# Roman numerals/Encode

Roman numerals/Encode
You are encouraged to solve this task according to the task description, using any language you may know.

Create a function taking a positive integer as its parameter and returning a string containing the Roman numeral representation of that integer. Modern Roman numerals are written by expressing each digit separately, starting with the left most digit and skipping any digit with a value of zero.

In Roman numerals:

• 1990 is rendered: 1000=M, 900=CM, 90=XC; resulting in MCMXC
• 2008 is written as 2000=MM, 8=VIII; or MMVIII
• 1666 uses each Roman symbol in descending order: MDCLXVI

## 11l

Translation of: Python
V anums = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
V rnums = ‘M CM D CD C XC L XL X IX V IV I’.split(‘ ’)

F to_roman(=x)
V ret = ‘’
L(a, r) zip(:anums, :rnums)
(V n, x) = divmod(x, a)
ret ‘’= r * n
R ret

V test = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40,
50, 60, 69, 70, 80, 90, 99, 100, 200, 300, 400, 500, 600, 666, 700, 800, 900, 1000,
1009, 1444, 1666, 1945, 1997, 1999, 2000, 2008, 2010, 2011, 2500, 3000, 3999]
L(val) test
print(val‘ - ’to_roman(val))

## 8080 Assembly

		org	100h
jmp	test
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Takes a 16-bit integer in HL, and stores it
;; as a 0-terminated string starting at BC.
;; On exit, all registers destroyed; BC pointing at
;; end of string.
mkroman:	push	h	; put input on stack
lxi	h,mkromantab
mkromandgt:	mov	a,m	; scan ahead to next entry
ana	a
inx	h
jnz	mkromandgt
xthl		; load number
mov	a,h	; if zero, we're done
ora	l
jz	mkromandone
xthl		; load next entry from table
mov	e,m	; de = number
inx	h
mov	d,m
inx	h
xthl		; load number
xra	a	; find how many we need
subtract:	inr	a	; with trial subtraction
jc	subtract
push	psw	; keep counter
mov	a,d	; we subtracted one too many
cma		; so we need to add one back
mov	d,a
mov	a,e
cma
mov	e,a
inx	d
pop	d	; restore counter (into D)
xthl		; load table pointer
stringouter:	dcr	d	; do we need to include one?
jz	mkromandgt
push	h	; keep string location
stringinner:	mov	a,m	; copy string into target
stax	b
ana	a	; done yet?
jz	stringdone
inx	h
inx	b	; copy next character
jmp	stringinner
stringdone:	pop	h	; restore string location
jmp	stringouter
mkromandone:	pop	d	; remove temporary variable from stack
ret
mkromantab:	db	0
db	18h,0fch,'M',0		; The value for each entry
db	7ch,0fch,'CM',0		; is stored already negated
db	0ch,0feh,'D',0		; so that it can be immediately
db	9ch,0ffh,'C',0		; This also has the convenient
db	0a6h,0ffh,'XC',0	; property of not having any
db	0ceh,0ffh,'L',0		; zero bytes except the string
db	0d8h,0ffh,'XL',0	; and row terminators.
db	0f6h,0ffh,'X',0
db	0f7h,0ffh,'IX',0
db	0fbh,0ffh,'V',0
db	0fch,0ffh,'IV',0
db	0ffh,0ffh,'I',0
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;; Test code
test:		mvi	c,10	; read string from console
lxi	d,dgtbufdef
call	5
lxi	h,0	; convert to integer
lxi	b,dgtbuf
ana	a
jz	convert
dad	h	; hl *= 10
mov	d,h
mov	e,l
sui	'0'
mov	e,a
mvi	d,0
inx	b
convert:	lxi	b,romanbuf	; convert to roman
call	mkroman
mvi	a,'$' ; switch string terminator stax b mvi c,9 ; output result lxi d,romanbuf jmp 5 nl: db 13,10,'$'
dgtbufdef:	db	5,0
dgtbuf:		ds	6
romanbuf:

## 8086 Assembly

### Main and Supporting Functions

The main program and test values: 70,1776,2021,3999,4000

	mov ax,0070h
call EncodeRoman
mov si,offset StringRam
call PrintString
call NewLine

mov ax,1776h
call EncodeRoman
mov si,offset StringRam
call PrintString
call NewLine

mov ax,2021h
call EncodeRoman
mov si,offset StringRam
call PrintString
call NewLine

mov ax,3999h
call EncodeRoman
mov si,offset StringRam
call PrintString
call NewLine

mov ax,4000h
call EncodeRoman
mov si,offset StringRam

ReturnToDos     ;macro that calls the int that exits dos


The EncodeRoman routine:

;ROMAN NUMERALS MODULE

EncodeRoman:
;takes a BCD value in AX and stores its Roman numeral equivalent in ram.

call UnpackBCD

cmp dh,03h
jng continue_EncodeRoman
;roman numerals only go up to 3999.
jmp errorhandler_encodeRoman_inputTooBig
continue_EncodeRoman:
mov si,offset StringRam
;using SI as destination of roman numerals.
push ax
push cx
mov ch,0
mov cl,dh					;loop counter
cmp dh,0
jz skipThousands
encodeRoman_handleThousands:
mov al,"M"
mov [ds:si],al				;store in string ram
inc si
; call PrintChar
loop encodeRoman_handleThousands
skipThousands:
pop cx
pop ax

encodeRoman_HandleHundreds:
pushall
mov bh,0
mov bl,dl  ;use bx as an offset into Roman_Lookup_Master
SHL bl,1
SHL bl,1	;multiply by 2, we are indexing into a table with 4 bytes per row.
mov di,offset Roman_Lookup_Master
mov cx,4
getChar_Hundreds:
mov al,[bx+es:di] ;get first char index
push bx
push di
mov di,offset Roman_Hund
mov bl,al
mov al,[bx+es:di]
cmp al,0
jz skipNullChar_RomanHund
mov [ds:si],al	;store in ram
inc si
; call PrintChar
skipNullChar_RomanHund:
pop di
pop bx
inc di
loop getChar_Hundreds
popall

encodeRoman_HandleTens:
pushall
mov bh,0
mov bl,ah  ;use bx as an offset into Roman_Lookup_Master
SHL bl,1
SHL bl,1	;multiply by 2, we are indexing into a table with 4 bytes per row.
mov di,offset Roman_Lookup_Master
mov cx,4
getChar_Tens:
mov al,[bx+es:di] ;get first char index
push bx
push di
mov di,offset Roman_Tens
mov bl,al
mov al,[bx+es:di]
cmp al,0
jz skipNullChar_RomanTens
mov [ds:si],al	;store in ram
inc si
; call PrintChar
skipNullChar_RomanTens:
pop di
pop bx
inc di
loop getChar_Tens
popall

encodeRoman_HandleOnes:
pushall
mov bh,0
mov bl,al  ;use bx as an offset into Roman_Lookup_Master
SHL bl,1
SHL bl,1	;multiply by 2, we are indexing into a table with 4 bytes per row.
mov di,offset Roman_Lookup_Master
mov cx,4
getChar_Ones:
mov al,[bx+es:di] ;get first char index
push bx
push di
mov di,offset Roman_Ones
mov bl,al
mov al,[bx+es:di]
cmp al,0
jz skipNullChar_RomanOnes
mov [ds:si],al	;store in ram
inc si
; call PrintChar
skipNullChar_RomanOnes:
pop di
pop bx
inc di
loop getChar_Ones
popall

mov al,0
mov [ds:si],al ;place a null terminator at the end of the string.
ret

errorhandler_encodeRoman_inputTooBig:
push ds
push ax
mov al,01h
mov byte ptr [ds:error_code],al
mov ax, offset EncodeRoman
mov word ptr [ds:error_routine],ax

mov si,offset Roman_Error
call PrintString
pop ax
pop ds
stc		;set carry, allowing program to branch if error occurred.
ret

Roman_Lookup_Master db 0,0,0,0	;0
db 0,0,0,1	;1
db 0,0,1,1	;2
db 0,1,1,1	;3
db 0,0,1,2	;4
db 0,0,0,2	;5
db 0,0,2,1	;6
db 0,2,1,1	;7
db 2,1,1,1	;8
db 0,0,1,3	;9

Roman_Ones	    db 0,"IVX"  ;the same pattern is used regardless of what power of 10 we're working with
Roman_Tens	    db 0,"XLC"
Roman_Hund	    db 0,"CDM"

Roman_Error	    db "ERROR: BAD INPUT",0

UnpackBCD:
;converts a "packed" BCD value in AX to an "unpacked" value in DX.AX
;DX is the high byte, AX is the low byte.
;CLOBBERS DX AND AX.
mov dx,0
mov dl,ah
mov ah,0
push cx
mov cl,4
rol dx,cl
;BEFORE: DX = 00XYh
;AFTER:  DX = 0XY0h
ror dl,cl	;DX = 0X0Yh

rol ax,cl
;BEFORE: AX = 00XYh
;AFTER:  AX = 0XY0h
ror al,cl	;AX = 0X0Yh
pop cx
ret


Macros used:

pushall macro
push ax
push bx
push cx
push dx
push ds
push es
push di
;I forgot SI in this macro, but once you add it in the code stops working! So I left it out.
endm

popall macro
pop di
pop es
pop ds
pop dx
pop cx
pop bx
pop ax
endm


### Output

Output:
LXX
MDCCLXXVI
MMXXI
MMMCMXCIX


## Action!

DEFINE PTR="CARD"
CARD ARRAY arabic=[1000 900 500 400 100 90 50 40 10 9 5 4 1]
PTR ARRAY roman(13)

PROC InitRoman()
roman(0)="M" roman(1)="CM" roman(2)="D" roman(3)="CD"
roman(4)="C" roman(5)="XC" roman(6)="L" roman(7)="XL"
roman(8)="X" roman(9)="IX" roman(10)="V" roman(11)="IV" roman(12)="I"
RETURN

PROC EncodeRomanNumber(CARD n CHAR ARRAY res)
BYTE i,len
CHAR ARRAY tmp

res(0)=0 len=0
FOR i=0 TO 12
DO
WHILE arabic(i)<=n
DO
tmp=roman(i)
SAssign(res,tmp,len+1,len+1+tmp(0))
len==+tmp(0)
n==-arabic(i)
OD
OD
res(0)=len
RETURN

PROC Main()
CARD ARRAY data=[1990 2008 5555 1666 3888 3999]
BYTE i
CHAR ARRAY r(20)

InitRoman()
FOR i=0 TO 5
DO
EncodeRomanNumber(data(i),r)
PrintF("%U=%S%E",data(i),r)
OD
RETURN
Output:
1990=MCMXC
2008=MMVIII
5555=MMMMMDLV
1666=MDCLXVI
3888=MMMDCCCLXXXVIII
3999=MMMCMXCIX


## ActionScript

function arabic2roman(num:Number):String {
var lookup:Object = {M:1000, CM:900, D:500, CD:400, C:100, XC:90, L:50, XL:40, X:10, IX:9, V:5, IV:4, I:1};
var roman:String = "", i:String;
for (i in lookup) {
while (num >= lookup[i]) {
roman += i;
num -= lookup[i];
}
}
return roman;
}
trace("1990 in roman is " + arabic2roman(1990));
trace("2008 in roman is " + arabic2roman(2008));
trace("1666 in roman is " + arabic2roman(1666));

Output:
1990 in roman is MCMXC
2008 in roman is MMVIII
1666 in roman is MDCLXVI


And the reverse:

function roman2arabic(roman:String):Number {
var romanArr:Array = roman.toUpperCase().split('');
var lookup:Object = {I:1, V:5, X:10, L:50, C:100, D:500, M:1000};
var num:Number = 0, val:Number = 0;
while (romanArr.length) {
val = lookup[romanArr.shift()];
num += val * (val < lookup[romanArr[0]] ? -1 : 1);
}
return num;
}
trace("MCMXC in arabic is " + roman2arabic("MCMXC"));
trace("MMVIII in arabic is " + roman2arabic("MMVIII"));
trace("MDCLXVI in arabic is " + roman2arabic("MDCLXVI"));

Output:
MCMXC in arabic is 1990
MMVIII in arabic is 2008
MDCLXVI in arabic is 1666

with Ada.Text_IO;  use Ada.Text_IO;

procedure Roman_Numeral_Test is
function To_Roman (Number : Positive) return String is
subtype Digit is Integer range 0..9;
function Roman (Figure : Digit; I, V, X : Character) return String is
begin
case Figure is
when 0 => return "";
when 1 => return "" & I;
when 2 => return I & I;
when 3 => return I & I & I;
when 4 => return I & V;
when 5 => return "" & V;
when 6 => return V & I;
when 7 => return V & I & I;
when 8 => return V & I & I & I;
when 9 => return I & X;
end case;
end Roman;
begin
pragma Assert (Number >= 1 and Number < 4000);
return
Roman (Number / 1000,       'M', ' ', ' ') &
Roman (Number / 100 mod 10, 'C', 'D', 'M') &
Roman (Number / 10 mod 10,  'X', 'L', 'C') &
Roman (Number mod 10,       'I', 'V', 'X');
end To_Roman;
begin
Put_Line (To_Roman (1999));
Put_Line (To_Roman (25));
Put_Line (To_Roman (944));
end Roman_Numeral_Test;

Output:
 MCMXCIX
XXV
CMXLIV


## ALGOL 68

Works with: ALGOL 68 version Revision 1 - no extensions to language used
Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny
Works with: ELLA ALGOL 68 version Any (with appropriate job cards) - tested with release 1.8-8d
[]CHAR roman =        "MDCLXVmdclxvi"; # UPPERCASE for thousands #
[]CHAR adjust roman = "CCXXmmccxxii";
[]INT arabic =       (1000000, 500000, 100000, 50000, 10000, 5000, 1000, 500, 100, 50, 10, 5, 1);
[]INT adjust arabic = (100000, 100000,  10000, 10000,  1000, 1000,  100, 100,  10, 10,  1, 1, 0);

PROC arabic to roman = (INT dclxvi)STRING: (
INT in := dclxvi; # 666 #
STRING out := "";
FOR scale TO UPB roman WHILE in /= 0 DO
INT multiples = in OVER arabic[scale];
in -:= arabic[scale] * multiples;
out +:= roman[scale] * multiples;
IF in >= -adjust arabic[scale] + arabic[scale] THEN
in -:= -adjust arabic[scale] + arabic[scale];
out +:=  adjust roman[scale] +  roman[scale]
FI
OD;
out
);

main:(
[]INT test = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25,30,40,50,60,69,70,
80,90,99,100,200,300,400,500,600,666,700,800,900,1000,1009,1444,1666,1945,1997,1999,
2000,2008,2500,3000,4000,4999,5000,6666,10000,50000,100000,500000,1000000,max int);
FOR key TO UPB test DO
INT val = test[key];
print((val, " - ", arabic to roman(val), new line))
OD
)
Output:
(last example is manually wrapped)
         +1 - i
+2 - ii
+3 - iii
+4 - iv
+5 - v
+6 - vi
+7 - vii
+8 - viii
+9 - ix
+10 - x
+11 - xi
+12 - xii
+13 - xiii
+14 - xiv
+15 - xv
+16 - xvi
+17 - xvii
+18 - xviii
+19 - xix
+20 - xx
+25 - xxv
+30 - xxx
+40 - xl
+50 - l
+60 - lx
+69 - lxix
+70 - lxx
+80 - lxxx
+90 - xc
+99 - xcix
+100 - c
+200 - cc
+300 - ccc
+400 - cd
+500 - d
+600 - dc
+666 - dclxvi
+700 - dcc
+800 - dccc
+900 - cm
+1000 - m
+1009 - mix
+1444 - mcdxliv
+1666 - mdclxvi
+1945 - mcmxlv
+1997 - mcmxcvii
+1999 - mcmxcix
+2000 - mm
+2008 - mmviii
+2500 - mmd
+3000 - mmm
+4000 - mV
+4999 - mVcmxcix
+5000 - V
+6666 - Vmdclxvi
+10000 - X
+50000 - L
+100000 - C
+500000 - D
+1000000 - M
+2147483647 - MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM
MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMCDLXXXmmmdcxlvii

## ALGOL W

Works with: awtoc version any - tested with release Mon Apr 27 14:25:27 NZST 2009
BEGIN

PROCEDURE ROMAN (INTEGER VALUE NUMBER; STRING(15) RESULT CHARACTERS; INTEGER RESULT LENGTH);
COMMENT
Returns the Roman number of an integer between 1 and 3999.
"MMMDCCCLXXXVIII" (15 characters long) is the longest Roman number under 4000;
BEGIN
INTEGER PLACE, POWER;

PROCEDURE APPEND (STRING(1) VALUE C);
BEGIN CHARACTERS(LENGTH|1) := C; LENGTH := LENGTH + 1 END;

PROCEDURE I; APPEND(CASE PLACE OF ("I","X","C","M"));
PROCEDURE V; APPEND(CASE PLACE OF ("V","L","D"));
PROCEDURE X; APPEND(CASE PLACE OF ("X","C","M"));

ASSERT (NUMBER >= 1) AND (NUMBER < 4000);

CHARACTERS := "               ";
LENGTH := 0;
POWER := 1000;
PLACE := 4;
WHILE PLACE > 0 DO
BEGIN
CASE NUMBER DIV POWER + 1 OF BEGIN
BEGIN            END;
BEGIN I          END;
BEGIN I; I       END;
BEGIN I; I; I    END;
BEGIN I; V       END;
BEGIN V          END;
BEGIN V; I       END;
BEGIN V; I; I    END;
BEGIN V; I; I; I END;
BEGIN I; X       END
END;
NUMBER := NUMBER REM POWER;
POWER := POWER DIV 10;
PLACE := PLACE - 1
END
END ROMAN;

INTEGER I;
STRING(15) S;

ROMAN(1, S, I);    WRITE(S, I);
ROMAN(3999, S, I); WRITE(S, I);
ROMAN(3888, S, I); WRITE(S, I);
ROMAN(2009, S, I); WRITE(S, I);
ROMAN(405, S, I);  WRITE(S, I);
END.
Output:
I                           1
MMMCMXCIX                   9
MMMDCCCLXXXVIII            15
MMIX                        4
CDV                         3


## APL

Works with: Dyalog APL
toRoman←{
⍝ Digits and corresponding values
ds←((⊢≠⊃)⊆⊢)' M CM D CD C XC L XL X IX V IV I'
vs←1000, ,100 10 1∘.×9 5 4 1
⍝ Input ≤ 0 is invalid
⍵≤0:⎕SIGNAL 11
{   0=d←⊃⍸vs≤⍵:⍬    ⍝ Find highest digit in number
(d⊃ds),∇⍵-d⊃vs  ⍝ While one exists, add it and subtract from number
}⍵
}

Output:
      toRoman¨ 1990 2008 1666 2021
MCMXC  MMVIII  MDCLXVI  MMXXI 

## AppleScript

Translation of: JavaScript

(ES6 version)

(mapAccumL version)

------------------ ROMAN INTEGER STRINGS -----------------

-- roman :: Int -> String
on roman(n)
set kvs to {["M", 1000], ["CM", 900], ["D", 500], ¬
["CD", 400], ["C", 100], ["XC", 90], ["L", 50], ¬
["XL", 40], ["X", 10], ["IX", 9], ["V", 5], ¬
["IV", 4], ["I", 1]}

on |λ|(balance, kv)
set {k, v} to kv
set {q, r} to quotRem(balance, v)
if q > 0 then
{r, concat(replicate(q, k))}
else
{r, ""}
end if
end |λ|
end script

end roman

--------------------------- TEST -------------------------
on run

map(roman, [2016, 1990, 2008, 2000, 1666])

--> {"MMXVI", "MCMXC", "MMVIII", "MM", "MDCLXVI"}
end run

---------------- GENERIC LIBRARY FUNCTIONS ---------------

-- concat :: [[a]] -> [a] | [String] -> String
on concat(xs)
script append
on |λ|(a, b)
a & b
end |λ|
end script

if length of xs > 0 and ¬
class of (item 1 of xs) is string then
set unit to ""
else
set unit to {}
end if
foldl(append, unit, xs)
end concat

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl

-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map

-- 'The mapAccumL function behaves like a combination of map and foldl;
-- it applies a function to each element of a list, passing an
-- accumulating parameter from left to right, and returning a final
-- value of this accumulator together with the new list.' (see Hoogle)

-- mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
on mapAccumL(f, acc, xs)
script
on |λ|(a, x)
tell mReturn(f) to set pair to |λ|(item 1 of a, x)
[item 1 of pair, (item 2 of a) & {item 2 of pair}]
end |λ|
end script

foldl(result, [acc, {}], xs)
end mapAccumL

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn

--  quotRem :: Integral a => a -> a -> (a, a)
on quotRem(m, n)
{m div n, m mod n}
end quotRem

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length

-- replicate :: Int -> a -> [a]
on replicate(n, a)
set out to {}
if n < 1 then return out
set dbl to {a}

repeat while (n > 1)
if (n mod 2) > 0 then set out to out & dbl
set n to (n div 2)
set dbl to (dbl & dbl)
end repeat
return out & dbl
end replicate

-- snd :: (a, b) -> b
on snd(xs)
if class of xs is list and length of xs = 2 then
item 2 of xs
else
missing value
end if
end snd

Output:
{"MMXVI", "MCMXC", "MMVIII", "MM", "MDCLXVI"}

## Arturo

Translation of: Nim
nums: [[1000 "M"] [900 "CM"] [500 "D"] [400 "CD"] [100 "C"] [90 "XC"]
[50 "L"] [40 "XL"] [10 "X"] [9 "IX"] [5 "V"] [4 "IV"] [1 "I"])

toRoman: function [x][
ret: ""
idx: 0
initial: x
loop nums 'num [
d: num\0
l: num\1

i: 0
while [i<initial/d] [
ret: ret ++ l
i: i+1
]

initial: mod initial d
]
return ret
]

loop [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 40
50 60 69 70 80 90 99 100 200 300 400 500 600 666 700 800 900
1000 1009 1444 1666 1945 1997 1999 2000 2008 2010 2011 2500
3000 3999] 'n
-> print [n "->" toRoman n]

Output:
1 -> I
2 -> II
3 -> III
4 -> IV
5 -> V
6 -> VI
7 -> VII
8 -> VIII
9 -> IX
10 -> X
11 -> XI
12 -> XII
13 -> XIII
14 -> XIV
15 -> XV
16 -> XVI
17 -> XVII
18 -> XVIII
19 -> XIX
20 -> XX
25 -> XXV
30 -> XXX
40 -> XL
50 -> L
60 -> LX
69 -> LXIX
70 -> LXX
80 -> LXXX
90 -> XC
99 -> XCIX
100 -> C
200 -> CC
300 -> CCC
400 -> CD
500 -> D
600 -> DC
666 -> DCLXVI
700 -> DCC
800 -> DCCC
900 -> CM
1000 -> M
1009 -> MIX
1444 -> MCDXLIV
1666 -> MDCLXVI
1945 -> MCMXLV
1997 -> MCMXCVII
1999 -> MCMXCIX
2000 -> MM
2008 -> MMVIII
2010 -> MMX
2011 -> MMXI
2500 -> MMD
3000 -> MMM
3999 -> MMMCMXCIX

