTOR_2%Y
END FUNCTION VECTOR_SUB

FUNCTION VECTOR_DIV(VEC, SCALAR)
TYPE(VECTOR), INTENT(IN) :: VEC
REAL, INTENT(IN) :: SCALAR
TYPE(VECTOR) :: VECTOR_DIV
VECTOR_DIV%X = VEC%X/SCALAR
VECTOR_DIV%Y = VEC%Y/SCALAR
END FUNCTION VECTOR_DIV

FUNCTION VECTOR_MULT(VEC, SCALAR)
TYPE(VECTOR), INTENT(IN) :: VEC
REAL, INTENT(IN) :: SCALAR
TYPE(VECTOR) :: VECTOR_MULT
VECTOR_MULT%X = VEC%X*SCALAR
VECTOR_MULT%Y = VEC%Y*SCALAR
END FUNCTION VECTOR_MULT

FUNCTION FROM_RTHETA(R, THETA)
REAL :: R, THETA
TYPE(VECTOR) :: FROM_RTHETA
FROM_RTHETA%X = R*SIN(THETA)
FROM_RTHETA%Y = R*COS(THETA)
END FUNCTION FROM_RTHETA

FUNCTION FROM_XY(X, Y)
REAL :: X, Y
TYPE(VECTOR) :: FROM_XY
FROM_XY%X = X
FROM_XY%Y = Y
END FUNCTION FROM_XY

FUNCTION PRETTY_PRINT(VEC)
TYPE(VECTOR), INTENT(IN) :: VEC
CHARACTER(LEN=100) PRETTY_PRINT
WRITE(PRETTY_PRINT,"(A, F0.5, A, F0.5, A)") "[", VEC%X, ", ", VEC%Y, "]"
END FUNCTION PRETTY_PRINT
END MODULE ROSETTA_VECTOR

PROGRAM VECTOR_DEMO
USE ROSETTA_VECTOR
IMPLICIT NONE

TYPE(VECTOR) :: VECTOR_1, VECTOR_2
REAL, PARAMETER :: PI = 4*ATAN(1.0)
REAL :: SCALAR

SCALAR = 2.0

VECTOR_1 = FROM_XY(2.0, 3.0)
VECTOR_2 = FROM_RTHETA(2.0, PI/6.0)

WRITE(*,*) "VECTOR_1 (X: 2.0, Y: 3.0)      : ", PRETTY_PRINT(VECTOR_1)
WRITE(*,*) "VECTOR_2 (R: 2.0, THETA: PI/6) : ", PRETTY_PRINT(VECTOR_2)
WRITE(*,*) NEW_LINE('A')
WRITE(*,*) "VECTOR_1  +  VECTOR_2          = ", PRETTY_PRINT(VECTOR_1+VECTOR_2)
WRITE(*,*) "VECTOR_1  -  VECTOR_2          = ", PRETTY_PRINT(VECTOR_1-VECTOR_2)
WRITE(*,*) "VECTOR_1  /  2.0               = ", PRETTY_PRINT(VECTOR_1/SCALAR)
WRITE(*,*) "VECTOR_1  *  2.0               = ", PRETTY_PRINT(VECTOR_1*SCALAR)
END PROGRAM VECTOR_DEMO
```
Output:
``` VECTOR_1 (X: 2.0, Y: 3.0)      : [2.00000, 3.00000]
VECTOR_2 (R: 2.0, THETA: PI/6) : [1.00000, 1.73205]

VECTOR_1  +  VECTOR_2          = [3.00000, 4.73205]
VECTOR_1  -  VECTOR_2          = [1.00000, 1.26795]
VECTOR_1  /  2.0               = [1.00000, 1.50000]
VECTOR_1  *  2.0               = [4.00000, 6.00000]
```

## FreeBASIC

```' FB 1.05.0 Win64

Type Vector
As Double x, y
Declare Operator Cast() As String
End Type

Operator Vector.Cast() As String
Return "[" + Str(x) + ", " + Str(y) + "]"
End Operator

Operator + (vec1 As Vector, vec2 As Vector) As Vector
Return Type<Vector>(vec1.x + vec2.x, vec1.y + vec2.y)
End Operator

Operator - (vec1 As Vector, vec2 As Vector) As Vector
Return Type<Vector>(vec1.x - vec2.x, vec1.y - vec2.y)
End Operator

Operator * (vec As Vector, scalar As Double) As Vector
Return Type<Vector>(vec.x * scalar, vec.y * scalar)
End Operator

Operator / (vec As Vector, scalar As Double) As Vector
' No need to check for division by zero as we're using Doubles
Return Type<Vector>(vec.x / scalar, vec.y / scalar)
End Operator

Dim v1 As Vector = (5, 7)
Dim v2 As Vector = (2, 3)
Print v1; " +  "; v2; " = "; v1 + v2
Print v1; " -  "; v2; " = "; v1 - v2
Print v1; " * "; 11; "     = "; v1 * 11.0
Print v1; " / ";  2; "      = "; v1 / 2.0
Print
Print "Press any key to quit"
Sleep
```
Output:
```[5, 7] +  [2, 3] = [7, 10]
[5, 7] -  [2, 3] = [3, 4]
[5, 7] *  11     = [55, 77]
[5, 7] /  2      = [2.5, 3.5]
```

## Go

```package main

import "fmt"

type vector []float64

func (v vector) add(v2 vector) vector {
r := make([]float64, len(v))
for i, vi := range v {
r[i] = vi + v2[i]
}
return r
}

func (v vector) sub(v2 vector) vector {
r := make([]float64, len(v))
for i, vi := range v {
r[i] = vi - v2[i]
}
return r
}

func (v vector) scalarMul(s float64) vector {
r := make([]float64, len(v))
for i, vi := range v {
r[i] = vi * s
}
return r
}

func (v vector) scalarDiv(s float64) vector {
r := make([]float64, len(v))
for i, vi := range v {
r[i] = vi / s
}
return r
}

func main() {
v1 := vector{5, 7}
v2 := vector{2, 3}
fmt.Println(v1.sub(v2))
fmt.Println(v1.scalarMul(11))
fmt.Println(v1.scalarDiv(2))
}
```
Output:
```[7 10]
[3 4]
[55 77]
[2.5 3.5]
```

## Groovy

Euclidean vector spaces may be expressed in any (positive) number of dimensions. So why limit it to just 2?

Solution:

```import groovy.transform.EqualsAndHashCode

@EqualsAndHashCode
class Vector {
private List<Number> elements
Vector(List<Number> e ) {
if (!e) throw new IllegalArgumentException("A Vector must have at least one element.")
if (!e.every { it instanceof Number }) throw new IllegalArgumentException("Every element must be a number.")
elements = [] + e
}
Vector(Number... e) { this(e as List) }

def order() { elements.size() }
def norm2() { elements.sum { it ** 2 } ** 0.5 }

def plus(Vector that) {
if (this.order() != that.order()) throw new IllegalArgumentException("Vectors must be conformable for addition.")
[this.elements,that.elements].transpose()*.sum() as Vector
}
def minus(Vector that) { this + (-that) }
def multiply(Number that) { this.elements.collect { it * that } as Vector }
def div(Number that) { this * (1/that) }
def negative() { this * -1 }

String toString() { "(\${elements.join(',')})" }
}

class VectorCategory {
static Vector plus (Number a, Vector b) { b + a }
static Vector minus (Number a, Vector b) { -b + a }
static Vector multiply (Number a, Vector b) { b * a }
}
```

Test:

```Number.metaClass.mixin VectorCategory

def a = [1, 5] as Vector
def b = [6, -2] as Vector
def x = 8
println "a = \$a    b = \$b    x = \$x"
assert a + b == [7, 3] as Vector
println "a + b == \$a + \$b == \${a+b}"
assert a - b == [-5, 7] as Vector
println "a - b == \$a - \$b == \${a-b}"
assert a * x == [8, 40] as Vector
println "a * x == \$a * \$x == \${a*x}"
assert x * a == [8, 40] as Vector
println "x * a == \$x * \$a == \${x*a}"
assert b / x == [3/4, -1/4] as Vector
println "b / x == \$b / \$x == \${b/x}"
```

Output:

```a = (1,5)    b = (6,-2)    x = 8
a + b == (1,5) + (6,-2) == (7,3)
a - b == (1,5) - (6,-2) == (-5,7)
a * x == (1,5) * 8 == (8,40)
x * a == 8 * (1,5) == (8,40)
b / x == (6,-2) / 8 == (0.750,-0.250)```

```add (u,v) (x,y)      = (u+x,v+y)
minus (u,v) (x,y)    = (u-x,v-y)
multByScalar k (x,y) = (k*x,k*y)
divByScalar (x,y) k  = (x/k,y/k)

main = do
let vecA = (3.0,8.0) -- cartersian coordinates
let (r,theta) = (3,pi/12) :: (Double,Double)
let vecB = (r*(cos theta),r*(sin theta)) -- from polar coordinates to cartesian coordinates
putStrLn \$ "vecA = " ++ (show vecA)
putStrLn \$ "vecB = " ++ (show vecB)
putStrLn \$ "vecA + vecB = " ++ (show.add vecA \$ vecB)
putStrLn \$ "vecA - vecB = " ++ (show.minus vecA \$ vecB)
putStrLn \$ "2 * vecB = " ++ (show.multByScalar 2 \$ vecB)
putStrLn \$ "vecA / 3 = " ++ (show.divByScalar vecA \$ 3)
```
Output:
```vecA = (3.0,8.0)
vecB = (2.897777478867205,0.7764571353075622)
vecA + vecB = (5.897777478867205,8.776457135307563)
vecA - vecB = (0.10222252113279495,7.223542864692438)
2 * vecB = (5.79555495773441,1.5529142706151244)
vecA / 3 = (1.0,2.6666666666666665)
```

## J

These are primitive (built in) operations in J:

```   5 7+2 3
7 10
5 7-2 3
3 4
5 7*11
55 77
5 7%2
2.5 3.5
```

A few things here might be worth noting:

J treats a sequences of space separated numbers as a single word, this is analogous to how languages which support a "string" data type support treating strings with spaces in them as single words. Put differently: '5 7' is a sequence of three characters but 5 7 (without the quotes) is a sequence of two numbers.

J uses the percent sign to represent division. This is a visual pun with the "division sign" or "obelus" which has been used to represent the division operation for hundreds of years.

In J, a single number (or single character) is special. It's not a treated as a sequence except in contexts where you explicitly declare it to be one (for example, by prefixing it with a comma). (If it were treated as a sequence the above `5 7*11` and `5 7%2` operations would have been errors, because of the vector length mis-match.)

It's perhaps also worth noting that J allows you to specify complex numbers using polar coordinates, and complex numbers can be converted to vectors using the special token (+.) - for example:

```   2ad45
1.41421j1.41421
1.41421 1.41421
2ar0.785398
1.41421j1.41421
+. 2ar0.785398
1.41421 1.41421
```

In the construction of these numeric constants, `ad` is followed by an angle in degrees while `ar` is followed by an angle in radians. This practice of embedding letters in a numeric constant is analogous to the use of exponential notation when describing some floating point numbers.

## Java

```import java.util.Locale;

public class Test {

public static void main(String[] args) {
System.out.println(new Vec2(5, 7).sub(new Vec2(2, 3)));
System.out.println(new Vec2(5, 7).mult(11));
System.out.println(new Vec2(5, 7).div(2));
}
}

class Vec2 {
final double x, y;

Vec2(double x, double y) {
this.x = x;
this.y = y;
}

return new Vec2(x + v.x, y + v.y);
}

Vec2 sub(Vec2 v) {
return new Vec2(x - v.x, y - v.y);
}

Vec2 div(double val) {
return new Vec2(x / val, y / val);
}

Vec2 mult(double val) {
return new Vec2(x * val, y * val);
}

@Override
public String toString() {
return String.format(Locale.US, "[%s, %s]", x, y);
}
}
```
```[7.0, 10.0]
[3.0, 4.0]
[55.0, 77.0]
[2.5, 3.5]```

## jq

Works with: jq version 1.4

In the following, the vector [x,y] is represented by the JSON array [x,y].

For generality, the pointwise operations (multiply, divide, negate) will work with conformal arrays of any dimension, and sum/0 accepts any number of same-dimensional vectors.

```def polar(r; angle):
[ r*(angle|cos), r*(angle|sin) ];

# If your jq allows multi-arity functions, you may wish to uncomment the following line:
# def polar(r): [r, 0];

def polar2vector: polar(.[0]; .[1]);

def vector(x; y):
if (x|type) == "number" and (y|type) == "number" then [x,y]
else error("TypeError")
end;

# Input: an array of same-dimensional vectors of any dimension to be added
def sum:
def sum2: .[0] as \$a | .[1] as \$b | reduce range(0;\$a|length) as \$i (\$a; .[\$i] += \$b[\$i]);
if length <= 1 then .
else reduce .[1:][] as \$v (.[0] ; [., \$v]|sum2)
end;

def multiply(scalar): [ .[] * scalar ];

def negate: multiply(-1);

def minus(v): [., (v|negate)] | sum;

def divide(scalar):
if scalar == 0 then error("division of a vector by 0 is not supported")
else [ .[] / scalar ]
end;

def r: (.[0] | .*.) + (.[1] | .*.) | sqrt;

def atan2:
def pi: 1 | atan * 4;
def sign: if . < 0 then -1 elif . > 0 then 1 else 0 end;
.[0] as \$x | .[1] as \$y
| if \$x == 0 then \$y | sign * pi / 2
else  (\$y / \$x) | if \$x > 0 then atan elif . > 0 then atan - pi else atan + pi end
end;

def angle: atan2;

def topolar: [r, angle];```

Examples

```def examples:
def pi: 1 | atan * 4;

[1,1] as \$v
| [3,4] as \$w
| polar(1; pi/2) as \$z
| polar(-2; pi/4) as \$z2
| "v     is \(\$v)",
"    w is \(\$w)",
"v + w is \([\$v, \$w] | sum)",
"v - w is \( \$v |minus(\$w))",
"  - v is \( \$v|negate )",
"w * 5 is \(\$w | multiply(5))",
"w / 2 is \(\$w | divide(2))",
"v|topolar is \(\$v|topolar)",
"w|topolar is \(\$w|topolar)",
"z = polar(1; pi/2) is \(\$z)",
"z|topolar is \(\$z|topolar)",
"z2 = polar(-2; pi/4) is \(\$z2)",
"z2|topolar is \(\$z2|topolar)",
"z2|topolar|polar is \(\$z2|topolar|polar2vector)" ;

examples```
Output:
```\$ jq -r -n -f vector.jq
v     is [1,1]
w is [3,4]
v + w is [4,5]
v - w is [-2,-3]
- v is [-1,-1]
w * 5 is [15,20]
w / 2 is [1.5,2]
v|topolar is [1.4142135623730951,0.7853981633974483]
w|topolar is [5,0.9272952180016122]
z = polar(1; pi/2) is [6.123233995736766e-17,1]
z|topolar is [1,1.5707963267948966]
z2 = polar(-2; pi/4) is [-1.4142135623730951,-1.414213562373095]
z2|topolar is [2,-2.356194490192345]
z2|topolar|polar is [-1.414213562373095,-1.4142135623730951]
```

## Julia

Works with: Julia version 0.6

The parameters indicate the dimension of the spatial vector. So it would be easy to implement a higher-degree-space vector.

The module:

```module SpatialVectors

export SpatialVector

struct SpatialVector{N, T}
coord::NTuple{N, T}
end

SpatialVector(s::NTuple{N,T}, e::NTuple{N,T}) where {N,T} =
SpatialVector{N, T}(e .- s)
function SpatialVector(∠::T, val::T) where T
θ = atan(∠)
x = val * cos(θ)
y = val * sin(θ)
return SpatialVector((x, y))
end

angularcoef(v::SpatialVector{2, T}) where T = v.coord[2] / v.coord[1]
Base.norm(v::SpatialVector) = sqrt(sum(x -> x^2, v.coord))

function Base.show(io::IO, v::SpatialVector{2, T}) where T
∠ = angularcoef(v)
val = norm(v)
println(io, """2-dim spatial vector
- Angular coef ∠: \$(∠) (θ = \$(rad2deg(atan(∠)))°)
- Magnitude: \$(val)
- X coord: \$(v.coord[1])
- Y coord: \$(v.coord[2])""")
end

Base.:-(v::SpatialVector) = SpatialVector(.- v.coord)

for op in (:+, :-)
@eval begin
Base.\$op(a::SpatialVector{N, T}, b::SpatialVector{N, U}) where {N, T, U} =
end
end

for op in (:*, :/)
@eval begin
Base.\$op(n::T, v::SpatialVector{N, U}) where {N, T, U} =
Base.\$op(v::SpatialVector, n::Number) = \$op(n, v)
end
end

end  # module Vectors
```

## Kotlin

```// version 1.1.2

class Vector2D(val x: Double, val y: Double) {
operator fun plus(v: Vector2D) = Vector2D(x + v.x, y + v.y)

operator fun minus(v: Vector2D) = Vector2D(x - v.x, y - v.y)

operator fun times(s: Double) = Vector2D(s * x, s * y)

operator fun div(s: Double) = Vector2D(x / s, y / s)

override fun toString() = "(\$x, \$y)"
}

operator fun Double.times(v: Vector2D) = v * this

fun main(args: Array<String>) {
val v1 = Vector2D(5.0, 7.0)
val v2 = Vector2D(2.0, 3.0)
println("v1 = \$v1")
println("v2 = \$v2")
println()
println("v1 + v2 = \${v1 + v2}")
println("v1 - v2 = \${v1 - v2}")
println("v1 * 11 = \${v1 * 11.0}")
println("11 * v2 = \${11.0 * v2}")
println("v1 / 2  = \${v1 / 2.0}")
}
```
Output:
```v1 = (5.0, 7.0)
v2 = (2.0, 3.0)

v1 + v2 = (7.0, 10.0)
v1 - v2 = (3.0, 4.0)
v1 * 11 = (55.0, 77.0)
11 * v2 = (22.0, 33.0)
v1 / 2  = (2.5, 3.5)
```

## Lua

```vector = {mt = {}}

function vector.new (x, y)
local new = {x = x or 0, y = y or 0}
setmetatable(new, vector.mt)
return new
end

return vector.new(v1.x + v2.x, v1.y + v2.y)
end

function vector.mt.__sub (v1, v2)
return vector.new(v1.x - v2.x, v1.y - v2.y)
end

function vector.mt.__mul (v, s)
return vector.new(v.x * s, v.y * s)
end

function vector.mt.__div (v, s)
return vector.new(v.x / s, v.y / s)
end

function vector.print (vec)
print("(" .. vec.x .. ", " .. vec.y .. ")")
end

local a, b = vector.new(5, 7), vector.new(2, 3)
vector.print(a + b)
vector.print(a - b)
vector.print(a * 11)
vector.print(a / 2)
```
Output:
```(7, 10)
(3, 4)
(55, 77)
(2.5, 3.5)```