## AutoHotkey

Translation of: C++
MsgBox % stor(444)

stor(value)
{
romans = M,CM,D,CD,C,XC,L,XL,X,IX,V,IV,I
M := 1000
CM := 900
D := 500
CD := 400
C := 100
XC := 90
L := 50
XL := 40
X := 10
IX := 9
V := 5
IV := 4
I := 1
Loop, Parse, romans, ,
{
While, value >= %A_LoopField%
{
result .= A_LoopField
value := value - (%A_LoopField%)
}
}
Return result . "O"
}


## Autolisp

(defun c:roman() (romanNumber (getint "\n Enter number > "))
(defun romanNumber (n / uni dec hun tho nstr strlist nlist rom)
(if (and (> n 0) (<= n 3999))
(progn
(setq
UNI (list "" "I" "II" "III" "IV" "V" "VI" "VII" "VIII" "IX")
DEC (list "" "X" "XX" "XXX" "XL" "L" "LX" "LXX" "LXXX" "XC")
HUN (list "" "C" "CC" "CCC" "CD" "D" "DC" "DCC" "DCCC" "CM")
THO (list "" "M" "MM" "MMM")
nstr (itoa n)
)
(while (> (strlen nstr) 0) (setq strlist (append strlist (list (substr nstr 1 1))) nstr (substr nstr 2 (strlen nstr))))
(setq nlist (mapcar 'atoi strlist))
(cond
((> n 999)(setq rom(strcat(nth (car nlist) THO)(nth (cadr nlist) HUN)(nth (caddr nlist) DEC) (nth (last nlist)UNI ))))
((and (> n 99)(<= n 999))(setq rom(strcat (nth (car nlist) HUN)(nth (cadr nlist) DEC) (nth (last nlist)UNI ))))
((and (> n 9)(<= n 99))(setq rom(strcat (nth (car nlist) DEC) (nth (last nlist)UNI ))))
((<= n 9)(setq rom(nth (last nlist)UNI)))
)
)
(princ "\nNumber out of range!")
)
rom
)
Output:
1577 "MDLXXVII"
3999 "MMMCMXCIX"
888 "DCCCLXXXVIII"
159 "CLIX"


## AWK

# syntax: GAWK -f ROMAN_NUMERALS_ENCODE.AWK
BEGIN {
leng = split("1990 2008 1666",arr," ")
for (i=1; i<=leng; i++) {
n = arr[i]
printf("%s = %s\n",n,dec2roman(n))
}
exit(0)
}
function dec2roman(number,  v,w,x,y,roman1,roman10,roman100,roman1000) {
number = int(number) # force to integer
if (number < 1 || number > 3999) { # number is too small | big
return
}
split("I II III IV V VI VII VIII IX",roman1," ")   # 1 2 ... 9
split("X XX XXX XL L LX LXX LXXX XC",roman10," ")  # 10 20 ... 90
split("C CC CCC CD D DC DCC DCCC CM",roman100," ") # 100 200 ... 900
split("M MM MMM",roman1000," ")                    # 1000 2000 3000
v = (number - (number % 1000)) / 1000
number = number % 1000
w = (number - (number % 100)) / 100
number = number % 100
x = (number - (number % 10)) / 10
y = number % 10
return(roman1000[v] roman100[w] roman10[x] roman1[y])
}

Output:
1990 = MCMXC
2008 = MMVIII
1666 = MDCLXVI


## BASIC

### Applesoft BASIC

 1 N = 1990: GOSUB 5: PRINT N" = "V$2 N = 2008: GOSUB 5: PRINT N" = "V$
3 N = 1666: GOSUB 5: PRINT N" = "V$; 4 END 5 V = N:V$ = "": FOR I = 0 TO 12: FOR L = 1 TO 0 STEP 0:A =  VAL ( MID$("1E3900500400100+90+50+40+10+09+05+04+01",I * 3 + 1,3)) 6 L = (V - A) > = 0:V$ = V$+ MID$ ("M.CMD.CDC.XCL.XLX.IXV.IVI",I * 2 + 1,(I -  INT (I / 2) * 2 + 1) * L):V = V - A * L: NEXT L,I
7  RETURN


### ASIC

Translation of: DWScript
REM Roman numerals/Encode
DIM Weights(12)
DIM Symbols$(12) DATA 1000, "M", 900, "CM", 500, "D", 400, "CD", 100, "C", 90, "XC", 50, "L" DATA 40, "XL", 10, "X", 9, "IX", 5, "V", 4, "IV", 1, "I" REM 3888 or MMMDCCCLXXXVIII (15 chars) is the longest string properly encoded REM with these symbols. FOR J = 0 TO 12 READ Weights(J) READ Symbols$(J)
NEXT J

AValue = 1990
GOSUB ToRoman:
PRINT Roman$REM MCMXC AValue = 2022 GOSUB ToRoman: PRINT Roman$
REM MMXXII
AValue = 3888
GOSUB ToRoman:
PRINT Roman$REM MMMDCCCLXXXVIII END ToRoman: REM Result: Roman$
Roman$= "" I = 0 Loop: IF (I > 12 THEN ExitToRoman: IF AValue <= 0 THEN ExitToRoman: WHILE AValue >= Weights(I) Roman$ = Roman$+ Symbols$(I)
AValue = AValue - Weights(I)
WEND
I = I + 1
GOTO Loop:
ExitToRoman:
RETURN


### BaCon

OPTION BASE 1

GLOBAL roman$[] = { "M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I" } GLOBAL number[] = { 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1 } FUNCTION toroman$(value)

LOCAL result$DOTIMES UBOUND(number) WHILE value >= number[_] result$ = result$& roman$[_]
DECR value, number[_]
WEND
DONE

RETURN result$ENDFUNC PRINT toroman$(1990)
PRINT toroman$(2008) PRINT toroman$(1666)
Output:
MCMXC
MMVIII
MDCLXVI


### BASIC256

Works with: BASIC256

print 1666+" = "+convert$(1666) print 2008+" = "+convert$(2008)
print 1001+" = "+convert$(1001) print 1999+" = "+convert$(1999)

function convert$(value) convert$=""
arabic = {1000, 900, 500, 400, 100, 90, 50,  40,  10,  9,  5,   4,  1 }
roman$= {"M", "CM", "D","CD", "C","XC","L","XL","X","IX","V","IV","I"} for i = 0 to 12 while value >= arabic[i] convert$ += roman$[i] value = value - arabic[i] end while next i end function Output: 1666 = MDCLXVI 2008 = MMVIII 1001 = MI 1999 = MCMXCIX  ### BBC BASIC  PRINT ;1999, FNroman(1999) PRINT ;2012, FNroman(2012) PRINT ;1666, FNroman(1666) PRINT ;3888, FNroman(3888) END DEF FNroman(n%) LOCAL i%, r$, arabic%(), roman$() DIM arabic%(12), roman$(12)
arabic%() = 1,   4,   5,   9,  10,  40,  50,  90, 100, 400, 500, 900,1000
roman$() = "I","IV", "V","IX", "X","XL", "L","XC", "C","CD", "D","CM", "M" FOR i% = 12 TO 0 STEP -1 WHILE n% >= arabic%(i%) r$ += roman$(i%) n% -= arabic%(i%) ENDWHILE NEXT = r$

Output:
1999      MCMXCIX
2012      MMXII
1666      MDCLXVI
3888      MMMDCCCLXXXVIII


### Commodore BASIC

Works with: Commodore BASIC version 7.0

C-128 version:

100 DIM RN$(12),NV(12) 110 FOR I=0 TO 12 120 : READ RN$(I), NV(I)
130 NEXT I
140 DATA M,1000, CM,900, D,500, CD,400
150 DATA C, 100, XC, 90, L, 50, XL, 40
160 DATA X,  10, IX,  9, V,  5, IV,  4
170 DATA I,   1
180 PRINT CHR$(19);CHR$(19);CHR$(147);CHR$(18);
190 PRINT "*****    ROMAN NUMERAL ENCODER     *****";CHR$(27);"T" 200 DO 210 : PRINT "ENTER NUMBER (0 TO QUIT):"; 220 : OPEN 1,0:INPUT#1,AN$:CLOSE 1:PRINT
230 : AN=VAL(AN$):IF AN=0 THEN EXIT 240 : RN$=""
250 : DO WHILE AN > 0
260 :   FOR I=0 TO 12
270 :     IF AN >= NV(I) THEN BEGIN
280 :       RN$= RN$+ RN$(I) 290 : AN = AN - NV(I) 300 : GOTO 330 310 : BEND 320 : NEXT I 330 : LOOP 340 : PRINT RN$;CHR$(13) 350 LOOP  Works with: Commodore BASIC version 3.5 C-16/116/Plus-4 version (BASIC 3.5 has DO/LOOP but not BEGIN/BEND) 100 DIM RN$(12),NV(12)
110 FOR I=0 TO 12
120 : READ RN$(I), NV(I) 130 NEXT I 140 DATA M,1000, CM,900, D,500, CD,400 150 DATA C, 100, XC, 90, L, 50, XL, 40 160 DATA X, 10, IX, 9, V, 5, IV, 4 170 DATA I, 1 180 PRINT CHR$(19);CHR$(19);CHR$(147);CHR$(18); 190 PRINT "***** ROMAN NUMERAL ENCODER *****";CHR$(27);"T"
200 DO
210 : PRINT "ENTER NUMBER (0 TO QUIT):";
220 : OPEN 1,0:INPUT#1,AN$:CLOSE 1:PRINT 230 : AN=VAL(AN$):IF AN=0 THEN EXIT
240 : RN$="" 250 : DO WHILE AN > 0 260 : FOR I=0 TO 12 270 : IF AN < NV(I) THEN 320 280 : RN$ = RN$+ RN$(I)
290 :     AN = AN - NV(I)
300 :     I = 12
320 :   NEXT I
330 : LOOP
340 : PRINT RN$;CHR$(13)
350 LOOP

Works with: Commodore BASIC version 2.0

This version works on any Commodore, though the title banner should be adjusted to match the color and screen width of the particular machine.

100 DIM RN$(12),NV(12) 110 FOR I=0 TO 12 120 : READ RN$(I), NV(I)
130 NEXT I
140 DATA M,1000, CM,900, D,500, CD,400
150 DATA C, 100, XC, 90, L, 50, XL, 40
160 DATA X,  10, IX,  9, V,  5, IV,  4
170 DATA I,   1
180 PRINT CHR$(19);CHR$(19);CHR$(147);CHR$(18);
190 PRINT "*****    ROMAN NUMERAL ENCODER     *****";
200 REM BEGIN MAIN LOOP
210 : PRINT "NUMBER (0 TO QUIT):";
220 : OPEN 1,0:INPUT#1,AN$:CLOSE 1:PRINT 230 : AN=VAL(AN$):IF AN=0 THEN END
240 : RN$="" 250 : IF AN <= 0 THEN 340 260 : FOR I=0 TO 12 270 : IF AN < NV(I) THEN 320 280 : RN$ = RN$+ RN$(I)
290 :     AN = AN - NV(I)
300 :     I = 12
320 :   NEXT I
330 : GOTO 250
340 : PRINT RN$;CHR$(13)
350 GOTO 210


The output is the same for all the above versions:

Output:
*****    ROMAN NUMERAL ENCODER     *****

ENTER NUMBER (0 TO QUIT):2009
MMIX

ENTER NUMBER (0 TO QUIT):1666
MDCLXVI

ENTER NUMBER (0 TO QUIT):3888
MMMDCCCLXXXVIII

ENTER NUMBER (0 TO QUIT):0

READY.

### FreeBASIC

Works with: FreeBASIC
DIM SHARED arabic(0 TO 12) AS Integer  => {1000, 900, 500, 400, 100, 90, 50,  40,  10,  9,  5,   4,  1 }
DIM SHARED  roman(0 TO 12) AS String*2 => {"M", "CM", "D","CD", "C","XC","L","XL","X","IX","V","IV","I"}

FUNCTION toRoman(value AS Integer) AS String
DIM i 	AS Integer
DIM result  AS String

FOR i = 0 TO 12
DO WHILE value >= arabic(i)
result = result + roman(i)
value  = value - arabic(i)
LOOP
NEXT i
toRoman = result
END FUNCTION

'Testing
PRINT "2009 = "; toRoman(2009)
PRINT "1666 = "; toRoman(1666)
PRINT "3888 = "; toRoman(3888)

Output:
 2009 = MMIX
1666 = MDCLXVI
3888 = MMMDCCCLXXXVIII


Another solution:

' FB 1.05.0 Win64

Function romanEncode(n As Integer) As String
If n < 1 OrElse n > 3999 Then Return "" '' can only encode numbers in range 1 to 3999
Dim roman1(0 To 2) As String = {"MMM", "MM", "M"}
Dim roman2(0 To 8) As String = {"CM", "DCCC", "DCC", "DC", "D", "CD", "CCC", "CC", "C"}
Dim roman3(0 To 8) As String = {"XC", "LXXX", "LXX", "LX", "L", "XL", "XXX", "XX", "X"}
Dim roman4(0 To 8) As String = {"IX", "VIII", "VII", "VI", "V", "IV", "III", "II", "I"}
Dim As Integer thousands, hundreds, tens, units
thousands = n \ 1000
n Mod= 1000
hundreds = n \ 100
n Mod= 100
tens = n \ 10
units = n Mod 10
Dim roman As String = ""
If thousands > 0  Then roman += roman1(3 - thousands)
If hundreds > 0   Then roman += roman2(9 - hundreds)
If tens > 0       Then roman += roman3(9 - tens)
If units > 0      Then roman += roman4(9 - units)
Return roman
End Function

Dim a(2) As Integer = {1990, 2008, 1666}
For i As Integer = 0 To 2
Print a(i); " => "; romanEncode(a(i))
Next

Print
Print "Press any key to quit"
Sleep

Output:
 1990 => MCMXC
2008 => MMVIII
1666 => MDCLXVI


### FutureBasic

window 1

local fn DecimaltoRoman( decimal as short ) as Str15
short arabic(12)
Str15 roman(12)
long  i
Str15 result : result = ""

arabic(0) = 1000 : arabic(1) = 900 : arabic(2) = 500 : arabic(3) = 400
arabic(4) = 100  : arabic(5) = 90  : arabic(6) = 50  : arabic(7)  = 40
arabic(8) = 10   : arabic(9) = 9   : arabic(10) = 5  : arabic(11) = 4: arabic(12) = 1

roman(0) = "M" : roman(1) = "CM" : roman(2) = "D"  : roman(3)  = "CD"
roman(4) = "C" : roman(5) = "XC" : roman(6) = "L"  : roman(7)  = "XL"
roman(8) = "X" : roman(9) = "IX" : roman(10) = "V" : roman(11) = "IV" : roman(12) = "I"

for i = 0 to 12
while ( decimal >= arabic(i) )
result = result + roman(i)
decimal = decimal - arabic(i)
wend
next i
if result == "" then result = "Zepherium"
end fn = result

print "1990 = "; fn DecimaltoRoman( 1990 )
print "2008 = "; fn DecimaltoRoman( 2008 )
print "2016 = "; fn DecimaltoRoman( 2016 )
print "1666 = "; fn DecimaltoRoman( 1666 )
print "3888 = "; fn DecimaltoRoman( 3888 )
print "1914 = "; fn DecimaltoRoman( 1914 )
print "1000 = "; fn DecimaltoRoman( 1000 )
print " 513 = "; fn DecimaltoRoman(  513 )
print "  33 = "; fn DecimaltoRoman(   33 )

HandleEvents

Output:

1990 = MCMXC
2008 = MMVIII
2016 = MMXVI
1666 = MDCLXVI
3888 = MMMDCCCLXXXVIII
1914 = MCMXIV
1000 = M
513 = DXIII
33 = XXXIII


### IS-BASIC

100 PROGRAM "Roman.bas"
110 DO
120   PRINT :INPUT PROMPT "Enter an arabic number: ":N
130   IF N<1 THEN EXIT DO
140   PRINT TOROMAN$(N) 150 LOOP 160 DEF TOROMAN$(X)
170   IF X>3999 THEN
180     LET TOROMAN$="Too big." 190 EXIT DEF 200 END IF 210 RESTORE 220 LET SUM$=""
230   FOR I=1 TO 13
240     READ ARABIC,ROMAN$250 DO WHILE X>=ARABIC 260 LET SUM$=SUM$&ROMAN$
270       LET X=X-ARABIC
280     LOOP
290   NEXT
300   LET TOROMAN$=SUM$
310 END DEF
320 DATA 1000,"M",900,"CM",500,"D",400,"CD",100,"C",90,"XC"
330 DATA 50,"L",40,"XL",10,"X",9,"IX",5,"V",4,"IV",1,"I"

### Liberty BASIC

Works with: Just BASIC
    dim arabic( 12)
for i =0 to 12
arabic( i) =k
next i
data 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1

dim roman$( 12) for i =0 to 12 read k$
roman$( i) =k$
next i
data "M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"

print 2009, toRoman$( 2009) print 1666, toRoman$( 1666)
print 3888, toRoman$( 3888) end function toRoman$( value)
i       =0
result$="" for i = 0 to 12 while value >=arabic( i) result$ = result$+ roman$( i)
value   = value   - arabic( i)
wend
next i
toRoman$=result$
end function
2009          MMIX
1666          MDCLXVI
3888          MMMDCCCLXXXVIII


### Microsoft Small Basic

Translation of: DWScript
arabicNumeral = 1990
ConvertToRoman()
TextWindow.WriteLine(romanNumeral) 'MCMXC
arabicNumeral = 2018
ConvertToRoman()
TextWindow.WriteLine(romanNumeral) 'MMXVIII
arabicNumeral = 3888
ConvertToRoman()
TextWindow.WriteLine(romanNumeral) 'MMMDCCCLXXXVIII

Sub ConvertToRoman
weights[0] = 1000
weights[1] =  900
weights[2] =  500
weights[3] =  400
weights[4] =  100
weights[5] =   90
weights[6] =   50
weights[7] =   40
weights[8] =   10
weights[9] =    9
weights[10] =   5
weights[11] =   4
weights[12] =   1
symbols[0] = "M"
symbols[1] = "CM"
symbols[2] = "D"
symbols[3] = "CD"
symbols[4] = "C"
symbols[5] = "XC"
symbols[6] = "L"
symbols[7] = "XL"
symbols[8] = "X"
symbols[9] = "IX"
symbols[10] = "V"
symbols[11] = "IV"
symbols[12] = "I"
romanNumeral = ""
i = 0
While (i <= 12) And (arabicNumeral > 0)
While arabicNumeral >= weights[i]
romanNumeral = Text.Append(romanNumeral, symbols[i])
arabicNumeral = arabicNumeral - weights[i]
EndWhile
i = i + 1
EndWhile
EndSub
Output:
MCMXC
MMXVIII
MMMDCCCLXXXVIII


### Nascom BASIC

Translation of: DWScript
Works with: Nascom ROM BASIC version 4.7
10 REM Roman numerals/Encode
20 DIM WEIGHTS(12),SYMBOLS$(12) 30 FOR I=0 TO 12 40 READ WEIGHTS(I),SYMBOLS$(I)
50 NEXT I
60 DATA 1000,M,900,CM,500,D,400,CD,100,C,90,XC
70 DATA 50,L,40,XL,10,X,9,IX,5,V,4,IV,1,I
80 REM ** 3888 or MMMDCCCLXXXVIII (15 chars) is
90 REM    the longest string properly encoded
100 REM   with these symbols.
110 V=1990:GOSUB 500
120 PRINT ROMAN$:REM MCMXC 130 V=2022:GOSUB 500 140 PRINT ROMAN$:REM MMXXII
150 V=3888:GOSUB 500
160 PRINT ROMAN$:REM MMMDCCCLXXXVIII 170 END 490 REM ** Encode to roman 500 ROMAN$=""
510 I=0
520 IF I>12 OR V<=0 THEN RETURN
530 IF V<WEIGHTS(I) THEN 570
540 ROMAN$=ROMAN$+SYMBOLS$(I) 550 V=V-WEIGHTS(I) 560 GOTO 530 570 I=I+1 580 GOTO 520 590 RETURN  Output: MCMXC MMXXII MMMDCCCLXXXVIII  ### PowerBASIC Translation of: BASIC Works with: PB/Win version 8+ Works with: PB/CC version 5 FUNCTION toRoman(value AS INTEGER) AS STRING DIM arabic(0 TO 12) AS INTEGER DIM roman(0 TO 12) AS STRING ARRAY ASSIGN arabic() = 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1 ARRAY ASSIGN roman() = "M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I" DIM i AS INTEGER DIM result AS STRING FOR i = 0 TO 12 DO WHILE value >= arabic(i) result = result & roman(i) value = value - arabic(i) LOOP NEXT i toRoman = result END FUNCTION FUNCTION PBMAIN 'Testing ? "2009 = " & toRoman(2009) ? "1666 = " & toRoman(1666) ? "3888 = " & toRoman(3888) END FUNCTION ### PureBasic #SymbolCount = 12 ;0 based count DataSection denominations: Data.s "M","CM","D","CD","C","XC","L","XL","X","IX","V","IV","I" ;0-12 denomValues: Data.i 1000,900,500,400,100,90,50,40,10,9,5,4,1 ;values in decending sequential order EndDataSection ;-setup Structure romanNumeral symbol.s value.i EndStructure Global Dim refRomanNum.romanNumeral(#SymbolCount) Restore denominations For i = 0 To #SymbolCount Read.s refRomanNum(i)\symbol Next Restore denomValues For i = 0 To #SymbolCount Read refRomanNum(i)\value Next Procedure.s decRoman(n) ;converts a decimal number to a roman numeral Protected roman$, i

For i = 0 To #SymbolCount
Repeat
If n >= refRomanNum(i)\value
roman$+ refRomanNum(i)\symbol n - refRomanNum(i)\value Else Break EndIf ForEver Next ProcedureReturn roman$
EndProcedure

If OpenConsole()

PrintN(decRoman(1999)) ;MCMXCIX
PrintN(decRoman(1666)) ;MDCLXVI
PrintN(decRoman(25))   ;XXV
PrintN(decRoman(954))  ;CMLIV