## Maple

Vector class:
```module MyVector()
option object;
local value := Vector();

export ModuleApply::static := proc( )
Object( MyVector, _passed );
end proc;

export ModuleCopy::static := proc( mv::MyVector, proto::MyVector, v::Vector, \$ )
mv:-value := v;
end proc;

export ModulePrint::static := proc(mv::MyVector, \$ )
mv:-value;
end proc;

# operations:
export `+`::static := proc( v1::MyVector, v2::MyVector )
MyVector( v1:-value + v2:-value );
end proc;

export `*`::static := proc( v::MyVector, scalar_val::numeric)
MyVector( v:-value * scalar_val);
end proc;

end module:```
```a := MyVector(<3|4>):
b := MyVector(<5|4>):

a + b;
a - b;
a * 5;
a / 5;```
Output:
```[8, 8]
[-2, 0]
[15, 20]
[3/5, 4/5]
```

## Mathematica / Wolfram Language

```ClearAll[vector,PrintVector]
vector[{r_,\[Theta]_}]:=vector@@AngleVector[{r,\[Theta]}]
vector[x_,y_]+vector[w_,z_]^:=vector[x+w,y+z]
a_ vector[x_,y_]^:=vector[a x,a y]
vector[x_,y_]-vector[w_,z_]^:=vector[x-w,y-z]
PrintVector[vector[x_,y_]]:=Print["vector has first component: ",x," And second component: ",y]

vector[1,2]+vector[3,4]
vector[1,2]-vector[3,4]
12vector[1,2]
vector[1,2]/3
PrintVector@vector[{Sqrt[2],45Degree}]
```
Output:
```vector[4, 6]
vector[-2, -2]
vector[12, 24]
vector[1/3, 2/3]
SequenceForm["vector has first component: ", 1, " And second component: ", 1]```

## MiniScript

```vplus = function(v1, v2)
return [v1[0]+v2[0],v1[1]+v2[1]]
end function

vminus = function (v1, v2)
return [v1[0]-v2[0],v1[1]-v2[1]]
end function

vmult = function(v1, scalar)
return [v1[0]*scalar, v1[1]*scalar]
end function

vdiv = function(v1, scalar)
return [v1[0]/scalar, v1[1]/scalar]
end function

vector1 = [2,3]
vector2 = [4,5]

print vplus(vector1,vector2)
print vminus(vector2, vector1)
print vmult(vector1, 3)
print vdiv(vector2, 2)
```
Output:
```[6, 8]
[2, 2]
[6, 9]
[2, 2.5]
```

## Modula-2

```MODULE Vector;
FROM FormatString IMPORT FormatString;
FROM RealStr IMPORT RealToStr;

TYPE Vector =
RECORD
x,y : REAL;
END;

PROCEDURE Add(a,b : Vector) : Vector;
BEGIN
RETURN Vector{a.x+b.x, a.y+b.y}

PROCEDURE Sub(a,b : Vector) : Vector;
BEGIN
RETURN Vector{a.x-b.x, a.y-b.y}
END Sub;

PROCEDURE Mul(v : Vector; r : REAL) : Vector;
BEGIN
RETURN Vector{a.x*r, a.y*r}
END Mul;

PROCEDURE Div(v : Vector; r : REAL) : Vector;
BEGIN
RETURN Vector{a.x/r, a.y/r}
END Div;

PROCEDURE Print(v : Vector);
VAR buf : ARRAY[0..64] OF CHAR;
BEGIN
WriteString("<");

RealToStr(v.x, buf);
WriteString(buf);
WriteString(", ");

RealToStr(v.y, buf);
WriteString(buf);
WriteString(">")
END Print;

VAR a,b : Vector;
BEGIN
a := Vector{5.0, 7.0};
b := Vector{2.0, 3.0};

WriteLn;
Print(Sub(a, b));
WriteLn;
Print(Mul(a, 11.0));
WriteLn;
Print(Div(a, 2.0));
WriteLn;

END Vector.
```

## Nanoquery

Translation of: Java
```class Vector
declare x
declare y

def Vector(x, y)
this.x = float(x)
this.y = float(y)
end

def operator+(other)
return new(Vector, this.x + other.x, this.y + other.y)
end

def operator-(other)
return new(Vector, this.x - other.x, this.y - other.y)
end

def operator/(val)
return new(Vector, this.x / val, this.y / val)
end

def operator*(val)
return new(Vector, this.x * val, this.y * val)
end

def toString()
return format("[%s, %s]", this.x, this.y)
end
end

println new(Vector, 5, 7) + new(Vector, 2, 3)
println new(Vector, 5, 7) - new(Vector, 2, 3)
println new(Vector, 5, 7) * 11
println new(Vector, 5, 7) / 2```
Output:
```[7.0, 10.0]
[3.0, 4.0]
[55.0, 77.0]
[2.5, 3.5]```

## Nim

```import strformat

type Vec2[T: SomeNumber] = tuple[x, y: T]

proc initVec2[T](x, y: T): Vec2[T] = (x, y)

func`+`[T](a, b: Vec2[T]): Vec2[T] = (a.x + b.x, a.y + b.y)

func `-`[T](a, b: Vec2[T]): Vec2[T] = (a.x - b.x, a.y - b.y)

func `*`[T](a: Vec2[T]; m: T): Vec2[T] = (a.x * m, a.y * m)

func `/`[T](a: Vec2[T]; d: T): Vec2[T] =
if d == 0:
raise newException(DivByZeroDefect, "division of vector by 0")
when T is SomeInteger:
(a.x div d, a.y div d)
else:
(a.x / d, a.y / d)

func `\$`[T](a: Vec2[T]): string =
&"({a.x}, {a.y})"

# Three ways to initialize a vector.
let v1 = initVec2(2, 3)
let v2: Vec2[int] = (-1, 2)
let v3 = (x: 4, y: -2)

echo &"{v1} + {v2} = {v1 + v2}"
echo &"{v3} - {v2} = {v3 - v2}"

# Float vectors.
let v4 = initVec2(2.0, 3.0)
let v5 = (x: 3.0, y: 2.0)

echo &"{v4} * 2 = {v4 * 2}"
echo &"{v3} / 2 = {v3 / 2}"   # Int division.
echo &"{v5} / 2 = {v5 / 2}"   # Float division.
```
Output:
```(2, 3) + (-1, 2) = (1, 5)
(4, -2) - (-1, 2) = (5, -4)
(2.0, 3.0) * 2 = (4.0, 6.0)
(4, -2) / 2 = (2, -1)
(3.0, 2.0) / 2 = (1.5, 1.0)```

## Objeck

```class Test {
function : Main(args : String[]) ~ Nil {
Vec2->New(5, 7)->Sub(Vec2->New(2, 3))->ToString()->PrintLine();
Vec2->New(5, 7)->Mult(11)->ToString()->PrintLine();
Vec2->New(5, 7)->Div(2)->ToString()->PrintLine();
}
}

class Vec2 {
@x : Float;
@y : Float;

New(x : Float, y : Float) {
@x := x;
@y := y;
}

method : GetX() ~ Float {
return @x;
}

method : GetY() ~ Float {
return @y;
}

method : public : Add(v : Vec2) ~ Vec2 {
return Vec2->New(@x + v->GetX(), @y + v->GetY());
}

method : public : Sub(v : Vec2) ~ Vec2 {
return Vec2->New(@x - v->GetX(), @y - v->GetY());
}

method : public : Div(val : Float) ~ Vec2 {
return Vec2->New(@x / val, @y / val);
}

method : public : Mult(val : Float) ~ Vec2 {
return Vec2->New(@x * val, @y * val);
}

method : public : ToString() ~ String {
return "[{\$@x}, {\$@y}]";
}
}```
```[7.0, 10.0]
[3.0, 4.0]
[55.0, 77.0]
[2.500, 3.500]
```

## OCaml

Translation of: Perl
```module Vector =
struct
type t = { x : float; y : float }
let make x y = { x; y }
let add a b = { x = a.x +. b.x; y = a.y +. b.y }
let sub a b = { x = a.x -. b.x; y = a.y -. b.y }
let mul a n = { x = a.x *. n; y = a.y *. n }
let div a n = { x = a.x /. n; y = a.y /. n }

let to_string {x; y} = Printf.sprintf "(%F, %F)" x y

let ( + ) = add
let ( - ) = sub
let ( * ) = mul
let ( / ) = div
end

open Printf

let test () =
let a, b = Vector.make 5. 7., Vector.make 2. 3. in
printf "a:    %s\n" (Vector.to_string a);
printf "b:    %s\n" (Vector.to_string b);
printf "a+b:  %s\n" Vector.(a + b |> to_string);
printf "a-b:  %s\n" Vector.(a - b |> to_string);
printf "a*11: %s\n" Vector.(a * 11. |> to_string);
printf "a/2:  %s\n" Vector.(a / 2. |> to_string)
```
Output:
```# test ();;
a:    (5., 7.)
b:    (2., 3.)
a+b:  (7., 10.)
a-b:  (3., 4.)
a*11: (55., 77.)
a/2:  (2.5, 3.5)
- : unit = ()```

## Ol

Ol has builtin vector type, but does not have built-in vector math. The vectors can be created directly using function (vector 1 2 3) or from list using function (make-vector '(1 2 3)). Additionally, exists short forms of vector creation: #(1 2 3) and [1 2 3].

```(define :+ +)
(define (+ a b)
(if (vector? a)
(if (vector? b)
(vector-map :+ a b)
(error "error:" "not applicable (+ vector non-vector)"))
(if (vector? b)
(error "error:" "not applicable (+ non-vector vector)")
(:+ a b))))

(define :- -)
(define (- a b)
(if (vector? a)
(if (vector? b)
(vector-map :- a b)
(error "error:" "not applicable (+ vector non-vector)"))
(if (vector? b)
(error "error:" "not applicable (+ non-vector vector)")
(:- a b))))

(define :* *)
(define (* a b)
(if (vector? a)
(if (not (vector? b))
(vector-map (lambda (x) (:* x b)) a)
(error "error:" "not applicable (* vector vector)"))
(if (vector? b)
(error "error:" "not applicable (* scalar vector)")
(:* a b))))

(define :/ /)
(define (/ a b)
(if (vector? a)
(if (not (vector? b))
(vector-map (lambda (x) (:/ x b)) a)
(error "error:" "not applicable (/ vector vector)"))
(if (vector? b)
(error "error:" "not applicable (/ scalar vector)")
(:/ a b))))

(define x [1 2 3 4 5])
(define y [7 8 5 4 2])
(print x " + " y " = " (+ x y))
(print x " - " y " = " (- x y))
(print x " * " 7 " = " (* x 7))
(print x " / " 7 " = " (/ x 7))
```
Output:
```#(1 2 3 4 5) + #(7 8 5 4 2) = #(8 10 8 8 7)
#(1 2 3 4 5) - #(7 8 5 4 2) = #(-6 -6 -2 0 3)
#(1 2 3 4 5) * 7 = #(7 14 21 28 35)
#(1 2 3 4 5) / 7 = #(1/7 2/7 3/7 4/7 5/7)
```