Print(#CRLF$+ #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf


### QBasic

DIM SHARED arabic(0 TO 12)
DIM SHARED roman$(0 TO 12) FUNCTION toRoman$ (value)
LET result$= "" FOR i = 0 TO 12 DO WHILE value >= arabic(i) LET result$ = result$+ roman$(i)
LET value = value - arabic(i)
LOOP
NEXT i
toRoman$= result$
END FUNCTION

FOR i = 0 TO 12
READ arabic(i), roman$(i) NEXT i DATA 1000, "M", 900, "CM", 500, "D", 400, "CD", 100, "C", 90, "XC" DATA 50, "L", 40, "XL", 10, "X", 9, "IX", 5, "V", 4, "IV", 1, "I" 'Testing PRINT "2009 = "; toRoman$(2009)
PRINT "1666 = "; toRoman$(1666) PRINT "3888 = "; toRoman$(3888)


### Run BASIC

[loop]
input "Input value:";val$print roman$(val$) goto [loop] ' ------------------------------ ' Roman numerals ' ------------------------------ FUNCTION roman$(val$) a2r$ = "M:1000,CM:900,D:500,CD:400,C:100,XC:90,L:50,XL:40,X:10,IX:9,V:5,IV:4,I:1"
v = val(val$) for i = 1 to 13 r$  = word$(a2r$,i,",")
a   = val(word$(r$,2,":"))
while v >= a
roman$= roman$ + word$(r$,1,":")
v      = v - a
wend
next i
END FUNCTION

### TI-83 BASIC

PROGRAM:DEC2ROM
:"="→Str1
:Lbl ST
:ClrHome
:Disp "NUMBER TO"
:Disp "CONVERT:"
:Input A
:If fPart(A) or A≠abs(A)
:Then
:Goto PI
:End
:A→B
:While B≥1000
:Str1+"M"→Str1
:B-1000→B
:End
:If B≥900
:Then
:Str1+"CM"→Str1
:B-900→B
:End
:If B≥500
:Then
:Str1+"D"→Str1
:B-500→B
:End
:If B≥400
:Then
:Str1+"CD"?Str1
:B-400→B
:End
:While B≥100
:Str1+"C"→Str1
:B-100→B
:End
:If B≥90
:Then
:Str1+"XC"→Str1
:B-90→B
:End
:If B≥50
:Then
:Str1+"L"→Str1
:B-50→B
:End
:If B≥40
:Then
:Str1+"XL"→Str1
:B-40→B
:End
:While B≥10
:Str1+"X"→Str1
:B-10→B
:End
:If B≥9
:Then
:Str1+"IX"→Str1
:B-9→B
:End
:If B≥5
:Then
:Str1+"V"→Str1
:B-5→B
:End
:If B≥4
:Then
:Str1+"IV"→Str1
:B-4→B
:End
:While B>0
:Str1+"I"→Str1
:B-1→B
:End
:ClrHome
:Disp A
:Disp Str1
:Stop
:Lbl PI
:ClrHome
:Disp "THE NUMBER MUST"
:Disp "BE A POSITIVE"
:Disp "INTEGER."
:Pause
:Goto ST

### True BASIC

OPTION BASE 0
DIM arabic(12), roman$(12) FOR i = 0 to 12 READ arabic(i), roman$(i)
NEXT i

DATA 1000, "M", 900, "CM", 500, "D", 400, "CD", 100, "C", 90, "XC"
DATA 50, "L", 40, "XL", 10, "X", 9, "IX", 5, "V",  4, "IV", 1, "I"

FUNCTION toRoman$(value) LET result$ = ""
FOR i = 0 TO 12
DO WHILE value >= arabic(i)
LET result$= result$ & roman$(i) LET value = value - arabic(i) LOOP NEXT i LET toRoman$ = result$END FUNCTION !Testing PRINT "2009 = "; toRoman$(2009)
PRINT "1666 = "; toRoman$(1666) PRINT "3888 = "; toRoman$(3888)
END


### uBasic/4tH

Translation of: BBC Basic
Push 1, 4, 5, 9, 10, 40, 50, 90, 100, 400, 500, 900, 1000
' Initialize array
For i = 12 To 0 Step -1
@(i) = Pop()
Next
' Calculate and print numbers
Print 1999, : Proc _FNroman (1999)
Print 2014, : Proc _FNroman (2014)
Print 1666, : Proc _FNroman (1666)
Print 3888, : Proc _FNroman (3888)

End

_FNroman Param (1)                     ' ( n --)
Local (1)                            ' Define b@
' Try all numbers in array
For b@ = 12 To 0 Step -1
Do While a@ > @(b@) - 1            ' Several occurences of same number?
GoSub ((b@ + 1) * 10)            ' Print roman digit
a@ = a@ - @(b@)                  ' Decrement number
Loop
Next

Print                                ' Terminate line
Return
' Print roman digits
10 Print "I";  : Return
20 Print "IV"; : Return
30 Print "V";  : Return
40 Print "IX"; : Return
50 Print "X";  : Return
60 Print "XL"; : Return
70 Print "L";  : Return
80 Print "XC"; : Return
90 Print "C";  : Return
100 Print "CD"; : Return
110 Print "D";  : Return
120 Print "CM"; : Return
130 Print "M";  : Return


### Visual Basic

Translation of: BASIC
Function toRoman(value) As String
Dim arabic As Variant
Dim roman As Variant

arabic = Array(1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1)
roman = Array("M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I")

Dim i As Integer, result As String

For i = 0 To 12
Do While value >= arabic(i)
result = result + roman(i)
value = value - arabic(i)
Loop
Next i

toRoman = result
End Function

Sub Main()
End Sub


### XBasic

Translation of: DWScript
Works with: Windows XBasic
PROGRAM "romanenc"
VERSION "0.0000"

DECLARE FUNCTION Entry()
INTERNAL FUNCTION ToRoman$(aValue%%) ' 3888 or MMMDCCCLXXXVIII (15 chars) is the longest string properly encoded with these symbols. FUNCTION Entry() PRINT ToRoman$(1990) ' MCMXC
PRINT ToRoman$(2018) ' MMXVIII PRINT ToRoman$(3888) ' MMMDCCCLXXXVIII
END FUNCTION

FUNCTION ToRoman$(aValue%%) DIM weights%%[12] DIM symbols$[12]

weights%%[0] = 1000
weights%%[1] = 900
weights%%[2] = 500
weights%%[3] = 400
weights%%[4] = 100
weights%%[5] = 90
weights%%[6] = 50
weights%%[7] = 40
weights%%[8] = 10
weights%%[9] = 9
weights%%[10] = 5
weights%%[11] = 4
weights%%[12] = 1

symbols$[0] = "M" symbols$[1] = "CM"
symbols$[2] = "D" symbols$[3] = "CD"
symbols$[4] = "C" symbols$[5] = "XC"
symbols$[6] = "L" symbols$[7] = "XL"
symbols$[8] = "X" symbols$[9] = "IX"
symbols$[10] = "V" symbols$[11] = "IV"
symbols$[12] = "I" destination$ = ""
i@@ = 0
DO WHILE (i@@ <= 12) AND (aValue%% > 0)
DO WHILE aValue%% >= weights%%[i@@]
destination$= destination$ + symbols$[i@@] aValue%% = aValue%% - weights%%[i@@] LOOP i@@ = i@@ + 1 LOOP RETURN destination$
END FUNCTION
END PROGRAM

Output:
MCMXC
MMXVIII
MMMDCCCLXXXVIII


### Yabasic

roman$= "M, CM, D, CD, C, XC, L, XL, X, IX, V, IV, I" decml$ = "1000, 900, 500, 400, 100, 90, 50,  40,  10,  9,  5,   4,  1"

sub toRoman$(value) local res$, i, roman$(1), decml$(1), long

long = token(roman$, roman$(), ", ")
long = token(decml$, decml$(), ", ")

for i=1 to long
while(value >= val(decml$(i))) res$ = res$+ roman$(i)
value = value - val(decml$(i)) wend next i return res$
end sub

print 400, " ", toRoman$(400) print 1990, " ", toRoman$(1990)
print 2008, " ", toRoman$(2008) print 2009, " ", toRoman$(2009)
print 1666, " ", toRoman$(1666) print 3888, " ", toRoman$(3888)
//Output:
// 400 = CD
// 1990 = MCMXC
// 2008 = MMVIII
// 2009 = MMIX
// 1666 = MDCLXVI
// 3888 = MMMDCCCLXXXVIII

### ZX Spectrum Basic

 10 DATA 1000,"M",900,"CM"
20 DATA 500,"D",400,"CD"
30 DATA 100,"C",90,"XC"
40 DATA 50,"L",40,"XL"
50 DATA 10,"X",9,"IX"
60 DATA 5,"V",4,"IV",1,"I"
70 INPUT "Enter an arabic number: ";V
80 LET VALUE=V
90 LET V$="" 100 FOR I=0 TO 12 110 READ A,R$
120 IF V<A THEN GO TO 160
130 LET V$=V$+R$140 LET V=V-A 150 GO TO 120 160 NEXT I 170 PRINT VALUE;"=";V$


## Batch File

Translation of: BASIC
@echo off
setlocal enabledelayedexpansion

set cnt=0&for %%A in (1000,900,500,400,100,90,50,40,10,9,5,4,1) do (set arab!cnt!=%%A&set /a cnt+=1)
set cnt=0&for %%R in (M,CM,D,CD,C,XC,L,XL,X,IX,V,IV,I) do (set rom!cnt!=%%R&set /a cnt+=1)

::Testing
call :toRoman 2009
echo 2009 = !result!
call :toRoman 1666
echo 1666 = !result!
call :toRoman 3888
echo 3888 = !result!
pause>nul
exit/b 0

::The "function"...
:toRoman
set value=%1
set result=

for /l %%i in (0,1,12) do (
set a=%%i
)
goto :EOF

if !value! lss !arab%a%! goto :EOF
set result=!result!!rom%a%!
set /a value-=!arab%a%!

Output:
2009 = MMIX
1666 = MDCLXVI
3888 = MMMDCCCLXXXVIII

## BCPL

get "libhdr"

let toroman(n, v) = valof
$( let extract(n, val, rmn, v) = valof$(  while n >= val
$( n := n - val; for i=1 to rmn%0 do v%(v%0+i) := rmn%i v%0 := v%0 + rmn%0$)
resultis n
$) v%0 := 0 n := extract(n, 1000, "M", v) n := extract(n, 900, "CM", v) n := extract(n, 500, "D", v) n := extract(n, 400, "CD", v) n := extract(n, 100, "C", v) n := extract(n, 90, "XC", v) n := extract(n, 50, "L", v) n := extract(n, 40, "XL", v) n := extract(n, 10, "X", v) n := extract(n, 9, "IX", v) n := extract(n, 5, "V", v) n := extract(n, 4, "IV", v) n := extract(n, 1, "I", v) resultis v$)

let show(n) be
$( let v = vec 50 writef("%I4 = %S*N", n, toroman(n, v))$)

let start() be
$( show(1666) show(2008) show(1001) show(1999) show(3888) show(2021)$)
Output:
1666 = MDCLXVI
2008 = MMVIII
1001 = MI
1999 = MCMXCIX
3888 = MMMDCCCLXXXVIII
2021 = MMXXI

## Befunge

Reads the number to convert from standard input. No range validation is performed.

&>0\0>00p:#v_$>:#,_$ @
4-v >5+#:/#<\55+%:5/\5%:
vv_$9+00g+5g\00g8+>5g\00 g>\20p>:10p00g \#v _20gv > 2+ v^-1g01\g5+8<^ +9 _ IVXLCDM  Output: 1666 MDCLXVI ## BQN Translation of: APL ⟨ToRoman⇐R⟩ ← { ds ← 1↓¨(¯1+⊏⊸=)⊸⊔" I IV V IX X XL L XC C CD D CM M" vs ← 1e3∾˜ ⥊1‿4‿5‿9×⌜˜10⋆↕3 R ⇐ { 𝕨𝕊0: ""; (⊑⟜ds∾·𝕊𝕩-⊑⟜vs) 1-˜⊑vs⍋𝕩 } } Example use:  ToRoman¨ 1990‿2008‿1666‿2021 ⟨ "MCMXC" "MMVIII" "MDCLXVI" "MMXXI" ⟩  ## Bracmat ( ( encode = indian roman cifr tenfoldroman letter tenfold . !arg:#?indian & :?roman & whl ' ( @(!indian:#%?cifr ?indian) & :?tenfoldroman & whl ' ( !roman:%?letter ?roman & !tenfoldroman ( (I.X) (V.L) (X.C) (L.D) (C.M) : ? (!letter.?tenfold) ? & !tenfold | "*" ) : ?tenfoldroman ) & !tenfoldroman:?roman & ( !cifr:9&!roman I X:?roman | !cifr:~<4 & !roman (!cifr:4&I|) V : ?roman & !cifr+-5:?cifr & ~ | whl ' ( !cifr+-1:~<0:?cifr & !roman I:?roman ) ) ) & ( !roman:? "*" ?&~ | str$!roman
)
)
& 1990 2008 1666 3888 3999 4000:?NS
&   whl
' ( !NS:%?N ?NS
&   out
$( encode$!N:?K&!N !K
| str$("Can't convert " !N " to Roman numeral") ) ) ); Output: 1990 MCMXC 2008 MMVIII 1666 MDCLXVI 3888 MMMDCCCLXXXVIII 3999 MMMCMXCIX Can't convert 4000 to Roman numeral ## C ### Naive solution This solution is a smart but does not return the number written as a string. #include <stdio.h> int main() { int arabic[] = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1}; // There is a bug: "XL\0" is translated into sequence 58 4C 00 00, i.e. it is 4-bytes long... // Should be "XL" without \0 etc. // char roman[13][3] = {"M\0", "CM\0", "D\0", "CD\0", "C\0", "XC\0", "L\0", "XL\0", "X\0", "IX\0", "V\0", "IV\0", "I\0"}; int N; printf("Enter arabic number:\n"); scanf("%d", &N); printf("\nRoman number:\n"); for (int i = 0; i < 13; i++) { while (N >= arabic[i]) { printf("%s", roman[i]); N -= arabic[i]; } } return 0; }  Output: Enter arabic number: 215 Roman number: CCXV  ### Not thread-safe #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include <string.h> int RomanNumerals_parseInt(const char* string) { int value; return scanf("%u", &value) == 1 && value > 0 ? value : 0; } const char* RomanNumerals_toString(int value) { #define ROMAN_NUMERALS_MAX_OUTPUT_STRING_SIZE 64 static buffer[ROMAN_NUMERALS_MAX_OUTPUT_STRING_SIZE]; const static int maxValue = 5000; const static int minValue = 1; const static struct Digit { char string[4]; // It's better to use 4 than 3 (aligment). int value; } digits[] = { {"M", 1000}, {"CM", 900}, {"D", 500 }, {"CD", 400 }, {"C", 100 }, {"XC", 90 }, {"L", 50 }, {"XL", 40}, {"X", 10}, {"IX", 9}, {"V", 5}, {"IV", 4}, {"I", 1 }, {"?", 0} }; *buffer = '\0'; // faster than memset(buffer, 0, sizeof(buffer)); if (minValue <= value && value <= maxValue) { struct Digit* digit = &digits[0]; while (digit->value) { while (value >= digit->value) { value -= digit->value; // It is not necessary - total length would not be exceeded... // if (strlen(buffer) + strlen(digit->string) < sizeof(buffer)) strcat(buffer, digit->string); } digit++; } } return buffer; } int main(int argc, char* argv[]) { if (argc < 2) { // Blanks are needed for a consistient blackground on some systems. // BTW, puts append an extra newline at the end. // puts("Write given numbers as Roman numerals. \n" " \n" "Usage: \n" " roman n1 n2 n3 ... \n" " \n" "where n1 n2 n3 etc. are Arabic numerals\n"); int numbers[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1498, 2022 }; for (int i = 0; i < sizeof(numbers) / sizeof(int); i++) { printf("%4d = %s\n", numbers[i], RomanNumerals_toString(numbers[i])); } } else { for (int i = 1; i < argc; i++) { int number = RomanNumerals_parseInt(argv[i]); if (number) { puts(RomanNumerals_toString(number)); } else { puts("???"); } } } return 0; }  Output: Write given numbers as Roman numerals. Usage: roman n1 n2 n3 ... where n1 n2 n3 etc. are Arabic numerals 1 = I 2 = II 3 = III 4 = IV 5 = V 6 = VI 7 = VII 8 = VIII 9 = IX 10 = X 1498 = MCDXCVIII 2022 = MMXXII ## C# using System; class Program { static uint[] nums = { 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1 }; static string[] rum = { "M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I" }; static string ToRoman(uint number) { string value = ""; for (int i = 0; i < nums.Length && number != 0; i++) { while (number >= nums[i]) { number -= nums[i]; value += rum[i]; } } return value; } static void Main() { for (uint number = 1; number <= 1 << 10; number *= 2) { Console.WriteLine("{0} = {1}", number, ToRoman(number)); } } }  One-liner Mono REPL Func<int, string> toRoman = (number) => new Dictionary<int, string> { {1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"} }.Aggregate(new string('I', number), (m, _) => m.Replace(new string('I', _.Key), _.Value));  Output: 1 = I 2 = II 4 = IV 8 = VIII 16 = XVI 32 = XXXII 64 = LXIV 128 = CXXVIII 256 = CCLVI 512 = DXII 1024 = MXXIV  ## C++ ### C++ 98 #include <iostream> #include <string> std::string to_roman(int value) { struct romandata_t { int value; char const* numeral; }; static romandata_t const romandata[] = { 1000, "M", 900, "CM", 500, "D", 400, "CD", 100, "C", 90, "XC", 50, "L", 40, "XL", 10, "X", 9, "IX", 5, "V", 4, "IV", 1, "I", 0, NULL }; // end marker std::string result; for (romandata_t const* current = romandata; current->value > 0; ++current) { while (value >= current->value) { result += current->numeral; value -= current->value; } } return result; } int main() { for (int i = 1; i <= 4000; ++i) { std::cout << to_roman(i) << std::endl; } }  ### C++ 11 #include <iostream> #include <string> std::string to_roman(int x) { if (x <= 0) return "Negative or zero!"; auto roman_digit = [](char one, char five, char ten, int x) { if (x <= 3) return std::string().assign(x, one); if (x <= 5) return std::string().assign(5 - x, one) + five; if (x <= 8) return five + std::string().assign(x - 5, one); return std::string().assign(10 - x, one) + ten; }; if (x >= 1000) return x - 1000 > 0 ? "M" + to_roman(x - 1000) : "M"; if (x >= 100) { auto s = roman_digit('C', 'D', 'M', x / 100); return x % 100 > 0 ? s + to_roman(x % 100) : s; } if (x >= 10) { auto s = roman_digit('X', 'L', 'C', x / 10); return x % 10 > 0 ? s + to_roman(x % 10) : s; } return roman_digit('I', 'V', 'X', x); } int main() { for (int i = 0; i < 2018; i++) std::cout << i << " --> " << to_roman(i) << std::endl; }  ## Ceylon shared void run() { class Numeral(shared Character char, shared Integer int) {} value tiers = [ [Numeral('I', 1), Numeral('V', 5), Numeral('X', 10)], [Numeral('X', 10), Numeral('L', 50), Numeral('C', 100)], [Numeral('C', 100), Numeral('D', 500), Numeral('M', 1k)] ]; String toRoman(Integer hindu, Integer tierIndex = 2) { assert (exists tier = tiers[tierIndex]); " Finds if it's a two character numeral like iv, ix, xl, xc, cd and cm." function findTwoCharacterNumeral() => if (exists bigNum = tier.rest.find((numeral) => numeral.int - tier.first.int <= hindu < numeral.int)) then [tier.first, bigNum] else null; if (hindu <= 0) { // if it's zero then we are done! return ""; } else if (exists [smallNum, bigNum] = findTwoCharacterNumeral()) { value twoCharSymbol = "smallNum.charbigNum.char"; value twoCharValue = bigNum.int - smallNum.int; return "twoCharSymboltoRoman(hindu - twoCharValue, tierIndex)"; } else if (exists num = tier.reversed.find((Numeral elem) => hindu >= elem.int)) { return "num.chartoRoman(hindu - num.int, tierIndex)"; } else { // nothing was found so move to the next smaller tier! return toRoman(hindu, tierIndex - 1); } } assert (toRoman(1) == "I"); assert (toRoman(2) == "II"); assert (toRoman(4) == "IV"); assert (toRoman(1666) == "MDCLXVI"); assert (toRoman(1990) == "MCMXC"); assert (toRoman(2008) == "MMVIII"); }  ## Clojure The easiest way is to use the built-in cl-format function (def arabic->roman (partial clojure.pprint/cl-format nil "~@R")) (arabic->roman 147) ;"CXXIII" (arabic->roman 99) ;"XCIX"  Alternatively: (def roman-map (sorted-map 1 "I", 4 "IV", 5 "V", 9 "IX", 10 "X", 40 "XL", 50 "L", 90 "XC", 100 "C", 400 "CD", 500 "D", 900 "CM" 1000 "M")) (defn int->roman [n] {:pre (integer? n)} (loop [res (StringBuilder.), n n] (if-let [v (roman-map n)] (str (.append res v)) (let [[k v] (->> roman-map keys (filter #(> n %)) last (find roman-map))] (recur (.append res v) (- n k)))))) (int->roman 1999) ; "MCMXCIX"  An alternate implementation: (defn a2r [a] (let [rv '(1000 500 100 50 10 5 1) rm (zipmap rv "MDCLXVI") dv (->> rv (take-nth 2) next #(interleave % %))] (loop [a a rv rv dv dv r nil] (if (<= a 0) r (let [v (first rv) d (or (first dv) 0) l (- v d)] (cond (= a v) (str r (rm v)) (= a l) (str r (rm d) (rm v)) (and (> a v) (> a l)) (recur (- a v) rv dv (str r (rm v))) (and (< a v) (< a l)) (recur a (rest rv) (rest dv) r) :else (recur (- a l) (rest rv) (rest dv) (str r (rm d) (rm v)))))))))  Usage: (a2r 1666) "MDCLXVI" (map a2r [1000 1 389 45]) ("M" "I" "CCCLXXXIX" "XLV")  An alternate implementation: (def roman-map (sorted-map-by > 1 "I", 4 "IV", 5 "V", 9 "IX", 10 "X", 40 "XL", 50 "L", 90 "XC", 100 "C", 400 "CD", 500 "D", 900 "CM" 1000 "M")) (defn a2r ([r] (reduce str (a2r r (keys roman-map)))) ([r n] (when-not (empty? n) (let [e (first n) v (- r e) roman (roman-map e)] (cond (< v 0) (a2r r (rest n)) (= v 0) (cons roman []) (>= v e) (cons roman (a2r v n)) (< v e) (cons roman (a2r v (rest n))))))))  Usage: (a2r 1666) "MDCLXVI" (map a2r [1000 1 389 45]) ("M" "I" "CCCLXXXIX" "XLV")  ## CLU roman = cluster is encode rep = null dmap = struct[v: int, s: string] darr = array[dmap] own chunks: darr := darr$
[dmap${v: 1000, s: "M"}, dmap${v:  900, s: "CM"},
dmap${v: 500, s: "D"}, dmap${v:  400, s: "CD"},
dmap${v: 100, s: "C"}, dmap${v:   90, s: "XC"},
dmap${v: 50, s: "L"}, dmap${v:   40, s: "XL"},
dmap${v: 10, s: "X"}, dmap${v:    9, s: "IX"},
dmap${v: 5, s: "V"}, dmap${v:    4, s: "IV"},
dmap${v: 1, s: "I"}] largest_chunk = proc (i: int) returns (int, string) for chunk: dmap in darr$elements(chunks) do
if chunk.v <= i then return (chunk.v, chunk.s) end
end
return (0, "")
end largest_chunk

encode = proc (i: int) returns (string)
result: string := ""
while i > 0 do
val: int chunk: string
val, chunk := largest_chunk(i)
result := result || chunk
i := i - val
end
return (result)
end encode
end roman

start_up = proc ()
po: stream := stream$primary_output() tests: array[int] := array[int]$[1666, 2008, 1001, 1999, 3888, 2021]

for test: int in array[int]$elements(tests) do stream$putl(po, int$unparse(test) || " = " || roman$encode(test))
end
end start_up
Output:
1666 = MDCLXVI
2008 = MMVIII
1001 = MI
1999 = MCMXCIX
3888 = MMMDCCCLXXXVIII
2021 = MMXXI

## COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. TOROMAN.
DATA DIVISION.
working-storage section.
01 ws-number pic 9(4) value 0.
01 ws-save-number pic 9(4).
01 ws-tbl-def.
03 filler pic x(7) value '1000M  '.
03 filler pic x(7) value '0900CM '.
03 filler pic x(7) value '0500D  '.
03 filler pic x(7) value '0400CD '.
03 filler pic x(7) value '0100C  '.
03 filler pic x(7) value '0090XC '.
03 filler pic x(7) value '0050L  '.
03 filler pic x(7) value '0040XL '.
03 filler pic x(7) value '0010X  '.
03 filler pic x(7) value '0009IX '.
03 filler pic x(7) value '0005V  '.
03 filler pic x(7) value '0004IV '.
03 filler pic x(7) value '0001I  '.
01  filler redefines ws-tbl-def.
03 filler occurs 13 times indexed by rx.
05 ws-tbl-divisor    pic 9(4).
05 ws-tbl-roman-ch   pic x(1) occurs 3 times indexed by cx.
01 ocx pic 99.
01 ws-roman.
03 ws-roman-ch         pic x(1) occurs 16 times.
PROCEDURE DIVISION.
accept ws-number
perform
until ws-number = 0
move ws-number to ws-save-number
if ws-number > 0 and ws-number < 4000
initialize ws-roman
move 0 to ocx
perform varying rx from 1 by +1
until ws-number = 0
perform until ws-number < ws-tbl-divisor (rx)
perform varying cx from 1 by +1
until ws-tbl-roman-ch (rx, cx) = spaces
compute ocx = ocx + 1
move ws-tbl-roman-ch (rx, cx) to ws-roman-ch (ocx)
end-perform
compute ws-number = ws-number - ws-tbl-divisor (rx)
end-perform
end-perform
display 'inp=' ws-save-number ' roman=' ws-roman
else
display 'inp=' ws-save-number ' invalid'
end-if
accept ws-number
end-perform
.

Output:
(input was supplied via STDIN)
inp=0111 roman=CXI
inp=2234 roman=MMCCXXXIV
inp=0501 roman=DI
inp=0010 roman=X
inp=0040 roman=XL
inp=0050 roman=L
inp=0066 roman=LXVI
inp=0666 roman=DCLXVI
inp=5666 invalid
inp=3333 roman=MMMCCCXXXIII
inp=3888 roman=MMMDCCCLXXXVIII
inp=3999 roman=MMMCMXCIX
inp=3345 roman=MMMCCCXLV


## CoffeeScript

decimal_to_roman = (n) ->
# This should work for any positive integer, although it
# gets a bit preposterous for large numbers.
if n >= 4000
thousands = decimal_to_roman n / 1000
ones = decimal_to_roman n % 1000
return "M(#{thousands})#{ones}"

s = ''
translate_each = (min, roman) ->
while n >= min
n -= min
s += roman
translate_each 1000, "M"
translate_each  900, "CM"
translate_each  500, "D"
translate_each  400, "CD"
translate_each  100, "C"
translate_each   90, "XC"
translate_each   50, "L"
translate_each   40, "XL"
translate_each   10, "X"
translate_each    9, "IX"
translate_each    5, "V"
translate_each    4, "IV"
translate_each    1, "I"
s

###################
tests =
IV: 4
XLII: 42
MCMXC: 1990
MMVIII: 2008
MDCLXVI: 1666
'M(IV)': 4000
'M(VI)IX': 6009
'M(M(CXXIII)CDLVI)DCCLXXXIX': 123456789
'M(MMMV)I': 3005001

for expected, decimal of tests
roman = decimal_to_roman(decimal)
if roman == expected
console.log "#{decimal} = #{roman}"
else
console.log "error for #{decimal}: #{roman} is wrong"


## Common Lisp

(defun roman-numeral (n)
(format nil "~@R" n))


## Cowgol

include "cowgol.coh";
include "argv.coh";

# Encode the given number as a Roman numeral
sub decimalToRoman(num: uint16, buf: [uint8]): (rslt: [uint8]) is
# return the start of the buffer for easy printing
rslt := buf;

# Add string to buffer
sub Add(str: [uint8]) is
while [str] != 0 loop
[buf] := [str];
buf := @next buf;
str := @next str;
end loop;
end sub;

# Table of Roman numerals
record Roman is
value: uint16;
string: [uint8];
end record;

var numerals: Roman[] := {
{1000, "M"}, {900, "CM"}, {500, "D"}, {400, "CD"},
{100, "C"}, {90, "XC"}, {50, "L"}, {40, "XL"},
{10, "X"}, {9, "IX"}, {5, "V"}, {4, "IV"},
{1, "I"}
};

var curNum := &numerals as [Roman];
while num != 0 loop
while num >= curNum.value loop
num := num - curNum.value;
end loop;
curNum := @next curNum;
end loop;

[buf] := 0; # terminate the string
end sub;

# Read numbers from the command line and print the corresponding Roman numerals
ArgvInit();
var buffer: uint8[100];
loop
var argmt := ArgvNext();
if argmt == (0 as [uint8]) then
break;
end if;

var dummy: [uint8];
var number: int32;
(number, dummy) := AToI(argmt);

print(decimalToRoman(number as uint16, &buffer as [uint8]));
print_nl();
end loop;
Output:
$./romanenc.386 1990 2008 1666 MCMXC MMVIII MDCLXVI ## D string toRoman(int n) pure nothrow in { assert(n < 5000); } body { static immutable weights = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]; static immutable symbols = ["M","CM","D","CD","C","XC","L", "XL","X","IX","V","IV","I"]; string roman; foreach (i, w; weights) { while (n >= w) { roman ~= symbols[i]; n -= w; } if (n == 0) break; } return roman; } unittest { assert(toRoman(455) == "CDLV"); assert(toRoman(3456) == "MMMCDLVI"); assert(toRoman(2488) == "MMCDLXXXVIII"); } void main() {}  ## Delphi Translation of: DWScript program RomanNumeralsEncode; {$APPTYPE CONSOLE}

function IntegerToRoman(aValue: Integer): string;
var
i: Integer;
const
WEIGHTS: array[0..12] of Integer = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1);
SYMBOLS: array[0..12] of string = ('M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I');
begin
for i := Low(WEIGHTS) to High(WEIGHTS) do
begin
while aValue >= WEIGHTS[i] do
begin
Result := Result + SYMBOLS[i];
aValue := aValue - WEIGHTS[i];
end;
if aValue = 0 then
Break;
end;
end;

begin
Writeln(IntegerToRoman(1990)); // MCMXC
Writeln(IntegerToRoman(2008)); // MMVIII
Writeln(IntegerToRoman(1666)); // MDCLXVI
end.


## DWScript

Translation of: D
const weights = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1];
const symbols = ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"];

function toRoman(n : Integer) : String;
var
i, w : Integer;
begin
for i := 0 to weights.High do begin
w := weights[i];
while n >= w do begin
Result += symbols[i];
n -= w;
end;
if n = 0 then Break;
end;
end;

PrintLn(toRoman(455));
PrintLn(toRoman(3456));
PrintLn(toRoman(2488));


## EasyLang

values[] = [ 1000 900 500 400 100 90 50 40 10 9 5 4 1 ]
symbol$[] = [ "M" "CM" "D" "CD" "C" "XC" "L" "XL" "X" "IX" "V" "IV" "I" ] func num2rom num . rom$ .
rom$= "" for i range len values[] while num >= values[i] rom$ &= symbol$[i] num -= values[i] . . . call num2rom 1990 r$
print r$call num2rom 2008 r$
print r$call num2rom 1666 r$
print r$ ## ECL RomanEncode(UNSIGNED Int) := FUNCTION SetWeights := [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]; SetSymbols := ['M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I']; ProcessRec := RECORD UNSIGNED val; STRING Roman; END; dsWeights := DATASET(13,TRANSFORM(ProcessRec,SELF.val := Int, SELF := [])); SymbolStr(i,n,STRING s) := CHOOSE(n+1,'',SetSymbols[i],SetSymbols[i]+SetSymbols[i],SetSymbols[i]+SetSymbols[i]+SetSymbols[i],s); RECORDOF(dsWeights) XF(dsWeights L, dsWeights R, INTEGER C) := TRANSFORM ThisVal := IF(C=1,R.Val,L.Val); IsDone := ThisVal = 0; SELF.Roman := IF(IsDone,L.Roman,L.Roman + SymbolStr(C,ThisVal DIV SetWeights[C],L.Roman)); SELF.val := IF(IsDone,0,ThisVal - ((ThisVal DIV SetWeights[C])*SetWeights[C])); END; i := ITERATE(dsWeights,XF(LEFT,RIGHT,COUNTER)); RETURN i[13].Roman; END; RomanEncode(1954); //MCMLIV RomanEncode(1990 ); //MCMXC RomanEncode(2008 ); //MMVIII RomanEncode(1666); //MDCLXVI  ## Eiffel class APPLICATION create make feature {NONE} -- Initialization make local numbers: ARRAY [INTEGER] do numbers := <<1990, 2008, 1666, 3159, 1977, 2010>> -- "MCMXC", "MMVIII", "MDCLXVI", "MMMCLIX", "MCMLXXVII", "MMX" across numbers as n loop print (n.item.out + " in decimal Arabic numerals is " + decimal_to_roman (n.item) + " in Roman numerals.%N") end end feature -- Roman numerals decimal_to_roman (a_int: INTEGER): STRING -- Representation of integer a_int' as Roman numeral require a_int > 0 local dnums: ARRAY[INTEGER] rnums: ARRAY[STRING] dnum: INTEGER rnum: STRING i: INTEGER do dnums := <<1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1>> rnums := <<"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I">> dnum := a_int rnum := "" from i := 1 until i > dnums.count or dnum <= 0 loop from until dnum < dnums[i] loop dnum := dnum - dnums[i] rnum := rnum + rnums[i] end i := i + 1 end Result := rnum end end  ## Ela Translation of: Haskell open number string math digit x y z k = [[x],[x,x],[x,x,x],[x,y],[y],[y,x],[y,x,x],[y,x,x,x],[x,z]] : (toInt k - 1) toRoman 0 = "" toRoman x | x < 0 = fail "Negative roman numeral" | x >= 1000 = 'M' :: toRoman (x - 1000) | x >= 100 = let (q,r) = x divrem 100 in digit 'C' 'D' 'M' q ++ toRoman r | x >= 10 = let (q,r) = x divrem 10 in digit 'X' 'L' 'C' q ++ toRoman r | else = digit 'I' 'V' 'X' x map (join "" << toRoman) [1999,25,944] Output: ["MCMXCIX","XXV","CMXLIV"] ## Elena Translation of: C# ELENA 5.0 : import system'collections; import system'routines; import extensions; import extensions'text; static RomanDictionary = Dictionary.new() .setAt(1000, "M") .setAt(900, "CM") .setAt(500, "D") .setAt(400, "CD") .setAt(100, "C") .setAt(90, "XC") .setAt(50, "L") .setAt(40, "XL") .setAt(10, "X") .setAt(9, "IX") .setAt(5, "V") .setAt(4, "IV") .setAt(1, "I"); extension op { toRoman() = RomanDictionary.accumulate(new StringWriter("I", self), (m,kv => m.replace(new StringWriter("I",kv.Key), kv.Value))); } public program() { console.printLine("1990 : ", 1990.toRoman()); console.printLine("2008 : ", 2008.toRoman()); console.printLine("1666 : ", 1666.toRoman()) } Output: 1990 : MCMXC 2008 : MMVIII 1666 : MDCLXVI  ## Elixir Translation of: Erlang defmodule Roman_numeral do def encode(0), do: '' def encode(x) when x >= 1000, do: [?M | encode(x - 1000)] def encode(x) when x >= 100, do: digit(div(x,100), ?C, ?D, ?M) ++ encode(rem(x,100)) def encode(x) when x >= 10, do: digit(div(x,10), ?X, ?L, ?C) ++ encode(rem(x,10)) def encode(x) when x >= 1, do: digit(x, ?I, ?V, ?X) defp digit(1, x, _, _), do: [x] defp digit(2, x, _, _), do: [x, x] defp digit(3, x, _, _), do: [x, x, x] defp digit(4, x, y, _), do: [x, y] defp digit(5, _, y, _), do: [y] defp digit(6, x, y, _), do: [y, x] defp digit(7, x, y, _), do: [y, x, x] defp digit(8, x, y, _), do: [y, x, x, x] defp digit(9, x, _, z), do: [x, z] end  Another: Translation of: Ruby defmodule Roman_numeral do @symbols [ {1000, 'M'}, {900, 'CM'}, {500, 'D'}, {400, 'CD'}, {100, 'C'}, {90, 'XC'}, {50, 'L'}, {40, 'XL'}, {10, 'X'}, {9, 'IX'}, {5, 'V'}, {4, 'IV'}, {1, 'I'} ] def encode(num) do {roman,_} = Enum.reduce(@symbols, {[], num}, fn {divisor, letter}, {memo, n} -> {memo ++ List.duplicate(letter, div(n, divisor)), rem(n, divisor)} end) Enum.join(roman) end end  Test: Enum.each([1990, 2008, 1666], fn n -> IO.puts "#{n}: #{Roman_numeral.encode(n)}" end)  Output: 1990: MCMXC 2008: MMVIII 1666: MDCLXVI  ## Emacs Lisp (defun ar2ro (AN) "Translate from arabic number AN to roman number. For example, (ar2ro 1666) returns (M D C L X V I)." (cond ((>= AN 1000) (cons 'M (ar2ro (- AN 1000)))) ((>= AN 900) (cons 'C (cons 'M (ar2ro (- AN 900))))) ((>= AN 500) (cons 'D (ar2ro (- AN 500)))) ((>= AN 400) (cons 'C (cons 'D (ar2ro (- AN 400))))) ((>= AN 100) (cons 'C (ar2ro (- AN 100)))) ((>= AN 90) (cons 'X (cons 'C (ar2ro (- AN 90))))) ((>= AN 50) (cons 'L (ar2ro (- AN 50)))) ((>= AN 40) (cons 'X (cons 'L (ar2ro (- AN 40))))) ((>= AN 10) (cons 'X (ar2ro (- AN 10)))) ((>= AN 5) (cons 'V (ar2ro (- AN 5)))) ((>= AN 4) (cons 'I (cons 'V (ar2ro (- AN 4))))) ((>= AN 1) (cons 'I (ar2ro (- AN 1)))) ((= AN 0) nil)))  ## Erlang Translation of: OCaml -module(roman). -export([to_roman/1]). to_roman(0) -> []; to_roman(X) when X >= 1000 -> [$M | to_roman(X - 1000)];
to_roman(X) when X >= 100 ->
digit(X div 100, $C,$D, $M) ++ to_roman(X rem 100); to_roman(X) when X >= 10 -> digit(X div 10,$X, $L,$C) ++ to_roman(X rem 10);
to_roman(X) when X >= 1 -> digit(X, $I,$V, $X). digit(1, X, _, _) -> [X]; digit(2, X, _, _) -> [X, X]; digit(3, X, _, _) -> [X, X, X]; digit(4, X, Y, _) -> [X, Y]; digit(5, _, Y, _) -> [Y]; digit(6, X, Y, _) -> [Y, X]; digit(7, X, Y, _) -> [Y, X, X]; digit(8, X, Y, _) -> [Y, X, X, X]; digit(9, X, _, Z) -> [X, Z].  sample: 1> c(roman). {ok,roman} 2> roman:to_roman(1999). "MCMXCIX" 3> roman:to_roman(25). "XXV" 4> roman:to_roman(944). "CMXLIV"  Alternative: -module( roman_numerals ). -export( [encode_from_integer/1]). -record( encode_acc, {n, romans=""} ). encode_from_integer( N ) when N > 0 -> #encode_acc{romans=Romans} = lists:foldl( fun encode_from_integer/2, #encode_acc{n=N}, map() ), Romans. encode_from_integer( _Map, #encode_acc{n=0}=Acc ) -> Acc; encode_from_integer( {_Roman, Value}, #encode_acc{n=N}=Acc ) when N < Value -> Acc; encode_from_integer( {Roman, Value}, #encode_acc{n=N, romans=Romans} ) -> Times = N div Value, New_roman = lists:flatten( lists:duplicate(Times, Roman) ), #encode_acc{n=N - (Times * Value), romans=Romans ++ New_roman}. map() -> [{"M",1000}, {"CM",900}, {"D",500}, {"CD",400}, {"C",100}, {"XC",90}, {"L",50}, {"XL",40}, {"X",10}, {"IX",9}, {"V",5}, {"IV",4}, {"I\ ",1}].  Output: 36> roman_numerals:encode_from_integer( 1990 ). "MCMXC" 37> roman_numerals:encode_from_integer( 2008 ). "MMVIII" 38> roman_numerals:encode_from_integer( 1666 ). "MDCLXVI"  ## ERRE PROGRAM ARAB2ROMAN DIM ARABIC%[12],ROMAN$[12]

PROCEDURE TOROMAN(VALUE->ANS$) LOCAL RESULT$
FOR I%=0 TO 12 DO
WHILE VALUE>=ARABIC%[I%] DO
RESULT$+=ROMAN$[I%]
VALUE-=ARABIC%[I%]
END WHILE
END FOR
ANS$=RESULT$
END PROCEDURE