## ooRexx

```v=.vector~new(12,-3);  Say "v=.vector~new(12,-3) =>" v~print
v~ab(1,1,6,4);         Say "v~ab(1,1,6,4)        =>" v~print
v~al(45,2);            Say "v~al(45,2)           =>" v~print
w=v~'+'(v);            Say "w=v~'+'(v)           =>" w~print
x=v~'-'(w);            Say "x=v~'-'(w)           =>" x~print
y=x~'*'(3);            Say "y=x~'*'(3)           =>" y~print
z=x~'/'(0.1);          Say "z=x~'/'(0.1)         =>" z~print

::class vector
::attribute x
::attribute y
::method init
Use Arg a,b
self~x=a
self~y=b

::method ab      /* set vector from point (a,b) to point (c,d)       */
Use Arg a,b,c,d
self~x=c-a
self~y=d-b

::method al      /* set vector given angle a and length l            */
Use Arg a,l
self~x=l*rxCalccos(a)
self~y=l*rxCalcsin(a)

::method '+'     /* add: Return sum of self and argument             */
Use Arg v
x=self~x+v~x
y=self~y+v~y
res=.vector~new(x,y)
Return res

::method '-'     /* subtract: Return difference of self and argument */
Use Arg v
x=self~x-v~x
y=self~y-v~y
res=.vector~new(x,y)
Return res

::method '*'     /* multiply: Return self multiplied by t            */
Use Arg t
x=self~x*t
y=self~y*t
res=.vector~new(x,y)
Return res

::method '/'     /* divide: Return self divided by t                 */
Use Arg t
x=self~x/t
y=self~y/t
res=.vector~new(x,y)
Return res

::method print   /* prettyprint a vector                             */
return '['self~x','self~y']'

::requires rxMath Library
```
Output:
```v=.vector~new(12,-3) => [12,-3]
v~ab(1,1,6,4)        => [5,3]
v~al(45,2)           => [1.41421356,1.41421356]
w=v~'+'(v)           => [2.82842712,2.82842712]
x=v~'-'(w)           => [-1.41421356,-1.41421356]
y=x~'*'(3)           => [-4.24264068,-4.24264068]
z=x~'/'(0.1)         => [-14.1421356,-14.1421356]```

## Perl

Typically we would use a module, such as Math::Vector::Real or Math::Complex. Here is a very basic Moose class.

```package Vector;
use Moose;
use feature 'say';

'-' => \&sub,
'*' => \&mul,
'/' => \&div,
'""' => \&stringify;

has 'x' => (is =>'rw', isa => 'Num', required => 1);
has 'y' => (is =>'rw', isa => 'Num', required => 1);

my(\$a, \$b) = @_;
Vector->new( x => \$a->x + \$b->x, y => \$a->y + \$b->y);
}
sub sub {
my(\$a, \$b) = @_;
Vector->new( x => \$a->x - \$b->x, y => \$a->y - \$b->y);
}
sub mul {
my(\$a, \$b) = @_;
Vector->new( x => \$a->x * \$b, y => \$a->y * \$b);
}
sub div {
my(\$a, \$b) = @_;
Vector->new( x => \$a->x / \$b, y => \$a->y / \$b);
}
sub stringify {
my \$self = shift;
"(" . \$self->x . "," . \$self->y . ')';
}

package main;

my \$a = Vector->new(x => 5, y => 7);
my \$b = Vector->new(x => 2, y => 3);
say "a:    \$a";
say "b:    \$b";
say "a+b:  ",\$a+\$b;
say "a-b:  ",\$a-\$b;
say "a*11: ",\$a*11;
say "a/2:  ",\$a/2;
```
Output:
```a:    (5,7)
b:    (2,3)
a+b:  (7,10)
a-b:  (3,4)
a*11: (55,77)
a/2:  (2.5,3.5)
```

## Phix

Library: Phix/basics

Simply hold vectors in sequences, and there are builtin sequence operation routines:

```constant a = {5,7}, b = {2, 3}
?sq_sub(a,b)
?sq_mul(a,11)
?sq_div(a,2)
```
Output:
```{7,10}
{3,4}
{55,77}
{2.5,3.5}
```

## Phixmonti

```include ..\Utilitys.pmt

def sub - enddef
def mul * enddef
def div / enddef

def opVect  /# a b op -- a b c #/
var op
list? not if swap len rot swap repeat endif
len var lon

( lon 1 -1 ) for var i
i get rot i get rot op exec >ps swap
endfor

lon for drop
ps>
endfor

lon tolist
enddef

( 5 7 ) ( 2 3 )

getid sub opVect ?
drop 2
getid mul opVect ?
getid div opVect ?```
Output:
```[7, 10]
[3, 4]
[10, 14]
[2.5, 3.5]

=== Press any key to exit ===```

## PicoLisp

```(de add (A B)
(mapcar + A B) )
(de sub (A B)
(mapcar - A B) )
(de mul (A B)
(mapcar '((X) (* X B)) A) )
(de div (A B)
(mapcar '((X) (*/ X B)) A) )
(let (X (5 7)  Y (2 3))
(println (sub X Y))
(println (mul X 11))
(println (div X 2))  )```
Output:
```(7 10)
(3 4)
(55 77)
(3 4)
```

## PL/I

Translation of: REXX
```*process source attributes xref or(!);
vectors: Proc Options(main);
Dcl (v,w,x,y,z) Dec Float(9) Complex;
real(v)=12; imag(v)=-3;   Put Edit(pp(v))(Skip,a);
real(v)=6-1; imag(v)=4-1; Put Edit(pp(v))(Skip,a);
real(v)=2*cosd(45);
imag(v)=2*sind(45);       Put Edit(pp(v))(Skip,a);

w=v+v;                    Put Edit(pp(w))(Skip,a);
x=v-w;                    Put Edit(pp(x))(Skip,a);
y=x*3;                    Put Edit(pp(y))(Skip,a);
z=x/.1;                   Put Edit(pp(z))(Skip,a);

pp: Proc(c) Returns(Char(50) Var);
Dcl c Dec Float(9) Complex;
Dcl res Char(50) Var;
Put String(res) Edit('[',real(c),',',imag(c),']')
(3(a,f(9,5)));
Return(res);
End;
End;```
Output:
```[ 12.00000, -3.00000]
[  5.00000,  3.00000]
[  1.41421,  1.41421]
[  2.82843,  2.82843]
[ -1.41421, -1.41421]
[ -4.24264, -4.24264]
[-14.14214,-14.14214]
```

## PowerShell

Works with: PowerShell version 2

A vector class is built in.

```\$V1 = New-Object System.Windows.Vector ( 2.5, 3.4 )
\$V2 = New-Object System.Windows.Vector ( -6, 2 )
\$V1
\$V2
\$V1 + \$V2
\$V1 - \$V2
\$V1 * 3
\$V1 / 8
```
Output:
```     X     Y           Length LengthSquared
-     -           ------ -------------
2.5   3.4 4.22018956920184         17.81
-6     2 6.32455532033676            40
-3.5   5.4 6.43506021727847         41.41
8.5   1.4 8.61452262171271         74.21
7.5  10.2 12.6605687076055        160.29
0.3125 0.425 0.52752369615023    0.27828125```

## Processing

A vector class, PVector, is a Processing built-in. It expresses an x,y or x,y,z vector from the origin. A vector may return its components, magnitude, and heading, and also includes .add(), .sub(), .mult(), and .div() -- among other methods. Methods each have both a static form which returns a new PVector and an object method form which alters the original.

```PVector v1 = new PVector(5, 7);
PVector v2 = new PVector(2, 3);

// static methods
println(PVector.sub(v1, v2));
println(PVector.mult(v1, 11));
println(PVector.div(v1, 2), '\n');

// object methods
println(v1.sub(v1));
println(v1.mult(10));
println(v1.div(10));
```
Output:
```5.0 7.0 8.602325 0.95054686

[ 7.0, 10.0, 0.0 ]
[ 3.0, 4.0, 0.0 ]
[ 55.0, 77.0, 0.0 ]
[ 2.5, 3.5, 0.0 ]

[ 0.0, 0.0, 0.0 ]
[ 2.0, 3.0, 0.0 ]
[ 20.0, 30.0, 0.0 ]
[ 2.0, 3.0, 0.0 ]
```

### Processing Python mode

Translation of: Processing

```v1 = PVector(5, 7)
v2 = PVector(2, 3)

println('{} {} {} {}\n'.format( v1.x, v1.y, v1.mag(), v1.heading()))

println(v1 + v2) # PVector.add(v1, v2)
println(v1 - v2) # PVector.sub(v1, v2)
println(v1 * 11) # PVector.mult(v1, 11)
println(v1 / 2)  # PVector.div(v1, 2)
println('')

# object methods (related augmented assigment in the comments)
println(v1.sub(v1))  # v1 -= v1; println(v1)
println(v1.add(v2))  # v1 += v2; println(v2)
println(v1.mult(10)) # v1 *= 10; println(v1)
println(v1.div(10))  # v1 /= 10; println(v1)
```

## Python

Implements a Vector Class that is initialized with origin, angular coefficient and value.

```class Vector:
def __init__(self,m,value):
self.m = m
self.value = value
self.angle = math.degrees(math.atan(self.m))

"""
>>> Vector(1,10) + Vector(1,2)
Vector:
- Angular coefficient: 1.0
- Angle: 45.0 degrees
- Value: 12.0
- X component: 8.49
- Y component: 8.49
"""
final_x = self.x + vector.x
final_y = self.y + vector.y
final_value = pytagoras(final_x,final_y)
final_m = final_y / final_x
return Vector(final_m,final_value)

def __neg__(self):
return Vector(self.m,-self.value)

def __sub__(self,vector):
return self + (- vector)

def __mul__(self,scalar):
"""
>>> Vector(4,5) * 2
Vector:
- Angular coefficient: 4
- Angle: 75.96 degrees
- Value: 10
- X component: 9.7
- Y component: 2.43

"""
return Vector(self.m,self.value*scalar)

def __div__(self,scalar):
return self * (1 / scalar)

def __repr__(self):
"""
Returns a nicely formatted list of the properties of the Vector.

>>> Vector(1,10)
Vector:
- Angular coefficient: 1
- Angle: 45.0 degrees
- Value: 10
- X component: 7.07
- Y component: 7.07

"""
return """Vector:
- Angular coefficient: {}
- Angle: {} degrees
- Value: {}
- X component: {}
- Y component: {}""".format(self.m.__round__(2),
self.angle.__round__(2),
self.value.__round__(2),
self.x.__round__(2),
self.y.__round__(2))
```

Or Python 3.7 version using namedtuple and property caching:

```from __future__ import annotations
import math
from functools import lru_cache
from typing import NamedTuple

CACHE_SIZE = None

def hypotenuse(leg: float,
other_leg: float) -> float:
"""Returns hypotenuse for given legs"""
return math.sqrt(leg ** 2 + other_leg ** 2)

class Vector(NamedTuple):
slope: float
length: float

@property
@lru_cache(CACHE_SIZE)
def angle(self) -> float:
return math.atan(self.slope)

@property
@lru_cache(CACHE_SIZE)
def x(self) -> float:
return self.length * math.sin(self.angle)

@property
@lru_cache(CACHE_SIZE)
def y(self) -> float:
return self.length * math.cos(self.angle)

def __add__(self, other: Vector) -> Vector:
"""Returns self + other"""
new_x = self.x + other.x
new_y = self.y + other.y
new_length = hypotenuse(new_x, new_y)
new_slope = new_y / new_x
return Vector(new_slope, new_length)

def __neg__(self) -> Vector:
"""Returns -self"""
return Vector(self.slope, -self.length)

def __sub__(self, other: Vector) -> Vector:
"""Returns self - other"""
return self + (-other)

def __mul__(self, scalar: float) -> Vector:
"""Returns self * scalar"""
return Vector(self.slope, self.length * scalar)

def __truediv__(self, scalar: float) -> Vector:
"""Returns self / scalar"""
return self * (1 / scalar)

if __name__ == '__main__':
v1 = Vector(1, 1)

print("Pretty print:")
print(v1, end='\n' * 2)

v2 = v1 + v1
print(v1 + v1, end='\n' * 2)

print("Subtraction:")
print(v2 - v1, end='\n' * 2)

print("Multiplication:")
print(v1 * 2, end='\n' * 2)

print("Division:")
print(v2 / 2)
```
Output:
```Pretty print:
Vector(slope=1, length=1)

Vector(slope=1.0, length=2.0)

Subtraction:
Vector(slope=1.0, length=1.0)

Multiplication:
Vector(slope=1, length=2)

Division:
Vector(slope=1.0, length=1.0)```

## Racket

Translation of: Python

We store internally only the `x, y` components and calculate the norm, angle and slope on demand. We have two constructors one with `(x,y)` and another with `(slope, norm)`.

We use `fl*` and `fl/` to try to get the most sensible result for vertical vectors.

```#lang racket

(require racket/flonum)

(define (rad->deg x) (fl* 180. (fl/ (exact->inexact x) pi)))

;Custom printer
;no shared internal structures
(define (vec-print v port mode)
(write-string "Vec:\n" port)
(write-string (format " -Slope: ~a\n" (vec-slope v)) port)
(write-string (format " -Angle(deg): ~a\n" (rad->deg (vec-angle v))) port)
(write-string (format " -Norm: ~a\n" (vec-norm v)) port)
(write-string (format " -X: ~a\n" (vec-x v)) port)
(write-string (format " -Y: ~a\n" (vec-y v)) port))

(struct vec (x y)
#:methods gen:custom-write
[(define write-proc vec-print)])

;Alternative constructor
(define (vec/slope-norm s n)
(vec (* n (/ 1 (sqrt (+ 1 (sqr s)))))
(* n (/ s (sqrt (+ 1 (sqr s)))))))

;Properties
(define (vec-norm v)
(sqrt (+ (sqr (vec-x v)) (sqr (vec-y v)))))

(define (vec-slope v)
(fl/ (exact->inexact (vec-y v)) (exact->inexact (vec-x v))))

(define (vec-angle v)
(atan (vec-y v) (vec-x v)))

;Operations
(define (vec+ v w)
(vec (+ (vec-x v) (vec-x w))
(+ (vec-y v) (vec-y w))))

(define (vec- v w)
(vec (- (vec-x v) (vec-x w))
(- (vec-y v) (vec-y w))))

(define (vec*e v l)
(vec (* (vec-x v) l)
(* (vec-y v) l)))

(define (vec/e v l)
(vec (/ (vec-x v) l)
(/ (vec-y v) l)))
```

Tests

```(vec/slope-norm 1 10)

(vec/slope-norm 0 10)

(vec 3 4)

(vec 0 10)

(vec 10 0)

(vec+ (vec/slope-norm 1 10) (vec/slope-norm 1 2))

(vec*e (vec/slope-norm 4 5) 2)
```
Output:
```Vec:
-Slope: 1.0
-Angle(deg): 45.0
-Norm: 10.0
-X: 7.071067811865475
-Y: 7.071067811865475

Vec:
-Slope: 0.0
-Angle(deg): 0.0
-Norm: 10
-X: 10
-Y: 0

Vec:
-Slope: 1.3333333333333333
-Angle(deg): 53.13010235415597
-Norm: 5
-X: 3
-Y: 4

Vec:
-Slope: +inf.0
-Angle(deg): 90.0
-Norm: 10
-X: 0
-Y: 10

Vec:
-Slope: 0.0
-Angle(deg): 0.0
-Norm: 10
-X: 10
-Y: 0

Vec:
-Slope: 1.0
-Angle(deg): 45.0
-Norm: 11.999999999999998
-X: 8.48528137423857
-Y: 8.48528137423857

Vec:
-Slope: 4.0
-Angle(deg): 75.96375653207353
-Norm: 10.000000000000002
-X: 2.42535625036333
-Y: 9.70142500145332```

## Raku

(formerly Perl 6)

```class Vector {
has Real \$.x;
has Real \$.y;

multi submethod BUILD (:\$!x!, :\$!y!) {
*
}
multi submethod BUILD (:\$length!, :\$angle!) {
\$!x = \$length * cos \$angle;
\$!y = \$length * sin \$angle;
}
multi submethod BUILD (:from([\$x1, \$y1])!, :to([\$x2, \$y2])!) {
\$!x = \$x2 - \$x1;
\$!y = \$y2 - \$y1;
}

method length { sqrt \$.x ** 2 + \$.y ** 2 }
method angle  { atan2 \$.y, \$.x }

method add      (\$v) { Vector.new(x => \$.x + \$v.x,  y => \$.y + \$v.y) }
method subtract (\$v) { Vector.new(x => \$.x - \$v.x,  y => \$.y - \$v.y) }
method multiply (\$n) { Vector.new(x => \$.x * \$n,    y => \$.y * \$n  ) }
method divide   (\$n) { Vector.new(x => \$.x / \$n,    y => \$.y / \$n  ) }

method gist { "vec[\$.x, \$.y]" }
}

multi infix:<+>  (Vector \$v, Vector \$w) is export { \$v.add: \$w }
multi infix:<->  (Vector \$v, Vector \$w) is export { \$v.subtract: \$w }
multi prefix:<-> (Vector \$v)            is export { \$v.multiply: -1 }
multi infix:<*>  (Vector \$v, \$n)        is export { \$v.multiply: \$n }
multi infix:</>  (Vector \$v, \$n)        is export { \$v.divide: \$n }

#####[ Usage example: ]#####

say my \$u = Vector.new(x => 3, y => 4);                #: vec[3, 4]
say my \$v = Vector.new(from => [1, 0], to => [2, 3]);  #: vec[1, 3]
say my \$w = Vector.new(length => 1, angle => pi/4);    #: vec[0.707106781186548, 0.707106781186547]

say \$u.length;                                         #: 5
say \$u.angle * 180/pi;                                 #: 53.130102354156

say \$u + \$v;                                           #: vec[4, 7]
say \$u - \$v;                                           #: vec[2, 1]
say -\$u;                                               #: vec[-3, -4]
say \$u * 10;                                           #: vec[30, 40]
say \$u / 2;                                            #: vec[1.5, 2]
```

## Red

```Red [
Source:     https://github.com/vazub/rosetta-red
Tabs:       4
]

comment {
Vector type is one of base datatypes in Red, with all arithmetic already implemented.

Caveats to keep in mind:
- Arithmetic on a single vector will modify the vector in place, so we use copy to avoid that
- Division result on integer vectors will get truncated, use floats for decimal precision
}

v1: make vector! [5.0 7.0]
v2: make vector! [2.0 3.0]

prin pad "v1: " 10 print v1
prin pad "v2: " 10 print v2
prin pad "v1 + v2: " 10 print v1 + v2
prin pad "v1 - v2: " 10 print v1 - v2
prin pad "v1 * 11" 10 print (copy v1) * 11
prin pad "v1 / 2" 10 print (copy v1) / 2
```
Output:
```v1:       5.0 7.0
v2:       2.0 3.0
v1 + v2:  7.0 10.0
v1 - v2:  3.0 4.0
v1 * 11   55.0 77.0
v1 / 2    2.5 3.5
```

## REXX

(Modeled after the J entry.)