BEGIN
!
!Testing
!
ARABIC%[]=(1000,900,500,400,100,90,50,40,10,9,5,4,1)
ROMAN$[]=("M","CM","D","CD","C","XC","L","XL","X","IX","V","IV","I") TOROMAN(2009->ANS$) PRINT("2009 = ";ANS$) TOROMAN(1666->ANS$) PRINT("1666 = ";ANS$) TOROMAN(3888->ANS$) PRINT("3888 = ";ANS$) END PROGRAM ## Euphoria Translation of: BASIC constant arabic = {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1 } constant roman = {"M", "CM", "D","CD", "C","XC","L","XL","X","IX","V","IV","I"} function toRoman(integer val) sequence result result = "" for i = 1 to 13 do while val >= arabic[i] do result &= roman[i] val -= arabic[i] end while end for return result end function printf(1,"%d = %s\n",{2009,toRoman(2009)}) printf(1,"%d = %s\n",{1666,toRoman(1666)}) printf(1,"%d = %s\n",{3888,toRoman(3888)}) Output:  2009 = MMIX 1666 = MDCLXVI 3888 = MMMDCCCLXXXVIII  ## Excel Excel can encode numbers in Roman forms in 5 successively concise forms. These can be indicated from 0 to 4. Type in a cell: =ROMAN(2013,0) It becomes: MMXIII  ## F# let digit x y z = function 1 -> x | 2 -> x + x | 3 -> x + x + x | 4 -> x + y | 5 -> y | 6 -> y + x | 7 -> y + x + x | 8 -> y + x + x + x | 9 -> x + z | _ -> failwith "invalid call to digit" let rec to_roman acc = function | x when x >= 1000 -> to_roman (acc + "M") (x - 1000) | x when x >= 100 -> to_roman (acc + digit "C" "D" "M" (x / 100)) (x % 100) | x when x >= 10 -> to_roman (acc + digit "X" "L" "C" (x / 10)) (x % 10) | x when x > 0 -> acc + digit "I" "V" "X" x | 0 -> acc | _ -> failwith "invalid call to_roman (negative input)" let roman n = to_roman "" n [<EntryPoint>] let main args = [1990; 2008; 1666] |> List.map (fun n -> roman n) |> List.iter (printfn "%s") 0  Output: MCMXC MMVIII MDCLXVI ## Factor A roman numeral library ships with Factor. USE: roman ( scratchpad ) 3333 >roman . "mmmcccxxxiii"  Parts of the implementation: CONSTANT: roman-digits { "m" "cm" "d" "cd" "c" "xc" "l" "xl" "x" "ix" "v" "iv" "i" } CONSTANT: roman-values { 1000 900 500 400 100 90 50 40 10 9 5 4 1 } ERROR: roman-range-error n ; : roman-range-check ( n -- n ) dup 1 10000 between? [ roman-range-error ] unless ; : >roman ( n -- str ) roman-range-check roman-values roman-digits [ [ /mod swap ] dip <repetition> concat ] 2map "" concat-as nip ;  ## FALSE ^$." "
[$999>][1000- "M"]#$899> [ 900-"CM"]?
$499> [ 500- "D"]?$399> [ 400-"CD"]?
[$99>][ 100- "C"]#$ 89> [  90-"XC"]?
$49> [ 50- "L"]?$ 39> [  40-"XL"]?
[$9>][ 10- "X"]#$  8> [   9-"IX"]?
$4> [ 5- "V"]?$  3> [   4-"IV"]?
[$][ 1- "I"]#% ## Fan ** ** converts a number to its roman numeral representation ** class RomanNumerals { private Str digit(Str x, Str y, Str z, Int i) { switch (i) { case 1: return x case 2: return x+x case 3: return x+x+x case 4: return x+y case 5: return y case 6: return y+x case 7: return y+x+x case 8: return y+x+x+x case 9: return x+z } return "" } Str toRoman(Int i) { if (i>=1000) { return "M" + toRoman(i-1000) } if (i>=100) { return digit("C", "D", "M", i/100) + toRoman(i%100) } if (i>=10) { return digit("X", "L", "C", i/10) + toRoman(i%10) } if (i>=1) { return digit("I", "V", "X", i) } return "" } Void main() { 2000.times |i| { echo("$i = ${toRoman(i)}") } } }  ## Forth : vector create ( n -- ) 0 do , loop does> ( n -- ) swap cells + @ execute ; \ these are ( numerals -- numerals ) : ,I dup c@ C, ; : ,V dup 1 + c@ C, ; : ,X dup 2 + c@ C, ; \ these are ( numerals -- ) :noname ,I ,X drop ; :noname ,V ,I ,I ,I drop ; :noname ,V ,I ,I drop ; :noname ,V ,I drop ; :noname ,V drop ; :noname ,I ,V drop ; :noname ,I ,I ,I drop ; :noname ,I ,I drop ; :noname ,I drop ; ' drop ( 0 : no output ) 10 vector ,digit : roman-rec ( numerals n -- ) 10 /mod dup if >r over 2 + r> recurse else drop then ,digit ; : roman ( n -- c-addr u ) dup 0 4000 within 0= abort" EX LIMITO!" HERE SWAP s" IVXLCDM" drop swap roman-rec HERE OVER - ; 1999 roman type \ MCMXCIX 25 roman type \ XXV 944 roman type \ CMXLIV  Alternative implementation create romans 0 , 1 , 5 , 21 , 9 , 2 , 6 , 22 , 86 , 13 , does> swap cells + @ ; : roman-digit ( a1 n1 a2 n2 -- a3) drop >r romans begin dup while tuck 4 mod 1- chars r@ + c@ over c! char+ swap 4 / repeat r> drop drop ; : (split) swap >r /mod r> swap ; : >roman ( n1 a -- a n2) tuck 1000 (split) s" M " roman-digit 100 (split) s" CDM" roman-digit 10 (split) s" XLC" roman-digit 1 (split) s" IVX" roman-digit nip over - ; create (roman) 16 chars allot 1999 (roman) >roman type cr  ## Fortran Works with: Fortran version 90 and later program roman_numerals implicit none write (*, '(a)') roman (2009) write (*, '(a)') roman (1666) write (*, '(a)') roman (3888) contains function roman (n) result (r) implicit none integer, intent (in) :: n integer, parameter :: d_max = 13 integer :: d integer :: m integer :: m_div character (32) :: r integer, dimension (d_max), parameter :: d_dec = & & (/1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1/) character (32), dimension (d_max), parameter :: d_rom = & & (/'M ', 'CM', 'D ', 'CD', 'C ', 'XC', 'L ', 'XL', 'X ', 'IX', 'V ', 'IV', 'I '/) r = '' m = n do d = 1, d_max m_div = m / d_dec (d) r = trim (r) // repeat (trim (d_rom (d)), m_div) m = m - d_dec (d) * m_div end do end function roman end program roman_numerals  Output:  MMIX MDCLXVI MMMDCCCLXXXVIII  ## Go For fluff, the unicode overbar is recognized as a factor of 1000, as described in WP. If you see boxes in the code below, those are supposed to be the Unicode combining overline (U+0305) and look like IVXLCDM. Or, if you see overstruck combinations of letters, that's a different font rendering problem. (If you need roman numerals > 3999 reliably, it might best to stick to chiseling them in stone...) package main import "fmt" var ( m0 = []string{"", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX"} m1 = []string{"", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC"} m2 = []string{"", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM"} m3 = []string{"", "M", "MM", "MMM", "I̅V̅", "V̅", "V̅I̅", "V̅I̅I̅", "V̅I̅I̅I̅", "I̅X̅"} m4 = []string{"", "X̅", "X̅X̅", "X̅X̅X̅", "X̅L̅", "L̅", "L̅X̅", "L̅X̅X̅", "L̅X̅X̅X̅", "X̅C̅"} m5 = []string{"", "C̅", "C̅C̅", "C̅C̅C̅", "C̅D̅", "D̅", "D̅C̅", "D̅C̅C̅", "D̅C̅C̅C̅", "C̅M̅"} m6 = []string{"", "M̅", "M̅M̅", "M̅M̅M̅"} ) func formatRoman(n int) (string, bool) { if n < 1 || n >= 4e6 { return "", false } // this is efficient in Go. the seven operands are evaluated, // then a single allocation is made of the exact size needed for the result. return m6[n/1e6] + m5[n%1e6/1e5] + m4[n%1e5/1e4] + m3[n%1e4/1e3] + m2[n%1e3/1e2] + m1[n%100/10] + m0[n%10], true } func main() { // show three numbers mentioned in task descriptions for _, n := range []int{1990, 2008, 1666} { r, ok := formatRoman(n) if ok { fmt.Println(n, "==", r) } else { fmt.Println(n, "not representable") } } }  Output: 1990 == MCMXC 2008 == MMVIII 1666 == MDCLXVI  ## Golo #!/usr/bin/env golosh ---- This module takes a decimal integer and converts it to a Roman numeral. ---- module Romannumeralsencode augment java.lang.Integer { function digits = |this| { var remaining = this let digits = vector[] while remaining > 0 { digits: prepend(remaining % 10) remaining = remaining / 10 } return digits } ---- 123: digitsWithPowers() will return [[1, 2], [2, 1], [3, 0]] ---- function digitsWithPowers = |this| -> vector[ [ this: digits(): get(i), (this: digits(): size() - 1) - i ] for (var i = 0, i < this: digits(): size(), i = i + 1) ] function encode = |this| { require(this > 0, "the integer must be positive!") let romanPattern = |digit, powerOf10| -> match { when digit == 1 then i when digit == 2 then i + i when digit == 3 then i + i + i when digit == 4 then i + v when digit == 5 then v when digit == 6 then v + i when digit == 7 then v + i + i when digit == 8 then v + i + i + i when digit == 9 then i + x otherwise "" } with { i, v, x = [ [ "I", "V", "X" ], [ "X", "L", "C" ], [ "C", "D", "M" ], [ "M", "?", "?" ] ]: get(powerOf10) } return vector[ romanPattern(digit, power) foreach digit, power in this: digitsWithPowers() ]: join("") } } function main = |args| { println("1990 == MCMXC? " + (1990: encode() == "MCMXC")) println("2008 == MMVIII? " + (2008: encode() == "MMVIII")) println("1666 == MDCLXVI? " + (1666: encode() == "MDCLXVI")) }  ## Groovy symbols = [ 1:'I', 4:'IV', 5:'V', 9:'IX', 10:'X', 40:'XL', 50:'L', 90:'XC', 100:'C', 400:'CD', 500:'D', 900:'CM', 1000:'M' ] def roman(arabic) { def result = "" symbols.keySet().sort().reverse().each { while (arabic >= it) { arabic-=it result+=symbols[it] } } return result } assert roman(1) == 'I' assert roman(2) == 'II' assert roman(4) == 'IV' assert roman(8) == 'VIII' assert roman(16) == 'XVI' assert roman(32) == 'XXXII' assert roman(25) == 'XXV' assert roman(64) == 'LXIV' assert roman(128) == 'CXXVIII' assert roman(256) == 'CCLVI' assert roman(512) == 'DXII' assert roman(954) == 'CMLIV' assert roman(1024) == 'MXXIV' assert roman(1666) == 'MDCLXVI' assert roman(1990) == 'MCMXC' assert roman(2008) == 'MMVIII'  ## Haskell With an explicit decimal digit representation list: digit :: Char -> Char -> Char -> Integer -> String digit x y z k = [[x], [x, x], [x, x, x], [x, y], [y], [y, x], [y, x, x], [y, x, x, x], [x, z]] !! (fromInteger k - 1) toRoman :: Integer -> String toRoman 0 = "" toRoman x | x < 0 = error "Negative roman numeral" toRoman x | x >= 1000 = 'M' : toRoman (x - 1000) toRoman x | x >= 100 = digit 'C' 'D' 'M' q ++ toRoman r where (q, r) = x divMod 100 toRoman x | x >= 10 = digit 'X' 'L' 'C' q ++ toRoman r where (q, r) = x divMod 10 toRoman x = digit 'I' 'V' 'X' x main :: IO () main = print$ toRoman <$> [1999, 25, 944]  Output: ["MCMXCIX","XXV","CMXLIV"] or, defining romanFromInt in terms of mapAccumL import Data.Bifunctor (first) import Data.List (mapAccumL) import Data.Tuple (swap) roman :: Int -> String roman = romanFromInt$
zip
[1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]
(words "M CM D CD C XC L XL X IX V IV I")

romanFromInt :: [(Int, String)] -> Int -> String
romanFromInt nks n = concat . snd $mapAccumL go n nks where go a (v, s) = swap$ first ((>> s) . enumFromTo 1) $quotRem a v main :: IO () main = (putStrLn . unlines) (roman <$> [1666, 1990, 2008, 2016, 2018])

Output:
MDCLXVI
MCMXC
MMVIII
MMXVI
MMXVIII

With the Roman patterns abstracted, and in a simple logic programming idiom:

module Main where

------------------------
--  ENCODER FUNCTION  --
------------------------

romanDigits = "IVXLCDM"

--  Meaning and indices of the romanDigits sequence:
--
--    magnitude |  1 5  | index
--   -----------|-------|-------
--        0     |  I V  |  0 1
--        1     |  X L  |  2 3
--        2     |  C D  |  4 5
--        3     |  M    |  6
--
--  romanPatterns are index offsets into romanDigits,
--  from an index base of 2 * magnitude.

romanPattern 0 = []      -- empty string
romanPattern 1 = [0]     -- I or X or C or M
romanPattern 2 = [0,0]   -- II or XX...
romanPattern 3 = [0,0,0] -- III...
romanPattern 4 = [0,1]   -- IV...
romanPattern 5 = [1]     -- ...
romanPattern 6 = [1,0]
romanPattern 7 = [1,0,0]
romanPattern 8 = [1,0,0,0]
romanPattern 9 = [0,2]

encodeValue 0 _ = ""
encodeValue value magnitude = encodeValue rest (magnitude + 1) ++ digits
where
low = rem value 10 -- least significant digit (encoded now)
rest = div value 10 -- the other digits (to be encoded next)
indices = map addBase (romanPattern low)
addBase i = i + (2 * magnitude)
digits = map pickDigit indices
pickDigit i = romanDigits!!i

encode value = encodeValue value 0

------------------
--  TEST SUITE  --
------------------

main = do
test "MCMXC" 1990
test "MMVIII" 2008
test "MDCLXVI" 1666

test expected value = putStrLn ((show value) ++ " = " ++ roman ++ remark)
where
roman = encode value
remark =
" (" ++
(if roman == expected then "PASS"
else ("FAIL, expected " ++ (show expected))) ++ ")"

Output:
1990 = MCMXC (PASS)
2008 = MMVIII (PASS)
1666 = MDCLXVI (PASS)


## HicEst

CHARACTER Roman*20

CALL RomanNumeral(1990, Roman) ! MCMXC
CALL RomanNumeral(2008, Roman) ! MMVIII
CALL RomanNumeral(1666, Roman) ! MDCLXVI

END

SUBROUTINE RomanNumeral( arabic, roman)
CHARACTER roman
DIMENSION ddec(13)
DATA      ddec/1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1/

roman = ' '
todo = arabic
DO d = 1, 13
DO rep = 1, todo / ddec(d)
roman = TRIM(roman) // TRIM(CHAR(d, 13, "M  CM D  CD C  XC L  XL X  OX V  IV I  "))
todo = todo - ddec(d)
ENDDO
ENDDO
END

## Icon and Unicon

link numbers   # commas, roman

procedure main(arglist)
every x := !arglist do
write(commas(x), " -> ",roman(x)|"*** can't convert to Roman numerals ***")
end


numbers.icn provides roman as seen below and is based upon a James Gimple SNOBOL4 function.

procedure roman(n)		#: convert integer to Roman numeral
local arabic, result
static equiv

initial equiv := ["","I","II","III","IV","V","VI","VII","VIII","IX"]

integer(n) > 0 | fail
result := ""
every arabic := !n do
result := map(result,"IVXLCDM","XLCDM**") || equiv[arabic + 1]
if find("*",result) then fail else return result
end

Output:
#roman.exe  3 4 8 49 2010 1666 3000 3999 4000

3 -> III
4 -> IV
8 -> VIII
49 -> XLIX
2,010 -> MMX
1,666 -> MDCLXVI
3,999 -> MMMCMXCIX
4,000 -> *** can't convert to Roman numerals ***

## Intercal

INTERCAL outputs numbers as Roman numerals by default, so this is surprisingly trivial for a language that generally tries to make things as difficult as possible. Although you do still have to input the numbers as spelled out digitwise in all caps.

       PLEASE WRITE IN .1
DO READ OUT .1
DO GIVE UP
Output:
$./roman ONE SIX SIX SIX MDCLXVI  ## Io Translation of: C# Roman := Object clone do ( nums := list(1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1) rum := list("M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I") numeral := method(number, result := "" for(i, 0, nums size, if(number == 0, break) while(number >= nums at(i), number = number - nums at(i) result = result .. rum at(i) ) ) return result ) ) Roman numeral(1666) println  ## J rfd obtains Roman numerals from decimals. R1000=. ;L:1 ,{ <@(<;._1);._2]0 :0 C CC CCC CD D DC DCC DCCC CM X XX XXX XL L LX LXX LXXX XC I II III IV V VI VII VIII IX ) rfd=: ('M'$~ <.@%&1000) , R1000 {::~ 1000&|


Explanation: R1000's definition contains rows representing each of 10 different digits in the 100s, 10s and 1s column (the first entry in each row is blank -- each entry is preceded by a space). R1000 itself represents the first 1000 roman numerals (the cartesian product of these three rows of roman numeral "digits" which is constructed so that they are in numeric order. And the first entry -- zero -- is just blank). To convert a number to its roman numeral representation, we will separate the number into the integer part after dividing by 1000 (that's the number of 'M's we need) and the remainder after dividing by 1000 (which will be an index into R1000).

For example:
   rfd 1234
MCCXXXIV
rfd 567
DLXVII
rfd 89
LXXXIX


Derived from the J Wiki. Further examples of use will be found there.

## Java

The conversion function throws an IllegalArgumentException for non-positive numbers, since Java does not have unsigned primitives.

Works with: Java version 1.5+
public class RN {

enum Numeral {
I(1), IV(4), V(5), IX(9), X(10), XL(40), L(50), XC(90), C(100), CD(400), D(500), CM(900), M(1000);
int weight;

Numeral(int weight) {
this.weight = weight;
}
};

public static String roman(long n) {

if( n <= 0) {
throw new IllegalArgumentException();
}

StringBuilder buf = new StringBuilder();

final Numeral[] values = Numeral.values();
for (int i = values.length - 1; i >= 0; i--) {
while (n >= values[i].weight) {
buf.append(values[i]);
n -= values[i].weight;
}
}
return buf.toString();
}

public static void test(long n) {
System.out.println(n + " = " + roman(n));
}

public static void main(String[] args) {
test(1999);
test(25);
test(944);
test(0);
}

}

Output:
1999 = MCMXCIX
25 = XXV
944 = CMXLIV
Exception in thread "main" java.lang.IllegalArgumentException
at RN.roman(RN.java:15)
at RN.test(RN.java:31)
at RN.main(RN.java:38)
Works with: Java version 1.8+
import java.util.Set;
import java.util.EnumSet;
import java.util.Collections;
import java.util.stream.Collectors;
import java.util.stream.LongStream;

public interface RomanNumerals {
public enum Numeral {
M(1000), CM(900), D(500), CD(400), C(100), XC(90), L(50), XL(40), X(10), IX(9), V(5), IV(4), I(1);

public final long weight;

private static final Set<Numeral> SET = Collections.unmodifiableSet(EnumSet.allOf(Numeral.class));

private Numeral(long weight) {
this.weight = weight;
}

public static Numeral getLargest(long weight) {
return SET.stream()
.filter(numeral -> weight >= numeral.weight)
.findFirst()
.orElse(I)
;
}
};

public static String encode(long n) {
return LongStream.iterate(n, l -> l - Numeral.getLargest(l).weight)
.limit(Numeral.values().length)
.filter(l -> l > 0)
.mapToObj(Numeral::getLargest)
.map(String::valueOf)
.collect(Collectors.joining())
;
}

public static long decode(String roman) {
long result =  new StringBuilder(roman.toUpperCase()).reverse().chars()
.mapToObj(c -> Character.toString((char) c))
.map(numeral -> Enum.valueOf(Numeral.class, numeral))
.mapToLong(numeral -> numeral.weight)
.reduce(0, (a, b) -> a + (a <= b ? b : -b))
;
if (roman.charAt(0) == roman.charAt(1)) {
result += 2 * Enum.valueOf(Numeral.class, roman.substring(0, 1)).weight;
}
return result;
}

public static void test(long n) {
System.out.println(n + " = " + encode(n));
System.out.println(encode(n) + " = " + decode(encode(n)));
}

public static void main(String[] args) {
LongStream.of(1999, 25, 944).forEach(RomanNumerals::test);
}
}

Output:
1999 = MCMXCIX
MCMXCIX = 1999
25 = XXV
XXV = 25
944 = CMXLIV
CMXLIV = 944

## JavaScript

### ES5

#### Iteration

Translation of: Tcl
var roman = {
map: [
1000, 'M', 900, 'CM', 500, 'D', 400, 'CD', 100, 'C', 90, 'XC',
50, 'L', 40, 'XL', 10, 'X', 9, 'IX', 5, 'V', 4, 'IV', 1, 'I',
],
int_to_roman: function(n) {
var value = '';
for (var idx = 0; n > 0 && idx < this.map.length; idx += 2) {
while (n >= this.map[idx]) {
value += this.map[idx + 1];
n -= this.map[idx];
}
}
return value;
}
}

roman.int_to_roman(1999); // "MCMXCIX"


#### Functional composition

(function () {
'use strict';

// If the Roman is a string, pass any delimiters through

// (Int | String) -> String
function romanTranscription(a) {
if (typeof a === 'string') {
var ps = a.split(/\d+/),
dlm = ps.length > 1 ? ps[1] : undefined;

return (dlm ? a.split(dlm)
.map(function (x) {
return Number(x);
}) : [a])
.map(roman)
.join(dlm);
} else return roman(a);
}

// roman :: Int -> String
function roman(n) {
return [[1000, "M"], [900, "CM"], [500, "D"], [400, "CD"], [100,
"C"], [90, "XC"], [50, "L"], [40, "XL"], [10, "X"], [9,
"IX"], [5, "V"], [4, "IV"], [1, "I"]]
.reduce(function (a, lstPair) {
var m = a.remainder,
v = lstPair[0];

return (v > m ? a : {
remainder: m % v,
roman: a.roman + Array(
Math.floor(m / v) + 1
)
.join(lstPair[1])
});
}, {
remainder: n,
roman: ''
}).roman;
}

// TEST

return [2016, 1990, 2008, "14.09.2015", 2000, 1666].map(
romanTranscription);

})();

Output:
["MMXVI", "MCMXC", "MMVIII", "XIV.IX.MMXV", "MM", "MDCLXVI"]


### ES6

#### Functional

(mapAccumL version)

(() => {
"use strict";

// -------------- ROMAN INTEGER STRINGS --------------

// roman :: Int -> String
const roman = n =>
mapAccumL(residue =>
([k, v]) => second(
q => 0 < q ? (
k.repeat(q)
) : ""
)(remQuot(residue)(v))
)(n)(
zip([
"M", "CM", "D", "CD", "C", "XC",
"L", "XL", "X", "IX", "V", "IV", "I"
])([
1000, 900, 500, 400, 100, 90,
50, 40, 10, 9, 5, 4, 1
])
)[1]
.join("");

// ---------------------- TEST -----------------------
// main :: IO ()
const main = () => (
[2016, 1990, 2008, 2000, 2020, 1666].map(roman)
).join("\n");

// ---------------- GENERIC FUNCTIONS ----------------

// mapAccumL :: (acc -> x -> (acc, y)) -> acc ->
// [x] -> (acc, [y])
const mapAccumL = f =>
// A tuple of an accumulation and a list
// obtained by a combined map and fold,
// with accumulation from left to right.
acc => xs => [...xs].reduce(
(a, x) => {
const tpl = f(a[0])(x);

return [
tpl[0],
a[1].concat(tpl[1])
];
},
[acc, []]
);

// remQuot :: Int -> Int -> (Int, Int)
const remQuot = m =>
n => [m % n, Math.trunc(m / n)];

// second :: (a -> b) -> ((c, a) -> (c, b))
const second = f =>
// A function over a simple value lifted
// to a function over a tuple.
// f (a, b) -> (a, f(b))
xy => [xy[0], f(xy[1])];

// zip :: [a] -> [b] -> [(a, b)]
const zip = xs =>
// The paired members of xs and ys, up to
// the length of the shorter of the two lists.
ys => Array.from({
length: Math.min(xs.length, ys.length)
}, (_, i) => [xs[i], ys[i]]);

// MAIN --
return main();
})();

Output:
MDCLXVI
MCMXC
MMVIII
MMXVI
MMXVIII
MMXX

#### Declarative

function toRoman(num) {
return 'I'
.repeat(num)
.replace(/IIIII/g, 'V')
.replace(/VV/g, 'X')
.replace(/XXXXX/g, 'L')
.replace(/LL/g, 'C')
.replace(/CCCCC/g, 'D')
.replace(/DD/g, 'M')
.replace(/VIIII/g, 'IX')
.replace(/LXXXX/g, 'XC')
.replace(/XXXX/g, 'XL')
.replace(/DCCCC/g, 'CM')
.replace(/CCCC/g, 'CD')
.replace(/IIII/g, 'IV');
}

console.log(toRoman(1666));

Output:
MDCLXVI


## jq

Works with: jq

Works with gojq, the Go implementation of jq

The "easy-to-code" version is presented first, followed by the "orders of magnitude" version. Both versions work for positive integers up to and including 399,999, but note that the Unicode glyphs for 50,000 and 100,000 are not supported in many environments.

The test cases and output are identical for both versions and are therefore not repeated.

### Easy-to-code version

def to_roman_numeral:
def romans:
[100000, "\u2188"],
[90000,  "ↂ\u2188"],
[50000,  "\u2187"],
[40000,  "ↂ\u2187"],
[10000,  "ↂ"],
[9000,  "Mↂ"],
[5000,   "ↁ"],
[4000,  "Mↁ"],
[1000,   "M"],
[900,   "CM"],
[500,    "D"],
[400,   "CD"],
[100,    "C"],
[90,    "XC"],
[50,     "L"],
[40,    "XL"],
[10,     "X"],
[9,     "IX"],
[5,      "V"],
[4,     "IV"],
[1,      "I"] ;

if . < 1 or . > 399999
then "to_roman_numeral: $$.) is out of range" | error else reduce romans as [i, r] ({n: .}; until (.n < i; .res += r | .n = .n - i ) ) | .res end ; Test Cases def testcases: [1668, 1990, 2008, 2020, 4444, 5000, 8999, 39999, 89999, 399999]; "Decimal => Roman:", (testcases[] | " \(.) => \(to_roman_numeral)" ) Output: Decimal => Roman: 1668 => MDCLXVIII 1990 => MCMXC 2008 => MMVIII 2020 => MMXX 4444 => MↁCDXLIV 5000 => ↁ 8999 => ↁMMMCMXCIX 39999 => ↂↂↂMↂCMXCIX 89999 => ↇↂↂↂMↂCMXCIX 399999 => ↈↈↈↂↈMↂCMXCIX  ### "Orders of Magnitude" version Translated from Julia extended to 399,999 def digits: tostring | explode | map( [.]|implode|tonumber); # Non-negative integer to Roman numeral up to 399,999 def to_roman_numeral: if . < 1 or . > 399999 then "to_roman_numeral: \(.) is out of range" | error else [["I", "X", "C", "M", "ↂ", "\u2188"], ["V", "L", "D", "ↁ", "\u2187"]] as DR | (digits|reverse) as digits | reduce range(0;digits|length) as omag ({rnum: ""}; digits[omag] as d | if d == 0 then .omr = "" elif d < 4 then .omr = DR[0][omag] * d elif d == 4 then .omr = DR[0][omag] + DR[1][omag] elif d == 5 then .omr = DR[1][omag] elif d < 9 then .omr = DR[1][omag] + (DR[0][omag] * (d - 5)) else .omr = DR[0][omag] + DR[0][omag+1] end | .rnum = .omr + .rnum ) | .rnum end; ## Jsish This covers both Encode (toRoman) and Decode (fromRoman). /* Roman numerals, in Jsish */ var Roman = { ord: ['M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I'], val: [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1], fromRoman: function(roman:string):number { var n = 0; var re = /IV|IX|I|V|XC|XL|X|L|CD|CM|C|D|M/g; var matches = roman.match(re); if (!matches) return NaN; for (var hit of matches) n += this.val[this.ord.indexOf(hit)]; return n; }, toRoman: function(n:number):string { var roman = ''; var idx = 0; while (n > 0) { while (n >= this.val[idx]) { roman += this.ord[idx]; n -= this.val[idx]; } idx++; } return roman; } }; provide('Roman', 1); if (Interp.conf('unitTest')) { ; Roman.fromRoman('VIII'); ; Roman.fromRoman('MMMDIV'); ; Roman.fromRoman('CDIV'); ; Roman.fromRoman('MDCLXVI'); ; Roman.fromRoman('not'); ; Roman.toRoman(8); ; Roman.toRoman(3504); ; Roman.toRoman(404); ; Roman.toRoman(1666); } /* =!EXPECTSTART!= Roman.fromRoman('VIII') ==> 8 Roman.fromRoman('MMMDIV') ==> 3504 Roman.fromRoman('CDIV') ==> 404 Roman.fromRoman('MDCLXVI') ==> 1666 Roman.fromRoman('not') ==> NaN Roman.toRoman(8) ==> VIII Roman.toRoman(3504) ==> MMMDIV Roman.toRoman(404) ==> CDIV Roman.toRoman(1666) ==> MDCLXVI =!EXPECTEND!= */  Output: prompt jsish -u Roman.jsi [PASS] Roman.jsi ## Julia using Printf function romanencode(n::Integer) if n < 1 || n > 4999 throw(DomainError()) end DR = [["I", "X", "C", "M"] ["V", "L", "D", "MMM"]] rnum = "" for (omag, d) in enumerate(digits(n)) if d == 0 omr = "" elseif d < 4 omr = DR[omag, 1] ^ d elseif d == 4 omr = DR[omag, 1] * DR[omag, 2] elseif d == 5 omr = DR[omag, 2] elseif d < 9 omr = DR[omag, 2] * DR[omag, 1] ^ (d - 5) else omr = DR[omag, 1] * DR[omag + 1, 1] end rnum = omr * rnum end return rnum end testcases = [1990, 2008, 1668] append!(testcases, rand(1:4999, 12)) testcases = unique(testcases) println("Test romanencode, arabic => roman:") for n in testcases @printf("%-4i => %s\n", n, romanencode(n)) end  Output: Test romanencode, arabic => roman: 1990 => MCMXC 2008 => MMVIII 1668 => MDCLXVIII 2928 => MMCMXXVIII 129 => CXXIX 4217 => MMMMCCXVII 1503 => MDIII 2125 => MMCXXV 1489 => MCDLXXXIX 3677 => MMMDCLXXVII 1465 => MCDLXV 1421 => MCDXXI 1642 => MDCXLII 572 => DLXXII 3714 => MMMDCCXIV ## Kotlin val romanNumerals = mapOf( 1000 to "M", 900 to "CM", 500 to "D", 400 to "CD", 100 to "C", 90 to "XC", 50 to "L", 40 to "XL", 10 to "X", 9 to "IX", 5 to "V", 4 to "IV", 1 to "I" ) fun encode(number: Int): String? { if (number > 5000 || number < 1) { return null } var num = number var result = "" for ((multiple, numeral) in romanNumerals.entries) { while (num >= multiple) { num -= multiple result += numeral } } return result } fun main(args: Array<String>) { println(encode(1990)) println(encode(1666)) println(encode(2008)) }  Output: MCMXC MDCLXVI MMVIII  Alternatively: fun Int.toRomanNumeral(): String { fun digit(k: Int, unit: String, five: String, ten: String): String { return when (k) { in 1..3 -> unit.repeat(k) 4 -> unit + five in 5..8 -> five + unit.repeat(k - 5) 9 -> unit + ten else -> throw IllegalArgumentException("k not in range 1..9") } } return when (this) { 0 -> "" in 1..9 -> digit(this, "I", "V", "X") in 10..99 -> digit(this / 10, "X", "L", "C") + (this % 10).toRomanNumeral() in 100..999 -> digit(this / 100, "C", "D", "M") + (this % 100).toRomanNumeral() in 1000..3999 -> "M" + (this - 1000).toRomanNumeral() else -> throw IllegalArgumentException("{this} not in range 0..3999") } }  ## Lasso define br => '\r' // encode roman define encodeRoman(num::integer)::string => { local(ref = array('M'=1000, 'CM'=900, 'D'=500, 'CD'=400, 'C'=100, 'XC'=90, 'L'=50, 'XL'=40, 'X'=10, 'IX'=9, 'V'=5, 'IV'=4, 'I'=1)) local(out = string) with i in #ref do => { while(#num >= #i->second) => { #out->append(#i->first) #num -= #i->second } } return #out } '1990 in roman is '+encodeRoman(1990) br '2008 in roman is '+encodeRoman(2008) br '1666 in roman is '+encodeRoman(1666)  ## LaTeX The macro \Roman is defined for uppercase roman numeral, accepting as argument a name of an existing counter. \documentclass{minimal} \newcounter{currentyear} \setcounter{currentyear}{\year} \begin{document} Anno Domini \Roman{currentyear} \end{document}  ## LiveCode function toRoman intNum local roman,numArabic put "M,CM,D,CD,C,XC,L,XL,X,IX,V,IV,I" into romans put "1000,900,500,400,100,90,50,40,10,9,5,4,1" into arabics put intNum into numArabic repeat with n = 1 to the number of items of romans put numArabic div item n of arabics into nums if nums > 0 then put repeatChar(item n of romans,nums) after roman add -(nums * item n of arabics) to numArabic end if end repeat return roman end toRoman function repeatChar c n local cc repeat n times put c after cc end repeat return cc end repeatChar Examples toRoman(2009) -- MMIX toRoman(1666) -- MDCLXVI toRoman(1984) -- MCMLXXXIV toRoman(3888) -- MMMDCCCLXXXVIII ## Logo make "roman.rules [ [1000 M] [900 CM] [500 D] [400 CD] [ 100 C] [ 90 XC] [ 50 L] [ 40 XL] [ 10 X] [ 9 IX] [ 5 V] [ 4 IV] [ 1 I] ] to roman :n [:rules :roman.rules] [:acc "||] if empty? :rules [output :acc] if :n < first first :rules [output (roman :n bf :rules :acc)] output (roman :n - first first :rules :rules word :acc last first :rules) end Works with: UCB Logo make "patterns [[?] [? ?] [? ? ?] [? ?2] [?2] [?2 ?] [?2 ? ?] [?2 ? ? ?] [? ?3]] to digit :d :numerals if :d = 0 [output "||] output apply (sentence "\( "word (item :d :patterns) "$$) :numerals
end
to digits :n :numerals
output word ifelse :n < 10 ["||] [digits int :n/10 bf bf :numerals] ~
digit modulo :n 10 :numerals
end
to roman :n
if or :n < 0 :n >= 4000 [output [EX MODVS!]]
output digits :n [I V X L C D M]
end

print roman 1999  ; MCMXCIX
print roman 25    ; XXV
print roman 944   ; CMXLIV

## LOLCODE

HAI 1.2
I HAS A Romunz ITZ A BUKKIT
Romunz HAS A SRS  0 ITZ "M"
Romunz HAS A SRS  1 ITZ "CM"
Romunz HAS A SRS  2 ITZ "D"
Romunz HAS A SRS  3 ITZ "CD"
Romunz HAS A SRS  4 ITZ "C"
Romunz HAS A SRS  5 ITZ "XC"
Romunz HAS A SRS  6 ITZ "L"
Romunz HAS A SRS  7 ITZ "XL"
Romunz HAS A SRS  8 ITZ "X"
Romunz HAS A SRS  9 ITZ "IX"
Romunz HAS A SRS 10 ITZ "V"
Romunz HAS A SRS 11 ITZ "IV"
Romunz HAS A SRS 12 ITZ "I"

I HAS A Valuez ITZ A BUKKIT
Valuez HAS A SRS  0 ITZ 1000
Valuez HAS A SRS  1 ITZ  900
Valuez HAS A SRS  2 ITZ  500
Valuez HAS A SRS  3 ITZ  400
Valuez HAS A SRS  4 ITZ  100
Valuez HAS A SRS  5 ITZ   90
Valuez HAS A SRS  6 ITZ   50
Valuez HAS A SRS  7 ITZ   40
Valuez HAS A SRS  8 ITZ   10
Valuez HAS A SRS  9 ITZ    9
Valuez HAS A SRS 10 ITZ    5
Valuez HAS A SRS 11 ITZ    4
Valuez HAS A SRS 12 ITZ    1

HOW IZ I Romunize YR Num
I HAS A Result ITZ ""
IM IN YR Outer UPPIN YR Dummy TIL BOTH SAEM Num AN 0
IM IN YR Inner UPPIN YR Index TIL BOTH SAEM Index AN 13
BOTH SAEM Num AN BIGGR OF Num AN Valuez'Z SRS Index, O RLY?
YA RLY
Num R DIFF OF Num AN Valuez'Z SRS Index
Result R SMOOSH Result Romunz'Z SRS Index MKAY
GTFO
OIC
IM OUTTA YR Inner
IM OUTTA YR Outer
FOUND YR Result
IF U SAY SO

VISIBLE SMOOSH 2009 " = " I IZ Romunize YR 2009 MKAY MKAY
VISIBLE SMOOSH 1666 " = " I IZ Romunize YR 1666 MKAY MKAY
VISIBLE SMOOSH 3888 " = " I IZ Romunize YR 3888 MKAY MKAY
KTHXBYE
Output:
2009 = MMIX
1666 = MDCLXVI
3888 = MMMDCCCLXXXVIII

## LotusScript

Function toRoman(value) As String
Dim arabic(12) As Integer
Dim roman(12) As String

arabic(0) = 1000
arabic(1) = 900
arabic(2) = 500
arabic(3) = 400
arabic(4) = 100
arabic(5) = 90
arabic(6) = 50
arabic(7) = 40
arabic(8) = 10
arabic(9) = 9
arabic(10) = 5
arabic(11) = 4
arabic(12) = 1

roman(0) = "M"
roman(1) = "CM"
roman(2) = "D"
roman(3) = "CD"
roman(4) = "C"
roman(5) = "XC"
roman(6) = "L"
roman(7) = "XL"
roman(8) = "X"
roman(9) = "IX"
roman(10) = "V"
roman(11) = "IV"
roman(12) = "I"

Dim i As Integer, result As String

For i = 0 To 12
Do While value >= arabic(i)
result = result + roman(i)
value = value - arabic(i)
Loop
Next i

toRoman = result
End Function

## Lua

romans = {
{1000, "M"},
{900, "CM"}, {500, "D"}, {400, "CD"}, {100, "C"},
{90, "XC"}, {50, "L"}, {40, "XL"}, {10, "X"},
{9, "IX"}, {5, "V"}, {4, "IV"}, {1, "I"} }

k = io.read() + 0
for _, v in ipairs(romans) do --note that this is -not- ipairs.
val, let = unpack(v)
while k >= val do
k = k - val
io.write(let)
end
end
print()


## M4

define(roman',ifelse(eval($1>=1000),1,M'roman(eval($1-1000))',
ifelse(eval($1>=900),1,CM'roman(eval($1-900))',
ifelse(eval($1>=500),1,D'roman(eval($1-500))',
ifelse(eval($1>=100),1,C'roman(eval($1-100))',
ifelse(eval($1>=90),1,XC'roman(eval($1-90))',
ifelse(eval($1>=50),1,L'roman(eval($1-50))',
ifelse(eval($1>=40),1,XL'roman(eval($1-40))',
ifelse(eval($1>=10),1,X'roman(eval($1-10))',
ifelse(eval($1>=9),1,IX'roman(eval($1-9))',
ifelse(eval($1>=5),1,V'roman(eval($1-5))',
ifelse(eval($1>=4),1,IV'roman(eval($1-4))',
ifelse(eval($1>=1),1,I'roman(eval($1-1))'
)')')')')')')')')')')')')dnl
dnl
roman(3675)
Output:
MMMDCLXXV


## Maple

> for n in [ 1666, 1990, 2008 ] do printf( "%d\t%s\n", n, convert( n, 'roman' ) ) end:
1666    MDCLXVI
1990    MCMXC
2008    MMVIII

## Mathematica/Wolfram Language

RomanNumeral is a built-in function in the Wolfram language. Examples:

RomanNumeral[4]
RomanNumeral[99]
RomanNumeral[1337]
RomanNumeral[1666]
RomanNumeral[6889]


gives back:

IV
XCIX
MCCCXXXVII
MDCLXVI
MMMMMMDCCCLXXXIX

## Mercury

The non-ceremonial work in this program starts at the function to_roman/1. Unusually for Mercury the function is semi-deterministic. This is because some of the helper functions it calls are also semi-deterministic and the determinism subsystem propagates the status upward. (There are ways to stop it from doing this, but it would distract from the actual Roman numeral conversion process so the semi-determinism has been left in.)

to_roman/1 is just a string of chained function calls. The number is passed in as a string (and the main/2 predicate ensures that it is *only* digits!) is converted into a list of characters. This list is then reversed and the Roman numeral version is built from it. This resulting character list is then converted back into a string and returned.

build_roman/1 takes the lead character off the list (reversed numerals) and then recursively calls itself. It uses the promote/2 predicate to multiply the ensuing Roman numerals (if any) by an order of magnitude and converts the single remaining digit to the appropriate list of Roman numerals. To clarify, if it's passed the number "123" (encoded by this point as ['3', '2', '1']) the following transpires:

• The '3' is removed and build_roman/1 is now called with ['2', '1'].
• The '2' is removed and the function is recursively called with ['1'].
• The '1' is removed and the function is recursively called with [] (the empty list)..
• The function returns [].
• The [] has its (non-existent) digits promoted and then gets ['I'] appended (1 converts to ['I'] via digit_to_roman/1).
• The ['I'] has its (single) digit promoted and is converted to ['X'] and then gets ['I','I'] appended from the 2's conversion. The resulting list is now ['X','I','I'] (or 12).
• The ['X','I','I'] has all of its digits promoted, yielding ['C','X','X'] before getting ['I','I','I'] appended. The resulting list is now ['C','X','X','I','I','I'] which is converted into the string "CXXIII" back up in to_roman/1.

It is possible for this to be implemented differently even keeping the same algorithm. For example the map module from the standard library could be used for looking up conversions and promotions instead of having digit_to_roman/1 and promote. This would require, however, either passing around the conversion tables constantly (bulking up the parameter lists of all functions and predicates) or creating said conversion tables each time at point of use (slowing down the implementation greatly).

Now the semi-determinism of the functions involved is a little bit of a problem. In the main/2 predicate you can see one means of dealing with it. main/2 *must* be deterministic (or cc_multi, but this is equivalent for this discussion). There can be *no* failure in a called function or predicate … unless that failure is explicitly handled somehow. In this implementation the failure is handled in the foldl/4's provided higher-order predicate lambda. The call to to_roman/1 is called within a conditional and both the success (true) and failure (false) branches are handled. This makes the passed-in predicate lambda deterministic, even though the implementation functions and predicates are semi-deterministic.

But why are they semi-deterministic? Well, this has to do with the type system. It doesn't permit sub-typing, so when the type of a predicate is, say pred(char, char) (as is the case for promote/2), the underlying implementation *must* handle *all* values that a type char could possibly hold. It is trivial to see that our code does not. This means that, in theory, it is possible that promote/2 (or digit_to_roman/1) could be passed a value which cannot be processed, thus triggering a false result, and thus being semi-deterministic.

### roman.m

:- module roman.

:- interface.

:- import_module io.

:- pred main(io::di, io::uo) is det.

:- implementation.

:- import_module char, int, list, string.

main(!IO) :-
command_line_arguments(Args, !IO),
filter(is_all_digits, Args, CleanArgs),
foldl((pred(Arg::in, !.IO::di, !:IO::uo) is det :-
( Roman = to_roman(Arg) ->
format("%s => %s", [s(Arg), s(Roman)], !IO), nl(!IO)
;     format("%s cannot be converted.", [s(Arg)], !IO), nl(!IO) )
), CleanArgs, !IO).

:- func to_roman(string::in) = (string::out) is semidet.
to_roman(Number) = from_char_list(build_roman(reverse(to_char_list(Number)))).

:- func build_roman(list(char)) = list(char).
:- mode build_roman(in)         = out is semidet.
build_roman([]) = [].
build_roman([D|R]) = Roman :-
map(promote, build_roman(R), Interim),
Roman = Interim ++ digit_to_roman(D).

:- func digit_to_roman(char) = list(char).
:- mode digit_to_roman(in)   = out is semidet.
digit_to_roman('0') = [].
digit_to_roman('1') = ['I'].
digit_to_roman('2') = ['I','I'].
digit_to_roman('3') = ['I','I','I'].
digit_to_roman('4') = ['I','V'].
digit_to_roman('5') = ['V'].
digit_to_roman('6') = ['V','I'].
digit_to_roman('7') = ['V','I','I'].
digit_to_roman('8') = ['V','I','I','I'].
digit_to_roman('9') = ['I','X'].

:- pred promote(char::in, char::out) is semidet.
promote('I', 'X').
promote('V', 'L').
promote('X', 'C').
promote('L', 'D').
promote('C', 'M').