Classic REXX has no trigonometric functions, so a minimal set is included here (needed to handle the   sin   and   cos   functions, along with angular conversion and normalization).

The angular part of the vector (when defining) is assumed to be in degrees for this program.

```/*REXX program shows how to support mathematical functions for vectors using functions. */
s1 =     11                               /*define the  s1 scalar: eleven        */
s2 =      2                               /*define the  s2 scalar: two           */
x  = '(5, 7)'                             /*define the  X  vector: five and seven*/
y  = '(2, 3)'                             /*define the  Y  vector: two  and three*/
z  = '(2, 45)'                            /*define vector of length   2  at  45º */
call show  'define a vector (length,ºangle):',     z                ,      Vdef(z)
call show         'addition (vector+vector):',     x      " + "   y ,      Vadd(x, y)
call show      'subtraction (vector-vector):',     x      " - "   y ,      vsub(x, y)
call show   'multiplication (Vector*scalar):',     x      " * "   s1,      Vmul(x, s1)
call show         'division (vector/scalar):',     x      " ÷ "   s2,      Vdiv(x, s2)
exit                                             /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
\$fuzz: return min( arg(1), max(1, digits() - arg(2) ) )
cosD:  return cos( d2r( arg(1) ) )
d2d:   return arg(1) // 360                      /*normalize degrees ──► a unit circle. */
d2r:   return r2r( d2d(arg(1)) * pi() / 180)     /*convert degrees   ──►   radians.     */
pi:    pi=3.14159265358979323846264338327950288419716939937510582;         return pi
r2d:   return d2d( (arg(1)*180 / pi()))          /*convert radians   ──►   degrees.     */
r2r:   return arg(1) // (pi() * 2)               /*normalize radians ──► a unit circle. */
show:  say  right( arg(1), 33)   right( arg(2), 20)      ' ──► '      arg(3);       return
sinD:  return  sin( d2r( d2d( arg(1) ) ) )
V:     return  word( translate( arg(1), , '{[(JI)]}')  0,  1)   /*get the number or zero*/
V\$:    parse arg r,c;     _='['r;       if c\=0  then _=_"," c;               return _']'
V#:    a=V(a); b=V(b); c=V(c); d=V(d);  ac=a*c; ad=a*d; bc=b*c; bd=b*d; s=c*c+d*d;  return
Vadd:  procedure; arg a ',' b,c "," d;      call V#;       return V\$(a+c,             b+d)
Vsub:  procedure; arg a ',' b,c "," d;      call V#;       return V\$(a-c,             b-d)
Vmul:  procedure; arg a ',' b,c "," d;      call V#;       return V\$(ac-bd,         bc+ad)
Vdiv:  procedure; arg a ',' b,c "," d;      call V#;       return V\$((ac+bd)/s, (bc-ad)/s)
Vdef:  procedure; arg a ',' b,c "," d;      call V#;       return V\$(a*sinD(b), a*cosD(b))
/*──────────────────────────────────────────────────────────────────────────────────────*/
cos: procedure; parse arg x;        x=r2r(x);       a=abs(x);    numeric fuzz \$fuzz(9, 9)
if a=pi             then return -1;
if a=pi*.5 | a=pi*2 then return  0;                   return .sinCos(1,-1)
/*──────────────────────────────────────────────────────────────────────────────────────*/
sin: procedure; parse arg x;        x=r2r(x);                    numeric fuzz \$fuzz(5, 3)
if x=pi*.5          then return 1;  if x=pi*1.5  then return -1
if abs(x)=pi | x=0  then return 0;                    return .sinCos(x,+1)
/*──────────────────────────────────────────────────────────────────────────────────────*/
.sinCos: parse arg z 1 _,i;          q=x*x
do k=2  by 2  until p=z;  p=z;  _= -_*q / (k*(k+i));  z=z+_;  end;     return z
```
output   when using the default inputs:
``` define a vector (length,ºangle):              (2, 45)  ──►  [1.41421294, 1.41421356]
addition (vector+vector):    (5, 7)  +  (2, 3)  ──►  [7, 10]
subtraction (vector-vector):    (5, 7)  -  (2, 3)  ──►  [3, 4]
multiplication (Vector*scalar):        (5, 7)  *  11  ──►  [55, 77]
division (vector/scalar):         (5, 7)  ÷  2  ──►  [2.5, 3.5]
```

## Ring

```# Project : Vector

decimals(1)
vect1 = [5, 7]
vect2 = [2, 3]
vect3 = list(len(vect1))

for n = 1 to len(vect1)
vect3[n] = vect1[n] + vect2[n]
next
showarray(vect3)

for n = 1 to len(vect1)
vect3[n] = vect1[n] - vect2[n]
next
showarray(vect3)

for n = 1 to len(vect1)
vect3[n] = vect1[n] * vect2[n]
next
showarray(vect3)

for n = 1 to len(vect1)
vect3[n] = vect1[n] / 2
next
showarray(vect3)

func showarray(vect3)
see "["
svect = ""
for n = 1 to len(vect3)
svect = svect + vect3[n] + ", "
next
svect = left(svect, len(svect) - 2)
see svect
see "]" + nl```

Output:

```[7, 10]
[3, 4]
[10, 21]
[2.5, 3.5]
```

## Ruby

```class Vector
def self.polar(r, angle=0)
new(r*Math.cos(angle), r*Math.sin(angle))
end

def initialize(x, y)
raise TypeError unless x.is_a?(Numeric) and y.is_a?(Numeric)
@x, @y = x, y
end

def +(other)
raise TypeError if self.class != other.class
self.class.new(@x + other.x, @y + other.y)
end

def -@;       self.class.new(-@x, -@y)        end
def -(other)  self + (-other)                 end

def *(scalar)
raise TypeError unless scalar.is_a?(Numeric)
self.class.new(@x * scalar, @y * scalar)
end

def /(scalar)
raise TypeError unless scalar.is_a?(Numeric) and scalar.nonzero?
self.class.new(@x / scalar, @y / scalar)
end

def r;        @r     ||= Math.hypot(@x, @y)   end
def angle;    @angle ||= Math.atan2(@y, @x)   end
def polar;    [r, angle]                      end
def rect;     [@x, @y]                        end
def to_s;     "#{self.class}#{[@x, @y]}"      end
alias inspect to_s
end

p v = Vector.new(1,1)                   #=> Vector[1, 1]
p w = Vector.new(3,4)                   #=> Vector[3, 4]
p v + w                                 #=> Vector[4, 5]
p v - w                                 #=> Vector[-2, -3]
p -v                                    #=> Vector[-1, -1]
p w * 5                                 #=> Vector[15, 20]
p w / 2.0                               #=> Vector[1.5, 2.0]
p w.x                                   #=> 3
p w.y                                   #=> 4
p v.polar                               #=> [1.4142135623730951, 0.7853981633974483]
p w.polar                               #=> [5.0, 0.9272952180016122]
p z = Vector.polar(1, Math::PI/2)       #=> Vector[6.123031769111886e-17, 1.0]
p z.rect                                #=> [6.123031769111886e-17, 1.0]
p z.polar                               #=> [1.0, 1.5707963267948966]
p z = Vector.polar(-2, Math::PI/4)      #=> Vector[-1.4142135623730951, -1.414213562373095]
p z.polar                               #=> [2.0, -2.356194490192345]
```

## Rust

```use std::fmt;

#[derive(Copy, Clone, Debug)]
pub struct Vector<T> {
pub x: T,
pub y: T,
}

impl<T> fmt::Display for Vector<T>
where
T: fmt::Display,
{
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if let Some(prec) = f.precision() {
write!(f, "[{:.*}, {:.*}]", prec, self.x, prec, self.y)
} else {
write!(f, "[{}, {}]", self.x, self.y)
}
}
}

impl<T> Vector<T> {
pub fn new(x: T, y: T) -> Self {
Vector { x, y }
}
}

impl Vector<f64> {
pub fn from_polar(r: f64, theta: f64) -> Self {
Vector {
x: r * theta.cos(),
y: r * theta.sin(),
}
}
}

where
{
type Output = Self;

fn add(self, other: Self) -> Self::Output {
Vector {
x: self.x + other.x,
y: self.y + other.y,
}
}
}

impl<T> Sub for Vector<T>
where
T: Sub<Output = T>,
{
type Output = Self;

fn sub(self, other: Self) -> Self::Output {
Vector {
x: self.x - other.x,
y: self.y - other.y,
}
}
}

impl<T> Mul<T> for Vector<T>
where
T: Mul<Output = T> + Copy,
{
type Output = Self;

fn mul(self, scalar: T) -> Self::Output {
Vector {
x: self.x * scalar,
y: self.y * scalar,
}
}
}

impl<T> Div<T> for Vector<T>
where
T: Div<Output = T> + Copy,
{
type Output = Self;

fn div(self, scalar: T) -> Self::Output {
Vector {
x: self.x / scalar,
y: self.y / scalar,
}
}
}

fn main() {
use std::f64::consts::FRAC_PI_3;

println!("{:?}", Vector::new(4, 5));
println!("{:.4}", Vector::from_polar(3.0, FRAC_PI_3));
println!("{}", Vector::new(2, 3) + Vector::new(4, 6));
println!("{:.4}", Vector::new(5.6, 1.3) - Vector::new(4.2, 6.1));
println!("{:.4}", Vector::new(3.0, 4.2) * 2.3);
println!("{:.4}", Vector::new(3.0, 4.2) / 2.3);
println!("{}", Vector::new(3, 4) / 2);
}
```
Output:
```Vector { x: 4, y: 5 }
[1.5000, 2.5981]
[6, 9]
[1.4000, -4.8000]
[6.9000, 9.6600]
[1.3043, 1.8261]
[1, 2]
```

## Scala

```object Vector extends App {

case class Vector2D(x: Double, y: Double) {
def +(v: Vector2D) = Vector2D(x + v.x, y + v.y)

def -(v: Vector2D) = Vector2D(x - v.x, y - v.y)

def *(s: Double) = Vector2D(s * x, s * y)

def /(s: Double) = Vector2D(x / s, y / s)

override def toString() = s"Vector(\$x, \$y)"
}

val v1 = Vector2D(5.0, 7.0)
val v2 = Vector2D(2.0, 3.0)
println(s"v1 = \$v1")
println(s"v2 = \$v2\n")

println(s"v1 + v2 = \${v1 + v2}")
println(s"v1 - v2 = \${v1 - v2}")
println(s"v1 * 11 = \${v1 * 11.0}")
println(s"11 * v2 = \${v2 * 11.0}")
println(s"v1 / 2  = \${v1 / 2.0}")

println(s"\nSuccessfully completed without errors. [total \${scala.compat.Platform.currentTime - executionStart} ms]")
}
```

## Sidef

Translation of: Raku
```class MyVector(:args) {

has Number x
has Number y

method init {
if ([:x, :y] ~~ args) {
x = args{:x}
y = args{:y}
}
elsif ([:length, :angle] ~~ args) {
x = args{:length}*args{:angle}.cos
y = args{:length}*args{:angle}.sin
}
elsif ([:from, :to] ~~ args) {
x = args{:to}[0]-args{:from}[0]
y = args{:to}[1]-args{:from}[1]
}
else {
die "Invalid arguments: #{args}"
}
}

method length { hypot(x, y) }
method angle  { atan2(y, x) }

method +(MyVector v) { MyVector(x => x + v.x,  y => y + v.y) }
method -(MyVector v) { MyVector(x => x - v.x,  y => y - v.y) }
method *(Number n)   { MyVector(x => x * n,    y => y * n)   }
method /(Number n)   { MyVector(x => x / n,    y => y / n)   }

method neg  { self * -1 }
method to_s { "vec[#{x}, #{y}]" }
}

var u = MyVector(x => 3, y => 4)
var v = MyVector(from => [1, 0], to => [2, 3])
var w = MyVector(length => 1, angle => 45.deg2rad)

say u    #: vec[3, 4]
say v    #: vec[1, 3]
say w    #: vec[0.70710678118654752440084436210485, 0.70710678118654752440084436210485]

say u.length                             #: 5

say u+v                                  #: vec[4, 7]
say u-v                                  #: vec[2, 1]
say -u                                   #: vec[-3, -4]
say u*10                                 #: vec[30, 40]
say u/2                                  #: vec[1.5, 2]
```

## Swift

Translation of: Rust
```import Foundation
#if canImport(Numerics)
import Numerics
#endif

struct Vector<T: Numeric> {
var x: T
var y: T

func prettyPrinted(precision: Int = 4) -> String where T: CVarArg & FloatingPoint {
return String(format: "[%.\(precision)f, %.\(precision)f]", x, y)
}

static func +(lhs: Vector, rhs: Vector) -> Vector {
return Vector(x: lhs.x + rhs.x, y: lhs.y + rhs.y)
}

static func -(lhs: Vector, rhs: Vector) -> Vector {
return Vector(x: lhs.x - rhs.x, y: lhs.y - rhs.y)
}

static func *(lhs: Vector, scalar: T) -> Vector {
return Vector(x: lhs.x * scalar, y: lhs.y * scalar)
}

static func /(lhs: Vector, scalar: T) -> Vector where T: FloatingPoint {
return Vector(x: lhs.x / scalar, y: lhs.y / scalar)
}

static func /(lhs: Vector, scalar: T) -> Vector where T: BinaryInteger {
return Vector(x: lhs.x / scalar, y: lhs.y / scalar)
}
}

#if canImport(Numerics)
extension Vector where T: ElementaryFunctions {
static func fromPolar(radians: T, theta: T) -> Vector {
}
}
#else
extension Vector where T == Double {
static func fromPolar(radians: Double, theta: Double) -> Vector {
}
}
#endif

print(Vector(x: 4, y: 5))
print(Vector.fromPolar(radians: 3.0, theta: .pi / 3).prettyPrinted())
print((Vector(x: 2, y: 3) + Vector(x: 4, y: 6)))
print((Vector(x: 5.6, y: 1.3) - Vector(x: 4.2, y: 6.1)).prettyPrinted())
print((Vector(x: 3.0, y: 4.2) * 2.3).prettyPrinted())
print((Vector(x: 3.0, y: 4.2) / 2.3).prettyPrinted())
print(Vector(x: 3, y: 4) / 2)
```
Output:
```Vector<Int>(x: 4, y: 5)
[1.5000, 2.5981]
Vector<Int>(x: 6, y: 9)
[1.4000, -4.8000]
[6.9000, 9.6600]
[1.3043, 1.8261]
Vector<Int>(x: 1, y: 2)```

## Tcl

Good artists steal .. code .. from the great RS on Tcl'ers wiki. Seriously, this is a neat little procedure:

```namespace path ::tcl::mathop
proc vec {op a b} {
if {[llength \$a] == 1 && [llength \$b] == 1} {
\$op \$a \$b
} elseif {[llength \$a]==1} {
lmap i \$b {vec \$op \$a \$i}
} elseif {[llength \$b]==1} {
lmap i \$a {vec \$op \$i \$b}
} elseif {[llength \$a] == [llength \$b]} {
lmap i \$a j \$b {vec \$op \$i \$j}
} else {error "length mismatch [llength \$a] != [llength \$b]"}
}

proc polar {r t} {
list [expr {\$r * cos(\$t)}] [expr {\$r * sin(\$t)}]
}

proc check {cmd res} {
set r [uplevel 1 \$cmd]
if {\$r eq \$res} {
puts "Ok! \$cmd \t = \$res"
} else {
puts "ERROR: \$cmd = \$r \t expected \$res"
}
}

check {vec + {5 7} {2 3}}   {7 10}
check {vec - {5 7} {2 3}}   {3 4}
check {vec * {5 7} 11}      {55 77}
check {vec / {5 7} 2.0}     {2.5 3.5}
check {polar 2 0.785398}    {1.41421 1.41421}
```

The tests are taken from J's example:

Output:
```Ok! vec + {5 7} {2 3}    = 7 10
Ok! vec - {5 7} {2 3}    = 3 4
Ok! vec * {5 7} 11       = 55 77
Ok! vec / {5 7} 2.0      = 2.5 3.5
ERROR: polar 2 0.785398 = 1.4142137934519636 1.4142133312941887          expected 1.41421 1.41421```

the polar calculation gives more than 6 digits of precision, and tests our error handling ;-).

## VBA

```Type vector
x As Double
y As Double
End Type
Type vector2
phi As Double
r As Double
End Type
Private Function vector_addition(u As vector, v As vector) As vector
End Function
Private Function vector_subtraction(u As vector, v As vector) As vector
vector_subtraction.x = u.x - v.x
vector_subtraction.y = u.y - v.y
End Function
Private Function scalar_multiplication(u As vector, v As Double) As vector
scalar_multiplication.x = u.x * v
scalar_multiplication.y = u.y * v
End Function
Private Function scalar_division(u As vector, v As Double) As vector
scalar_division.x = u.x / v
scalar_division.y = u.y / v
End Function
Private Function to_cart(v2 As vector2) As vector
to_cart.x = v2.r * Cos(v2.phi)
to_cart.y = v2.r * Sin(v2.phi)
End Function
Private Sub display(u As vector)
Debug.Print "( " & Format(u.x, "0.000") & "; " & Format(u.y, "0.000") & ")";
End Sub
Public Sub main()
Dim a As vector, b As vector, c As vector2, d As Double
c.phi = WorksheetFunction.Pi() / 3
c.r = 5
d = 10
a = to_cart(c)
b.x = 1: b.y = -2
Debug.Print "addition             : ";: display a: Debug.Print "+";: display b
Debug.Print "=";: display vector_addition(a, b): Debug.Print
Debug.Print "subtraction          : ";: display a: Debug.Print "-";: display b
Debug.Print "=";: display vector_subtraction(a, b): Debug.Print
Debug.Print "scalar multiplication: ";: display a: Debug.Print " *";: Debug.Print d;
Debug.Print "=";: display scalar_multiplication(a, d): Debug.Print
Debug.Print "scalar division      : ";: display a: Debug.Print " /";: Debug.Print d;
Debug.Print "=";: display scalar_division(a, d)
End Sub
```
Output:
```addition             : ( 2,500; 4,330)+( 1,000; -2,000)=( 3,500; 2,330)
subtraction          : ( 2,500; 4,330)-( 1,000; -2,000)=( 1,500; 6,330)
scalar multiplication: ( 2,500; 4,330) * 10 =( 25,000; 43,301)
scalar division      : ( 2,500; 4,330) / 10 =( 0,250; 0,433)```