:- end_module roman.
Output:
 $'''mmc roman && ./roman 1 8 27 64 125 216 343 512 729 1000 1331 1728 2197 2744 3375''' ''1 => I'' ''8 => VIII'' ''27 => XXVII'' ''64 => LXIV'' ''125 => CXXV'' ''216 => CCXVI'' ''343 => CCCXLIII'' ''512 => DXII'' ''729 => DCCXXIX'' ''1000 => M'' ''1331 => MCCCXXXI'' ''1728 => MDCCXXVIII'' ''2197 => MMCXCVII'' ''2744 => MMDCCXLIV'' ''3375 => MMMCCCLXXV''  ### roman2.m Another implementation using an algorithm inspired by the Erlang implementation could look like this: :- module roman2. :- interface. :- import_module io. :- pred main(io::di, io::uo) is det. :- implementation. :- import_module char, int, list, string. main(!IO) :- command_line_arguments(Args, !IO), filter_map(to_int, Args, CleanArgs), foldl((pred(Arg::in, !.IO::di, !:IO::uo) is det :- ( Roman = to_roman(Arg) -> format("%i => %s", [i(Arg), s(from_char_list(Roman))], !IO), nl(!IO) ; format("%i cannot be converted.", [i(Arg)], !IO), nl(!IO) ) ), CleanArgs, !IO). :- func to_roman(int) = list(char). :- mode to_roman(in) = out is semidet. to_roman(N) = ( N >= 1000 -> ['M'] ++ to_roman(N - 1000) ;( N >= 100 -> digit(N / 100, 'C', 'D', 'M') ++ to_roman(N rem 100) ;( N >= 10 -> digit(N / 10, 'X', 'L', 'C') ++ to_roman(N rem 10) ;( N >= 1 -> digit(N, 'I', 'V', 'X') ; [] ) ) ) ). :- func digit(int, char, char, char) = list(char). :- mode digit(in, in, in, in) = out is semidet. digit(1, X, _, _) = [X]. digit(2, X, _, _) = [X, X]. digit(3, X, _, _) = [X, X, X]. digit(4, X, Y, _) = [X, Y]. digit(5, _, Y, _) = [Y]. digit(6, X, Y, _) = [Y, X]. digit(7, X, Y, _) = [Y, X, X]. digit(8, X, Y, _) = [Y, X, X, X]. digit(9, X, _, Z) = [X, Z]. :- end_module roman2. This implementation calculates the value of the thousands, then the hundreds, then the tens, then the ones. In each case it uses the digit/4 function and some tricks with unification to build the appropriate list of characters for the digit and multiplier being targeted. Its output is identical to that of the previous version. ## Modula-2 Translation of: DWScript Works with: ADW Modula-2 version any (Compile with the linker option Console Application). MODULE RomanNumeralsEncode; FROM Strings IMPORT Append; FROM STextIO IMPORT WriteString, WriteLn; CONST MaxChars = 15; (* 3888 or MMMDCCCLXXXVIII (15 chars) is the longest string properly encoded with these symbols. *) TYPE TRomanNumeral = ARRAY [0 .. MaxChars - 1] OF CHAR; PROCEDURE ToRoman(AValue: CARDINAL; VAR OUT Destination: ARRAY OF CHAR); TYPE TRomanSymbols = ARRAY [0 .. 1] OF CHAR; TWeights = ARRAY [0 .. 12] OF CARDINAL; TSymbols = ARRAY [0 .. 12] OF TRomanSymbols; CONST Weights = TWeights {1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1}; Symbols = TSymbols {"M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"}; VAR I: CARDINAL; BEGIN Destination := ""; I := 0; WHILE (I <= HIGH(Weights)) AND (AValue > 0) DO WHILE AValue >= Weights[I] DO Append(Symbols[I], Destination); AValue := AValue - Weights[I] END; INC(I); END; END ToRoman; VAR Numeral: TRomanNumeral; BEGIN ToRoman(1990, Numeral); WriteString(Numeral); WriteLn; (* MCMXC *) ToRoman(2018, Numeral); WriteString(Numeral); WriteLn; (* MMXVIII *) ToRoman(3888, Numeral); WriteString(Numeral); WriteLn; (* MMMDCCCLXXXVIII *) END RomanNumeralsEncode.  Output: MCMXC MMXVIII MMMDCCCLXXXVIII  ## MUMPS TOROMAN(INPUT) ;Converts INPUT into a Roman numeral. INPUT must be an integer between 1 and 3999 ;OUTPUT is the string to return ;I is a loop variable ;CURRVAL is the current value in the loop QUIT:($FIND(INPUT,".")>1)!(INPUT<=0)!(INPUT>3999) "Invalid input"
NEW OUTPUT,I,CURRVAL
SET OUTPUT="",CURRVAL=INPUT
SET:$DATA(ROMANNUM)=0 ROMANNUM="I^IV^V^IX^X^XL^L^XC^C^CD^D^CM^M" SET:$DATA(ROMANVAL)=0 ROMANVAL="1^4^5^9^10^40^50^90^100^400^500^900^1000"
FOR I=$LENGTH(ROMANVAL,"^"):-1:1 DO .FOR Q:CURRVAL<$PIECE(ROMANVAL,"^",I)  SET OUTPUT=OUTPUT_$PIECE(ROMANNUM,"^",I),CURRVAL=CURRVAL-$PIECE(ROMANVAL,"^",I)
KILL I,CURRVAL
QUIT OUTPUT
Output:
USER>W $$ROMAN^ROSETTA(1666) MDCLXVI USER>W$$TOROMAN^ROSETTA(2010)
MMX
USER>W $$TOROMAN^ROSETTA(949) CMXLIX USER>W$$TOROMAN^ROSETTA(949.24)
Invalid input
USER>W TOROMAN^ROSETTA(-949) Invalid input Another variant TOROMAN(n) ;return empty string if input parameter 'n' is not in 1-3999 Quit:(n'?1.4N)!(n'<4000)!'n "" New r Set r="" New p Set p=Length(n) New j,x For j=1:1:p Do . Set x=Piece("~I~II~III~IV~V~VI~VII~VIII~IX","~",Extract(n,j)+1) . Set x=Translate(x,"IVX",Piece("IVX~XLC~CDM~M","~",p-j+1)) . Set r=r_x Quit r ## Nim Translation of: Python import strutils const nums = [(1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"), (90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"), (5, "V"), (4, "IV"), (1, "I")] proc toRoman(n: Positive): string = var n = n.int for (a, r) in nums: result.add(repeat(r, n div a)) n = n mod a for i in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 25, 30, 40, 50, 60, 69, 70, 80, 90, 99, 100, 200, 300, 400, 500, 600, 666, 700, 800, 900, 1000, 1009, 1444, 1666, 1945, 1997, 1999, 2000, 2008, 2010, 2011, 2500, 3000, 3999]: echo (i).align(4), ": ", i.toRoman  Output:  1: I 2: II 3: III 4: IV 5: V 6: VI 7: VII 8: VIII 9: IX 10: X 11: XI 12: XII 13: XIII 14: XIV 15: XV 16: XVI 17: XVII 18: XVIII 19: XIX 20: XX 25: XXV 30: XXX 40: XL 50: L 60: LX 69: LXIX 70: LXX 80: LXXX 90: XC 99: XCIX 100: C 200: CC 300: CCC 400: CD 500: D 600: DC 666: DCLXVI 700: DCC 800: DCCC 900: CM 1000: M 1009: MIX 1444: MCDXLIV 1666: MDCLXVI 1945: MCMXLV 1997: MCMXCVII 1999: MCMXCIX 2000: MM 2008: MMVIII 2010: MMX 2011: MMXI 2500: MMD 3000: MMM 3999: MMMCMXCIX ## Objeck Translation of: C sharp bundle Default { class Roman { nums: static : Int[]; rum : static : String[]; function : Init() ~ Nil { nums := [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1]; rum := ["M", "CM", "D", "CD", "C", "XC", "L", "XL", "X", "IX", "V", "IV", "I"]; } function : native : ToRoman(number : Int) ~ String { result := ""; for(i :=0; i < nums->Size(); i += 1;) { while(number >= nums[i]) { result->Append(rum[i]); number -= nums[i]; }; }; return result; } function : Main(args : String[]) ~ Nil { Init(); ToRoman(1999)->PrintLine(); ToRoman(25)->PrintLine(); ToRoman(944)->PrintLine(); } } } ## OCaml With an explicit decimal digit representation list: let digit x y z = function 1 -> [x] | 2 -> [x;x] | 3 -> [x;x;x] | 4 -> [x;y] | 5 -> [y] | 6 -> [y;x] | 7 -> [y;x;x] | 8 -> [y;x;x;x] | 9 -> [x;z] let rec to_roman x = if x = 0 then [] else if x < 0 then invalid_arg "Negative roman numeral" else if x >= 1000 then 'M' :: to_roman (x - 1000) else if x >= 100 then digit 'C' 'D' 'M' (x / 100) @ to_roman (x mod 100) else if x >= 10 then digit 'X' 'L' 'C' (x / 10) @ to_roman (x mod 10) else digit 'I' 'V' 'X' x  Output: # to_roman 1999;; - : char list = ['M'; 'C'; 'M'; 'X'; 'C'; 'I'; 'X'] # to_roman 25;; - : char list = ['X'; 'X'; 'V'] # to_roman 944;; - : char list = ['C'; 'M'; 'X'; 'L'; 'I'; 'V']  ## Oforth [ [1000,"M"], [900,"CM"], [500,"D"], [400,"CD"], [100,"C"], [90,"XC"], [50,"L"], [40,"XL"], [10,"X"], [9,"IX"], [5,"V"], [4,"IV"], [1,"I"] ] const: Romans : roman(n) | r | StringBuffer new Romans forEach: r [ while(r first n <=) [ r second << n r first - ->n ] ] ; ## OpenEdge/Progress FUNCTION encodeRoman RETURNS CHAR ( i_i AS INT ): DEF VAR cresult AS CHAR. DEF VAR croman AS CHAR EXTENT 7 INIT [ "M", "D", "C", "L", "X", "V", "I" ]. DEF VAR idecimal AS INT EXTENT 7 INIT [ 1000, 500, 100, 50, 10, 5, 1 ]. DEF VAR ipos AS INT INIT 1. DO WHILE i_i > 0: IF i_i - idecimal[ ipos ] >= 0 THEN ASSIGN cresult = cresult + croman[ ipos ] i_i = i_i - idecimal[ ipos ] . ELSE IF ipos < EXTENT( croman ) - 1 AND i_i - ( idecimal[ ipos ] - idecimal[ ipos + 2 ] ) >= 0 THEN ASSIGN cresult = cresult + croman[ ipos + 2 ] + croman[ ipos ] i_i = i_i - ( idecimal[ ipos ] - idecimal[ ipos + 2 ] ) ipos = ipos + 1 . ELSE ipos = ipos + 1. END. RETURN cresult. END FUNCTION. /* encodeRoman */ MESSAGE 1990 encodeRoman( 1990 ) SKIP 2008 encodeRoman( 2008 ) SKIP 2000 encodeRoman( 2000 ) SKIP 1666 encodeRoman( 1666 ) SKIP VIEW-AS ALERT-BOX.  Output: --------------------------- Message (Press HELP to view stack trace) --------------------------- 1990 MCMXC 2008 MMVIII 2000 MM 1666 MDCLXVI --------------------------- OK Help --------------------------- ## Oz Translation of: Haskell declare fun {Digit X Y Z K} unit([X] [X X] [X X X] [X Y] [Y] [Y X] [Y X X] [Y X X X] [X Z]) .K end fun {ToRoman X} if X == 0 then "" elseif X < 0 then raise toRoman(negativeInput X) end elseif X >= 1000 then "M"#{ToRoman X-1000} elseif X >= 100 then {Digit &C &D &M X div 100}#{ToRoman X mod 100} elseif X >= 10 then {Digit &X &L &C X div 10}#{ToRoman X mod 10} else {Digit &I &V &X X} end end in {ForAll {Map [1999 25 944] ToRoman} System.showInfo} ## PARI/GP Old-style Roman numerals oldRoman(n)={ while(n>999999, n-=1000000; print1("((((I))))") ); if(n>499999, n-=500000; print1("I))))") ); while(n>99999, n-=100000; print1("(((I)))") ); if(n>49999, n-=50000; print1("I)))") ); while(n>9999, n-=10000; print1("((I))") ); if(n>4999, n-=5000; print1("I))") ); while(n>999, n-=1000; print1("(I)") ); if(n>499, n-=500; print1("I)") ); while(n>99, n-=100; print1("C") ); if(n>49, n-=50; print1("L"); ); while(n>9, n-=10; print1("X") ); if(n>4, n-=5; print1("V"); ); while(n, n--; print1("I") ); print() }; This simple version of medieval Roman numerals does not handle large numbers. medievalRoman(n)={ while(n>999, n-=1000; print1("M") ); if(n>899, n-=900; print1("CM") ); if(n>499, n-=500; print1("D") ); if(n>399, n-=400; print1("CD") ); while(n>99, n-=100; print1("C") ); if(n>89, n-=90; print1("XC") ); if(n>49, n-=50; print1("L") ); if(n>39, n-=40; print1("XL") ); while(n>9, n-=10; print1("X") ); if(n>8, n-=9; print1("IX") ); if(n>4, n-=5; print1("V") ); if(n>3, n-=4; print1("IV") ); while(n, n--; print1("I") ); print() }; ## Pascal See Delphi ## Peloton Roman numbers are built in to Peloton as a particular form of national number. However, for the sake of the task the _RO opcode has been defined. <@ DEFUDOLITLIT>_RO|__Transformer|<@ DEFKEYPAR>__NationalNumericID|2</@><@ LETRESCS%NNMPAR>...|1</@></@> <@ ENUDLSTLITLIT>1990,2008,1,2,64,124,1666,10001|,|
<@ SAYELTLST>...</@> is <@ SAY_ROELTLSTLIT>...|RomanLowerUnicode</@> <@ SAY_ROELTLSTLIT>...|RomanUpperUnicode</@> <@ SAY_ROELTLSTLIT>...|RomanASCII</@>
</@>

Same code in padded-out, variable-length English dialect

<# DEFINE USERDEFINEDOPCODE LITERAL LITERAL>_RO|__Transformer|<# DEFINE KEYWORD PARAMETER>__NationalNumericID|2</#><# LET RESULT CAST NATIONALNUMBER PARAMETER>...|1</#></#>

<# ENUMERATION LAMBDASPECIFIEDDELMITER LIST LITERAL LITERAL>1990,2008,1,2,64,124,1666,10001|,|
<# SAY ELEMENT LIST>...</#> is <# SAY _RO ELEMENT LIST LITERAL>...|RomanLowerUnicode</#> <# SAY _RO ELEMENT LIST LITERAL>...|RomanUpperUnicode</#> <# SAY _RO ELEMENT LIST LITERAL>...|RomanASCII</#>
</#>
Output:
Notice here the three different ways of representing the results.

For reasons for notational differences, see wp:Roman_numerals#Alternate_forms

1990 is ⅿⅽⅿⅹⅽ ⅯⅭⅯⅩⅭ MCMXC
2008 is ⅿⅿⅷ ⅯⅯⅧ MMVIII
1 is ⅰ Ⅰ I
2 is ⅱ Ⅱ II
64 is ⅼⅹⅳ ⅬⅩⅣ LXIV
124 is ⅽⅹⅹⅳ ⅭⅩⅩⅣ CXXIV
1666 is ⅿⅾⅽⅼⅹⅵ ⅯⅮⅭⅬⅩⅥ MDCLXVI
10001 is ⅿⅿⅿⅿⅿⅿⅿⅿⅿⅿⅰ ↂⅠ MMMMMMMMMMI

## Perl

#### Simple program

Simple, fast, produces same output as the Math::Roman module and the Raku example, less crazy than writing a Latin program, and doesn't require experimental modules like the Raku translation.

my @symbols = ( [1000, 'M'], [900, 'CM'], [500, 'D'], [400, 'CD'], [100, 'C'], [90, 'XC'], [50, 'L'], [40, 'XL'], [10, 'X'], [9, 'IX'], [5, 'V'], [4, 'IV'], [1, 'I']  );

sub roman {
my($n,$r) = (shift, '');
($r,$n) = ('-', -$n) if$n < 0;  # Optional handling of negative input
foreach my $s (@symbols) { my($arabic, $roman) = @$s;
($r,$n) = ($r .=$roman x int($n/$arabic),  $n %$arabic)
if $n >=$arabic;
}
$r; } say roman($_) for 1..2012;


#### Using a module

use Math::Roman qw/roman/;
say roman($_) for 1..2012'  #### Ported version of Raku use List::MoreUtils qw( natatime ); my %symbols = ( 1 => "I", 5 => "V", 10 => "X", 50 => "L", 100 => "C", 500 => "D", 1_000 => "M" ); my @subtractors = ( 1_000, 100, 500, 100, 100, 10, 50, 10, 10, 1, 5, 1, 1, 0 ); sub roman { return '' if 0 == (my$n = shift);
my $iter = natatime 2, @subtractors; while( my ($cut, $minus) =$iter->() ) {
$n >=$cut
and return $symbols{$cut} . roman($n -$cut);
$n >=$cut - $minus and return$symbols{$minus} . roman($n + $minus); } }; print roman($_) . "\n" for 1..2012;


## Phix

function toRoman(integer v)
constant roman  = {"M", "CM", "D","CD", "C","XC","L","XL","X","IX","V","IV","I"},
decml  = {1000, 900, 500, 400, 100, 90, 50,  40,  10,  9,  5,   4,  1 }
string res = ""
integer val = v
for i=1 to length(roman) do
while val>=decml[i] do
res &= roman[i]
val -= decml[i]
end while
end for
--  return res
return {v,res}  -- (for output)
end function

?apply({1990,2008,1666},toRoman)

Output:
{{1990,"MCMXC"},{2008,"MMVIII"},{1666,"MDCLXVI"}}


## Phixmonti

include ..\Utilitys.pmt

def romanEnc   /# n -- s #/
var number
"" var res
( ( 1000 "M" ) ( 900 "CM" ) ( 500 "D" ) ( 400 "CD" ) ( 100 "C" ) ( 90 "XC" )
( 50 "L" ) ( 40 "XL" ) ( 10 "X" ) ( 9 "IX" ) ( 5 "V" ) ( 4 "IV" ) ( 1 "I" ) )

len for
get 1 get
number over / int
number rot mod var number
swap 2 get rot dup if
for drop res over chain var res endfor
else
drop
endif
drop drop
endfor
drop
res
enddef

1968 romanEnc print
Translation of: Lua
def romanEnc   /# n -- s #/
var k
( ( 1000 "M" ) ( 900 "CM" ) ( 500 "D" ) ( 400 "CD" ) ( 100 "C" ) ( 90 "XC" )
( 50 "L" ) ( 40 "XL" ) ( 10 "X" ) ( 9 "IX" ) ( 5 "V" ) ( 4 "IV" ) ( 1 "I" ) )

len for
get 2 get var let 1 get var val drop
k val >=
while
k val - var k
let print
k val >=
endwhile
endfor
drop nl
enddef

1968 romanEnc

Without vars

def romanEnc   /# n -- s #/
>ps
( ( 1000 "M" ) ( 900 "CM" ) ( 500 "D" ) ( 400 "CD" ) ( 100 "C" ) ( 90 "XC" )
( 50 "L" ) ( 40 "XL" ) ( 10 "X" ) ( 9 "IX" ) ( 5 "V" ) ( 4 "IV" ) ( 1 "I" ) )

len for
get 2 get swap 1 get nip
tps over >=
while
ps> over - >ps
over print
tps over >=
endwhile
drop drop
endfor
ps> drop drop nl
enddef

1968 romanEnc

## PHP

Works with: PHP version 4+ tested in 5.2.12
/**
* int2roman
* Convert any positive value of a 32-bit signed integer to its modern roman
* numeral representation. Numerals within parentheses are multiplied by
* 1000. ie. M == 1 000, (M) == 1 000 000, ((M)) == 1 000 000 000
*
* @param number - an integer between 1 and 2147483647
* @return roman numeral representation of number
*/
function int2roman($number) { if (!is_int($number) || $number < 1) return false; // ignore negative numbers and zero$integers = array(900, 500,  400, 100,   90,  50,   40,  10,    9,   5,    4,   1);
$numerals = array('CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I');$major = intval($number / 1000) * 1000;$minor = $number -$major;
$numeral =$leastSig = '';

for ($i = 0;$i < sizeof($integers);$i++) {
while ($minor >=$integers[$i]) {$leastSig .= $numerals[$i];
$minor -=$integers[$i]; } } if ($number >= 1000 && $number < 40000) { if ($major >= 10000) {
$numeral .= '('; while ($major >= 10000) {
$numeral .= 'X';$major -= 10000;
}
$numeral .= ')'; } if ($major == 9000) {
$numeral .= 'M(X)'; return$numeral . $leastSig; } if ($major == 4000) {
$numeral .= 'M(V)'; return$numeral . $leastSig; } if ($major >= 5000) {
$numeral .= '(V)';$major -= 5000;
}
while ($major >= 1000) {$numeral .= 'M';
$major -= 1000; } } if ($number >= 40000) {
$major =$major/1000;
$numeral .= '(' . int2roman($major) . ')';
}

return $numeral .$leastSig;
}


## Picat

go =>
List = [455,999,1990,1999,2000,2001,2008,2009,2010,2011,2012,1666,3456,3888,4000],
foreach(Val in List)
printf("%4d: %w\n", Val, roman_encode(Val))
end,
nl.

roman_encode(Val) = Res =>
if Val <= 0 then
Res := -1
else
Arabic = [1000, 900, 500, 400,  100, 90,  50, 40,  10,  9,  5,  4,   1],
Roman  = ["M", "CM", "D", "CD", "C", "XC","L","XL","X","IX","V","IV","I"],
Res = "",
foreach(I in 1..Arabic.length)
while(Val >= Arabic[I])
Res := Res ++ Roman[I],
Val := Val - Arabic[I]
end
end
end.
Output:
 455: CDLV
999: CMXCIX
1990: MCMXC
1999: MCMXCIX
2000: MM
2001: MMI
2008: MMVIII
2009: MMIX
2010: MMX
2011: MMXI
2012: MMXII
1666: MDCLXVI
3456: MMMCDLVI
3888: MMMDCCCLXXXVIII
4000: MMMM

### Longest numeral

Which number encodes to the longest Roman numerals in the interval 1..4000:

go2 =>
All = [Len=I=roman_encode(I) : I in 1..4000,E=roman_encode(I), Len=E.len].sort_down,
println(All[1..2]),
nl.
Output:
[15 = 3888 = MMMDCCCLXXXVIII,14 = 3887 = MMMDCCCLXXXVII]

## PicoLisp

(de roman (N)
(pack
(make
(mapc
'((C D)
(while (>= N D)
(dec 'N D)
(link C) ) )
'(M CM D CD C XC L XL X IX V IV I)
(1000 900 500 400 100 90 50 40 10 9 5 4 1) ) ) ) )
Output:
: (roman 1009)
-> "MIX"

: (roman 1666)
-> "MDCLXVI"

## Pike

import String;
int main(){
write(int2roman(2009) + "\n");
write(int2roman(1666) + "\n");
write(int2roman(1337) + "\n");
}


## PL/I

/* From Wiki Fortran */
roman: procedure (n) returns(character (32) varying);
declare n fixed binary nonassignable;
declare (d, m) fixed binary;
declare (r, m_div) character (32) varying;
declare d_dec(13) fixed binary static initial
(1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1);
declare d_rom(13) character (2) varying static initial
('M', 'CM', 'D', 'CD', 'C', 'XC', 'L',
'XL', 'X', 'IX', 'V', 'IV', 'I');
r = '';
m = n;
do d = 1 to 13;
m_div = m / d_dec (d);
r = r || copy (d_rom (d), m_div);
m = m - d_dec (d) * m_div;
end;
return (r);
end roman;

Results:

   11                   XI
1990                 MCMXC
2008                 MMVIII
1666                 MDCLXVI
1999                 MCMXCIX


## PL/SQL

/*****************************************************************
* $Author: Atanas Kebedjiev$
*****************************************************************
* Encoding an Arabic numeral to a Roman in the range 1..3999 is much simpler as Oracle provides the conversion formats.
*/

CREATE OR REPLACE
FUNCTION rencode(an IN NUMBER)
RETURN VARCHAR2
IS
BEGIN
END rencode;

BEGIN

DBMS_OUTPUT.PUT_LINE ('2012 = ' || rencode('2012'));     -- MMXII
DBMS_OUTPUT.PUT_LINE ('1951 = ' || rencode('1951'));     -- MCMLI
DBMS_OUTPUT.PUT_LINE ('1987 = ' || rencode('1987'));     -- MCMLXXXVII
DBMS_OUTPUT.PUT_LINE ('1666 = ' || rencode('1666'));     -- MDCLXVI
DBMS_OUTPUT.PUT_LINE ('1999 = ' || rencode('1999'));     -- MCMXCIX

END;

## Plain TeX

TeX has its own way to convert a number into roman numeral, but it produces lowercase letters; the following macro (and usage example), produce uppercase roman numeral.