## Visual Basic .NET

Translation of: C#
```Module Module1

Class Vector
Public store As Double()

Public Sub New(init As IEnumerable(Of Double))
store = init.ToArray()
End Sub

Public Sub New(x As Double, y As Double)
store = {x, y}
End Sub

Public Overloads Shared Operator +(v1 As Vector, v2 As Vector)
Return New Vector(v1.store.Zip(v2.store, Function(a, b) a + b))
End Operator

Public Overloads Shared Operator -(v1 As Vector, v2 As Vector)
Return New Vector(v1.store.Zip(v2.store, Function(a, b) a - b))
End Operator

Public Overloads Shared Operator *(v1 As Vector, scalar As Double)
Return New Vector(v1.store.Select(Function(x) x * scalar))
End Operator

Public Overloads Shared Operator /(v1 As Vector, scalar As Double)
Return New Vector(v1.store.Select(Function(x) x / scalar))
End Operator

Public Overrides Function ToString() As String
Return String.Format("[{0}]", String.Join(",", store))
End Function
End Class

Sub Main()
Dim v1 As New Vector(5, 7)
Dim v2 As New Vector(2, 3)
Console.WriteLine(v1 + v2)
Console.WriteLine(v1 - v2)
Console.WriteLine(v1 * 11)
Console.WriteLine(v1 / 2)
' Works with arbitrary size vectors, too.
Dim lostVector As New Vector({4, 8, 15, 16, 23, 42})
Console.WriteLine(lostVector * 7)
End Sub

End Module
```
Output:
```[7,10]
[3,4]
[55,77]
[2.5,3.5]
[28,56,105,112,161,294]```

## WDTE

```let a => import 'arrays';
let s => import 'stream';

let vmath f v1 v2 =>
s.zip (a.stream v1) (a.stream v2)
-> s.map (@ m v =>
let [v1 v2] => v;
f (v1 { == s.end => 0 }) (v2 { == s.end => 0 });
)
-> s.collect
;

let smath f scalar vector => a.stream vector -> s.map (f scalar) -> s.collect;

let v+ => vmath +;
let v- => vmath -;

let s* => smath *;
let s/ => smath /;```

Example Usage:

```v+ [1; 2; 3] [2; 5; 2] -- io.writeln io.stdout;
s* 3 [1; 5; 10] -- io.writeln io.stdout;```
Output:
```[3; 7; 5]
[3; 15; 30]```

## Wren

```class Vector2D {
construct new(x, y) {
_x = x
_y = y
}

static fromPolar(r, theta) { new(r * theta.cos, r * theta.sin) }

x { _x }
y { _y }

+(v) { Vector2D.new(_x + v.x, _y + v.y) }
-(v) { Vector2D.new(_x - v.x, _y - v.y) }
*(s) { Vector2D.new(_x * s,   _y * s) }
/(s) { Vector2D.new(_x / s,   _y / s) }

toString { "(%(_x), %(_y))" }
}

var times = Fn.new { |d, v| v * d }

var v1 = Vector2D.new(5, 7)
var v2 = Vector2D.new(2, 3)
var v3 = Vector2D.fromPolar(2.sqrt, Num.pi / 4)
System.print("v1 = %(v1)")
System.print("v2 = %(v2)")
System.print("v3 = %(v3)")
System.print()
System.print("v1 + v2 = %(v1 + v2)")
System.print("v1 - v2 = %(v1 - v2)")
System.print("v1 * 11 = %(v1 * 11)")
System.print("11 * v2 = %(times.call(11, v2))")
System.print("v1 / 2  = %(v1 /  2)")
```
Output:
```v1 = (5, 7)
v2 = (2, 3)
v3 = (1, 1)

v1 + v2 = (7, 10)
v1 - v2 = (3, 4)
v1 * 11 = (55, 77)
11 * v2 = (22, 33)
v1 / 2  = (2.5, 3.5)
```

## XPL0

```func real VAdd(A, B, C);        \Add two 2D vectors
real A, B, C;                   \A:= B + C
[A(0):= B(0) + C(0);            \VAdd(A, A, C) => A:= A + C
A(1):= B(1) + C(1);
return A;
];

func real VSub(A, B, C);        \Subtract two 2D vectors
real A, B, C;                   \A:= B - C
[A(0):= B(0) - C(0);            \VSub(A, A, C) => A:= A - C
A(1):= B(1) - C(1);
return A;
];

func real VMul(A, B, S);        \Multiply 2D vector by a scalar
real A, B, S;                   \A:= B * S
[A(0):= B(0) * S;               \VMul(A, A, S) => A:= A * S
A(1):= B(1) * S;
return A;
];

func real VDiv(A, B, S);        \Divide 2D vector by a scalar
real A, B, S;                   \A:= B / S
[A(0):= B(0) / S;               \VDiv(A, A, S) => A:= A / S
A(1):= B(1) / S;
return A;
];

proc VOut(Dev, A);              \Output a 2D vector number to specified device
int  Dev; real A;               \e.g: Format(1,1);  (-1.5, 0.3)
[ChOut(Dev, ^();
RlOut(Dev, A(0));
Text(Dev, ", ");
RlOut(Dev, A(1));
ChOut(Dev, ^));
];

proc Polar2Rect(@X, @Y, Ang, Dist);     \Return rectangular coordinates
real X, Y, Ang, Dist;
[X(0):= Dist*Cos(Ang);
Y(0):= Dist*Sin(Ang);
];      \Polar2Rect

real V0(2), V1, V2, V3(2);
def  Pi = 3.14159265358979323846;
[Format(1, 1);
V1:= [5., 7.];
V2:= [2., 3.];
Polar2Rect(@V3(0), @V3(1), Pi/4., sqrt(2.));
Text(0, "V1 = ");  VOut(0, V1);  CrLf(0);
Text(0, "V2 = ");  VOut(0, V2);  CrLf(0);
Text(0, "V3 = ");  VOut(0, V3);  CrLf(0);
CrLf(0);
Text(0, "V1 + V2 = ");  VOut(0, VAdd(V0, V1, V2 ));  CrLf(0);
Text(0, "V1 - V2 = ");  VOut(0, VSub(V0, V1, V2 ));  CrLf(0);
Text(0, "V1 * 11 = ");  VOut(0, VMul(V0, V1, 11.));  CrLf(0);
Text(0, "11 * V2 = ");  VOut(0, VMul(V0, V2, 11.));  CrLf(0);
Text(0, "V1 / 2  = ");  VOut(0, VDiv(V0, V1, 2. ));  CrLf(0);
]```
Output:
```V1 = (5.0, 7.0)
V2 = (2.0, 3.0)
V3 = (1.0, 1.0)

V1 + V2 = (7.0, 10.0)
V1 - V2 = (3.0, 4.0)
V1 * 11 = (55.0, 77.0)
11 * V2 = (22.0, 33.0)
V1 / 2  = (2.5, 3.5)
```

## Yabasic

Translation of: Ring
```dim vect1(2)
vect1(1) = 5 : vect1(2) = 7
dim vect2(2)
vect2(1) = 2 : vect2(2) = 3
dim vect3(arraysize(vect1(),1))

for n = 1 to arraysize(vect1(),1)
vect3(n) = vect1(n) + vect2(n)
next n
print "[", vect1(1), ", ", vect1(2), "] + [", vect2(1), ", ", vect2(2), "] = ";
showarray(vect3)

for n = 1 to arraysize(vect1(),1)
vect3(n) = vect1(n) - vect2(n)
next n
print "[", vect1(1), ", ", vect1(2), "] - [", vect2(1), ", ", vect2(2), "] = ";
showarray(vect3)

for n = 1 to arraysize(vect1(),1)
vect3(n) = vect1(n) * 11
next n
print "[", vect1(1), ", ", vect1(2), "] * ", 11, "     = ";
showarray(vect3)

for n = 1 to arraysize(vect1(),1)
vect3(n) = vect1(n) / 2
next n
print "[", vect1(1), ", ", vect1(2), "] / ", 2, "      = ";
showarray(vect3)
end

sub showarray(vect3)
print "[";
svect\$ = ""
for n = 1 to arraysize(vect3(),1)
svect\$ = svect\$ + str\$(vect3(n)) + ", "
next n
svect\$ = left\$(svect\$, len(svect\$) - 2)
print svect\$;
print "]"
end sub```
Output:
```[5, 7] + [2, 3] = [7, 10]
[5, 7] - [2, 3] = [3, 4]
[5, 7] *  11    = [55, 77]
[5, 7] /  2     = [2.5, 3.5]```

## zkl

This uses polar coordinates for everything (radians for storage, degrees for i/o), converting to (x,y) on demand. Math is done in place rather than generating a new vector. Using the builtin polar/rectangular conversions keeps the vectors normalized.

```class Vector{
var length,angle;  // polar coordinates, radians
fcn init(length,angle){  // angle in degrees
self.length,self.angle = vm.arglist.apply("toFloat");
}
fcn toXY{ length.toRectangular(angle) }
// math is done in place
x1,y1:=toXY(); x2,y2:=vector.toXY();
length,angle=(x1+x2).toPolar(y1+y2);
self
}
fcn __opSub(vector){
x1,y1:=toXY(); x2,y2:=vector.toXY();
length,angle=(x1-x2).toPolar(y1-y2);
self
}
fcn __opMul(len){ length*=len; self }
fcn __opDiv(len){ length/=len; self }
fcn print(msg=""){
#<<<
"Vector%s:
Length: %f
Angle:  %f\Ub0;
X: %f
Y: %f"
#<<<
.fmt(msg,length,angle.toDeg(),length.toRectangular(angle).xplode())
.println();
}
fcn toString{ "Vector(%f,%f\Ub0;)".fmt(length,angle.toDeg()) }
}```
```Vector(2,45).println();
Vector(2,45).print(" create");
(Vector(2,45) * 2).print(" *");
(Vector(4,90) / 2).print(" /");
(Vector(2,45) + Vector(2,45)).print(" +");
(Vector(4,45) - Vector(2,45)).print(" -");```
Output:
```Vector(2.000000,45.000000°)
Vector create:
Length: 2.000000
Angle:  45.000000°
X: 1.414214
Y: 1.414214
Vector *:
Length: 4.000000
Angle:  45.000000°
X: 2.828427
Y: 2.828427
Vector /:
Length: 2.000000
Angle:  90.000000°
X: 0.000000
Y: 2.000000
Vector +:
Length: 4.000000
Angle:  45.000000°
X: 2.828427
Y: 2.828427
Vector -:
Length: 2.000000
Angle:  45.000000°
X: 1.414214
Y: 1.414214
```