\def\upperroman#1{\uppercase\expandafter{\romannumeral#1}}
Anno Domini \upperroman{\year}
\bye


## PowerShell

Filter ToRoman {
$output = '' if ($_ -ge 4000) {
throw 'Number too high'
}

$current = 1000$subtractor = 'M'
$whole =$False
$decimal =$_
'C','D','X','L','I','V',' '
| %{
$divisor =$current
if ($whole = !$whole) {
$current /= 10$subtractor = $_ +$subtractor[0]
$_ =$subtractor[1]
}
else {
$divisor *= 5$subtractor = $subtractor[0] +$_
}

$multiple = [Math]::floor($decimal / $divisor) if ($multiple) {
$output += [string]$_ * $multiple$decimal %= $divisor } if ($decimal -ge ($divisor -=$current)) {
$output +=$subtractor
$decimal -=$divisor
}
}

$output }  19,4,0,2479,3001 | ToRoman  Output: XIX IV MMCDLXXIX MMMI  ## Prolog Works with: SWI-Prolog Library: clpfd Library clpfd assures that the program works in both managements : Roman towards Arabic and Arabic towards Roman. :- use_module(library(clpfd)). roman :- LA = [ _ , 2010, _, 1449, _], LR = ['MDCCLXXXIX', _ , 'CX', _, 'MDCLXVI'], maplist(roman, LA, LR), maplist(my_print,LA, LR). roman(A, R) :- A #> 0, roman(A, [u, t, h, th], LR, []), label([A]), parse_Roman(CR, LR, []), atom_chars(R, CR). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % using DCG roman(0, []) --> []. roman(N, [H | T]) --> {N1 #= N / 10, N2 #= N mod 10}, roman(N1, T), unity(N2, H). unity(1, u) --> ['I']. unity(1, t) --> ['X']. unity(1, h) --> ['C']. unity(1, th)--> ['M']. unity(4, u) --> ['IV']. unity(4, t) --> ['XL']. unity(4, h) --> ['CD']. unity(4, th)--> ['MMMM']. unity(5, u) --> ['V']. unity(5, t) --> ['L']. unity(5, h) --> ['D']. unity(5, th)--> ['MMMMM']. unity(9, u) --> ['IX']. unity(9, t) --> ['XC']. unity(9, h) --> ['CM']. unity(9, th)--> ['MMMMMMMMM']. unity(0, _) --> []. unity(V, U)--> {V #> 5, V1 #= V - 5}, unity(5, U), unity(V1, U). unity(V, U) --> {V #> 1, V #< 4, V1 #= V-1}, unity(1, U), unity(V1, U). %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% % Extraction of roman "lexeme" parse_Roman(['C','M'|T]) --> ['CM'], parse_Roman(T). parse_Roman(['C','D'|T]) --> ['CD'], parse_Roman(T). parse_Roman(['X','C'| T]) --> ['XC'], parse_Roman(T). parse_Roman(['X','L'| T]) --> ['XL'], parse_Roman(T). parse_Roman(['I','X'| T]) --> ['IX'], parse_Roman(T). parse_Roman(['I','V'| T]) --> ['IV'], parse_Roman(T). parse_Roman([H | T]) --> [H], parse_Roman(T). parse_Roman([]) --> []. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% my_print(A, R) :- format('~w in roman is ~w~n', [A, R]).  Output:  ?- roman. 1789 in roman is MDCCLXXXIX 2010 in roman is MMX 110 in roman is CX 1449 in roman is MCDXLIX 1666 in roman is MDCLXVI true .  ## Python ### Pythonic import roman print(roman.toRoman(2022))  ### Imperative 1. Version for Python 2 roman = "MDCLXVmdclxvi"; # UPPERCASE for thousands # adjust_roman = "CCXXmmccxxii"; arabic = (1000000, 500000, 100000, 50000, 10000, 5000, 1000, 500, 100, 50, 10, 5, 1); adjust_arabic = (100000, 100000, 10000, 10000, 1000, 1000, 100, 100, 10, 10, 1, 1, 0); def arabic_to_roman(dclxvi): org = dclxvi; # 666 # out = ""; for scale,arabic_scale in enumerate(arabic): if org == 0: break multiples = org / arabic_scale; org -= arabic_scale * multiples; out += roman[scale] * multiples; if org >= -adjust_arabic[scale] + arabic_scale: org -= -adjust_arabic[scale] + arabic_scale; out += adjust_roman[scale] + roman[scale] return out if __name__ == "__main__": test = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25,30,40,50,60,69,70, 80,90,99,100,200,300,400,500,600,666,700,800,900,1000,1009,1444,1666,1945,1997,1999, 2000,2008,2500,3000,4000,4999,5000,6666,10000,50000,100000,500000,1000000); for val in test: print '%d - %s'%(val, arabic_to_roman(val))  An alternative which uses the divmod() function romanDgts= 'ivxlcdmVXLCDM_' def ToRoman(num): namoR = '' if num >=4000000: print 'Too Big -' return '-----' for rdix in range(0, len(romanDgts), 2): if num==0: break num,r = divmod(num,10) v,r = divmod(r, 5) if r==4: namoR += romanDgts[rdix+1+v] + romanDgts[rdix] else: namoR += r*romanDgts[rdix] + (romanDgts[rdix+1] if(v==1) else '') return namoR[-1::-1]  It is more Pythonic to use zip to iterate over two lists together: anums = [1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1] rnums = "M CM D CD C XC L XL X IX V IV I".split() def to_roman(x): ret = [] for a,r in zip(anums, rnums): n,x = divmod(x,a) ret.append(r*n) return ''.join(ret) if __name__ == "__main__": test = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25,30,40, 50,60,69,70,80,90,99,100,200,300,400,500,600,666,700,800,900, 1000,1009,1444,1666,1945,1997,1999,2000,2008,2010,2011,2500, 3000,3999) for val in test: print '%d - %s'%(val, to_roman(val))  1. Version for Python 3 def arabic_to_roman(dclxvi): #=========================== '''Convert an integer from the decimal notation to the Roman notation''' org = dclxvi; # 666 # out = ""; for scale, arabic_scale in enumerate(arabic): if org == 0: break multiples = org // arabic_scale; org -= arabic_scale * multiples; out += roman[scale] * multiples; if (org >= -adjust_arabic[scale] + arabic_scale): org -= -adjust_arabic[scale] + arabic_scale; out += adjust_roman[scale] + roman[scale] return out if __name__ == "__main__": test = (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,25,30,40,50,60,69,70, 80,90,99,100,200,300,400,500,600,666,700,800,900,1000,1009,1444,1666,1945,1997,1999, 2000,2008,2500,3000,4000,4999,5000,6666,10000,50000,100000,500000,1000000); for val in test: print("%8d %s" %(val, arabic_to_roman(val)))  ### Declarative Less readable, but a 'one liner': rnl = [ { '4' : 'MMMM', '3' : 'MMM', '2' : 'MM', '1' : 'M', '0' : '' }, { '9' : 'CM', '8' : 'DCCC', '7' : 'DCC', '6' : 'DC', '5' : 'D', '4' : 'CD', '3' : 'CCC', '2' : 'CC', '1' : 'C', '0' : '' }, { '9' : 'XC', '8' : 'LXXX', '7' : 'LXX', '6' : 'LX', '5' : 'L', '4' : 'XL', '3' : 'XXX', '2' : 'XX', '1' : 'X', '0' : '' }, { '9' : 'IX', '8' : 'VIII', '7' : 'VII', '6' : 'VI', '5' : 'V', '4' : 'IV', '3' : 'III', '2' : 'II', '1' : 'I', '0' : '' }] # Option 1 def number2romannumeral(n): return ''.join([rnl[x][y] for x, y in zip(range(4), str(n).zfill(4)) if n < 5000 and n > -1]) # Option 2 def number2romannumeral(n): return reduce(lambda x, y: x + y, map(lambda x, y: rnl[x][y], range(4), str(n).zfill(4))) if -1 < n < 5000 else None  Or, defining roman in terms of mapAccumL: Works with: Python version 3 Translation of: Haskell '''Encoding Roman Numerals''' from functools import reduce from itertools import chain # romanFromInt :: Int -> String def romanFromInt(n): '''A string of Roman numerals encoding an integer.''' def go(a, ms): m, s = ms q, r = divmod(a, m) return (r, s * q) return concat(snd(mapAccumL(go)(n)( zip([ 1000, 900, 500, 400, 100, 90, 50, 40, 10, 9, 5, 4, 1 ], [ 'M', 'CM', 'D', 'CD', 'C', 'XC', 'L', 'XL', 'X', 'IX', 'V', 'IV', 'I' ]) ))) # ------------------------- TEST ------------------------- # main :: IO () def main(): '''Sample of years''' for s in [ romanFromInt(x) for x in [ 1666, 1990, 2008, 2016, 2018, 2020 ] ]: print(s) # ------------------ GENERIC FUNCTIONS ------------------- # concat :: [[a]] -> [a] # concat :: [String] -> String def concat(xxs): '''The concatenation of all the elements in a list.''' xs = list(chain.from_iterable(xxs)) unit = '' if isinstance(xs, str) else [] return unit if not xs else ( ''.join(xs) if isinstance(xs[0], str) else xs ) # mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y]) def mapAccumL(f): '''A tuple of an accumulation and a list derived by a combined map and fold, with accumulation from left to right.''' def go(a, x): tpl = f(a[0], x) return (tpl[0], a[1] + [tpl[1]]) return lambda acc: lambda xs: ( reduce(go, xs, (acc, [])) ) # snd :: (a, b) -> b def snd(tpl): '''Second component of a tuple.''' return tpl[1] # MAIN --- if __name__ == '__main__': main()  Output: MDCLXVI MCMXC MMVIII MMXVI MMXVIII MMXX ## Quackery Pasting epitomised.  [$ ""
swap 1000 /mod $"M" rot of rot swap join swap dup 900 < not if [ 900 - dip [$ "CM" join ] ]
dup   500 < not if [ 500 - dip [ $"D" join ] ] dup 400 < not if [ 400 - dip [$ "CD" join ] ]
100 /mod $"C" rot of rot swap join swap dup 90 < not if [ 90 - dip [$ "XC" join ] ]
dup    50 < not if [  50 - dip [ $"L" join ] ] dup 40 < not if [ 40 - dip [$ "XL" join ] ]
10 /mod $"X" rot of rot swap join swap dup 9 < not if [ 9 - dip [$ "IX" join ] ]
dup     5 < not if [   5 - dip [ $"V" join ] ] dup 4 < not if [ 4 - dip [$ "IV" join ] ]
$"I" swap of join ] is ->roman ( n -->$ )

1990 dup echo say " = " ->roman echo$cr 2008 dup echo say " = " ->roman echo$ cr
1666 dup echo say " = " ->roman echo$cr Output: 1990 = MCMXC 2008 = MMVIII 1666 = MDCLXVI ## R R has a built-in function, as.roman, for conversion to Roman numerals. The implementation details are found in utils:::.numeric2roman (see previous link), and utils:::.roman2numeric, for conversion back to Arabic decimals. as.roman(1666) # MDCLXVI  Since the object as.roman creates is just an integer vector with a class, you can do arithmetic with Roman numerals: as.roman(1666) + 334 # MM  ## Racket Straight recursion: #lang racket (define (encode/roman number) (cond ((>= number 1000) (string-append "M" (encode/roman (- number 1000)))) ((>= number 900) (string-append "CM" (encode/roman (- number 900)))) ((>= number 500) (string-append "D" (encode/roman (- number 500)))) ((>= number 400) (string-append "CD" (encode/roman (- number 400)))) ((>= number 100) (string-append "C" (encode/roman (- number 100)))) ((>= number 90) (string-append "XC" (encode/roman (- number 90)))) ((>= number 50) (string-append "L" (encode/roman (- number 50)))) ((>= number 40) (string-append "XL" (encode/roman (- number 40)))) ((>= number 10) (string-append "X" (encode/roman (- number 10)))) ((>= number 9) (string-append "IX" (encode/roman (- number 9)))) ((>= number 5) (string-append "V" (encode/roman (- number 5)))) ((>= number 4) (string-append "IV" (encode/roman (- number 4)))) ((>= number 1) (string-append "I" (encode/roman (- number 1)))) (else "")))  Using for/fold and quotient/remainder to remove repetition: #lang racket (define (number->list n) (for/fold ([result null]) ([decimal '(1000 900 500 400 100 90 50 40 10 9 5 4 1)] [roman '(M CM D CD C XC L XL X IX V IV I)]) #:break (= n 0) (let-values ([(q r) (quotient/remainder n decimal)]) (set! n r) (append result (make-list q roman))))) (define (encode/roman number) (string-join (map symbol->string (number->list number)) "")) (for ([n '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 40 50 60 69 70 80 90 99 100 200 300 400 500 600 666 700 800 900 1000 1009 1444 1666 1945 1997 1999 2000 2008 2010 2011 2500 3000 3999)]) (printf "~a ~a\n" n (encode/roman n)))  ## Raku (formerly Perl 6) my %symbols = 1 => "I", 5 => "V", 10 => "X", 50 => "L", 100 => "C", 500 => "D", 1_000 => "M"; my @subtractors = 1_000, 100, 500, 100, 100, 10, 50, 10, 10, 1, 5, 1, 1, 0; multi sub roman (0) { '' } multi sub roman (Int$n) {
for @subtractors -> $cut,$minus {
$n >=$cut
and return %symbols{$cut} ~ roman($n - $cut);$n >= $cut -$minus
and return %symbols{$minus} ~ roman($n + $minus); } } # Sample usage for 1 .. 2_010 ->$x {
say roman($x); }  ## Red Straight iterative solution: table: [1000 M 900 CM 500 D 400 CD 100 C 90 XC 50 L 40 XL 10 X 5 V 4 IV 1 I] to-Roman: function [n [integer!] return: [string!]][ out: copy "" foreach [a r] table [while [n >= a][append out r n: n - a]] out ] foreach number [40 33 1888 2016][print [number ":" to-Roman number]]  Straight recursive solution: table: [1000 M 900 CM 500 D 400 CD 100 C 90 XC 50 L 40 XL 10 X 5 V 4 IV 1 I] to-Roman: func [n [integer!] return: [string!]][ case [ tail? table [table: head table copy ""] table/1 > n [table: skip table 2 to-Roman n] 'else [append copy form table/2 to-Roman n - table/1] ] ] foreach number [40 33 1888 2016][print [number ":" to-Roman number]]  This solution builds, using metaprogramming, a case table, that relies on recursion to convert every digit. to-Roman: function [n [integer!]] reduce [ 'case collect [ foreach [a r] [1000 M 900 CM 500 D 400 CD 100 C 90 XC 50 L 40 XL 10 X 9 IX 5 V 4 IV 1 I][ keep compose/deep [n >= (a) [append copy (form r) any [to-Roman n - (a) copy ""]]] ] ] ] foreach number [40 33 1888 2016][print [number ":" to-Roman number]]  ## Retro This is a port of the Forth code; but returns a string rather than displaying the roman numerals. It only handles numbers between 1 and 3999. : vector ( ...n"- ) here [ &, times ] dip : .data  swap  +  @  do  ; ; : .I dup @ ^buffer'add ; : .V dup 1 + @ ^buffer'add ; : .X dup 2 + @ ^buffer'add ; [ .I .X drop ] [ .V .I .I .I drop ] [ .V .I .I drop ] [ .V .I drop ] [ .V drop ] [ .I .V drop ] [ .I .I .I drop ] [ .I .I drop ] [ .I drop ] &drop 10 vector .digit : record ( an- ) 10 /mod dup [ [ over 2 + ] dip record ] &drop if .digit ; : toRoman ( n-a ) here ^buffer'set dup 1 3999 within 0 = [ "EX LIMITO!\n" ] [ "IVXLCDM" swap record here ] if ; ## REXX ### version 1 roman: procedure arg number /* handle only 1 to 3999, else return ? */ if number >= 4000 | number <= 0 then return "?" romans = " M CM D CD C XC L XL X IX V IV I" arabic = "1000 900 500 400 100 90 50 40 10 9 5 4 1" result = "" do i = 1 to words(romans) do while number >= word(arabic,i) result = result || word(romans,i) number = number - word(arabic,i) end end return result  ### version 2 This version of a REXX program allows almost any non-negative decimal integer. Most people think that the Romans had no word for "zero". The Roman numeral system has no need for a zero placeholder, so there was no name for it (just as we have no name for a "¶" in the middle of our numbers ─── as we don't have that possibility). However, the Romans did have a name for zero (or nothing). In fact the Romans had several names for zero (see the REXX code), as does modern English. In American English, many words can be used for 0: zero, nothing, naught, bupkis, zilch, goose-egg, nebbish, squat, nil, crapola, what-Patty-shot-at, nineteen (only in cribbage), love (in tennis), etc. Also, this REXX version supports large numbers (with parentheses and deep parentheses). (This REXX code was ripped out of my general routine that also supported versions for Attic, ancient Roman, and modern Roman numerals.) The general REXX code is bulkier than most at it deals with any non-negative decimal number, and more boilerplate code is in the general REXX code to handle the above versions. /*REXX program converts (Arabic) non─negative decimal integers (≥0) ───► Roman numerals.*/ numeric digits 10000 /*decimal digs can be higher if wanted.*/ parse arg # /*obtain optional integers from the CL.*/ @er= "argument isn't a non-negative integer: " /*literal used when issuing error msg. */ if #='' then /*Nothing specified? Then generate #s.*/ do do j= 0 by 11 to 111; #=# j; end #=# 49; do k=88 by 100 to 1200; #=# k; end #=# 1000 2000 3000 4000 5000 6000; do m=88 by 200 to 1200; #=# m; end #=# 1304 1405 1506 1607 1708 1809 1910 2011; do p= 4 to 50; #=# 10**p; end end /*finished with generation of numbers. */ do i=1 for words(#); x=word(#, i) /*convert each of the numbers───►Roman.*/ if \datatype(x, 'W') | x<0 then say "***error***" @er x /*¬ whole #? negative?*/ say right(x, 55) dec2rom(x) end /*i*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ dec2rom: procedure; parse arg n,# /*obtain the number, assign # to a null*/ n=space(translate(n/1, , ','), 0) /*remove commas from normalized integer*/ nulla= 'ZEPHIRUM NULLAE NULLA NIHIL' /*Roman words for "nothing" or "none". */ if n==0 then return word(nulla, 1) /*return a Roman word for "zero". */ maxnp=(length(n)-1)%3 /*find max(+1) # of parenthesis to use.*/ highPos=(maxnp+1)*3 /*highest position of number. */ nn=reverse( right(n, highPos, 0) ) /*digits for Arabic──►Roman conversion.*/ do j=highPos to 1 by -3 _=substr(nn, j, 1); select /*════════════════════hundreds.*/ when _==9 then hx='CM' when _>=5 then hx='D'copies("C", _-5) when _==4 then hx='CD' otherwise hx= copies('C', _) end /*select hundreds*/ _=substr(nn, j-1, 1); select /*════════════════════════tens.*/ when _==9 then tx='XC' when _>=5 then tx='L'copies("X", _-5) when _==4 then tx='XL' otherwise tx= copies('X', _) end /*select tens*/ _=substr(nn, j-2, 1); select /*═══════════════════════units.*/ when _==9 then ux='IX' when _>=5 then ux='V'copies("I", _-5) when _==4 then ux='IV' otherwise ux= copies('I', _) end /*select units*/$=hx || tx || ux
if $\=='' then #=# || copies("(", (j-1)%3)$ ||copies(')', (j-1)%3)
end   /*j*/
if pos('(I',#)\==0  then do i=1  for 4           /*special case: M,MM,MMM,MMMM.*/
if i==4  then _ = '(IV)'
else _ = '('copies("I", i)')'
if pos(_, #)\==0  then #=changestr(_, #, copies('M', i))
end   /*i*/
return #


Some older REXXes don't have a   changestr   BIF,   so one is included here   ──►   CHANGESTR.REX.

output   when using the default (internal) input):

                                                      0 ZEPHIRUM
11 XI
22 XXII
33 XXXIII
44 XLIV
55 LV
66 LXVI
77 LXXVII
88 LXXXVIII
99 XCIX
110 CX
49 XLIX
88 LXXXVIII
188 CLXXXVIII
288 CCLXXXVIII
388 CCCLXXXVIII
488 CDLXXXVIII
588 DLXXXVIII
688 DCLXXXVIII
788 DCCLXXXVIII
888 DCCCLXXXVIII
988 CMLXXXVIII
1088 MLXXXVIII
1188 MCLXXXVIII
1000 M
2000 MM
3000 MMM
4000 MMMM
5000 (V)
6000 (VI)
88 LXXXVIII
288 CCLXXXVIII
488 CDLXXXVIII
688 DCLXXXVIII
888 DCCCLXXXVIII
1088 MLXXXVIII
1304 MCCCIV
1405 MCDV
1506 MDVI
1607 MDCVII
1708 MDCCVIII
1809 MDCCCIX
1910 MCMX
2011 MMXI
10000 (X)
100000 (C)
1000000 (M)
10000000 ((X))
100000000 ((C))
1000000000 ((M))
10000000000 (((X)))
100000000000 (((C)))
1000000000000 (((M)))
10000000000000 ((((X))))
100000000000000 ((((C))))
1000000000000000 ((((M))))
10000000000000000 (((((X)))))
100000000000000000 (((((C)))))
1000000000000000000 (((((M)))))
10000000000000000000 ((((((X))))))
100000000000000000000 ((((((C))))))
1000000000000000000000 ((((((M))))))
10000000000000000000000 (((((((X)))))))
100000000000000000000000 (((((((C)))))))
1000000000000000000000000 (((((((M)))))))
10000000000000000000000000 ((((((((X))))))))
100000000000000000000000000 ((((((((C))))))))
1000000000000000000000000000 ((((((((M))))))))
10000000000000000000000000000 (((((((((X)))))))))
100000000000000000000000000000 (((((((((C)))))))))
1000000000000000000000000000000 (((((((((M)))))))))
10000000000000000000000000000000 ((((((((((X))))))))))
100000000000000000000000000000000 ((((((((((C))))))))))
1000000000000000000000000000000000 ((((((((((M))))))))))
10000000000000000000000000000000000 (((((((((((X)))))))))))
100000000000000000000000000000000000 (((((((((((C)))))))))))
1000000000000000000000000000000000000 (((((((((((M)))))))))))
10000000000000000000000000000000000000 ((((((((((((X))))))))))))
100000000000000000000000000000000000000 ((((((((((((C))))))))))))
1000000000000000000000000000000000000000 ((((((((((((M))))))))))))
10000000000000000000000000000000000000000 (((((((((((((X)))))))))))))
100000000000000000000000000000000000000000 (((((((((((((C)))))))))))))
1000000000000000000000000000000000000000000 (((((((((((((M)))))))))))))
10000000000000000000000000000000000000000000 ((((((((((((((X))))))))))))))
100000000000000000000000000000000000000000000 ((((((((((((((C))))))))))))))
1000000000000000000000000000000000000000000000 ((((((((((((((M))))))))))))))
10000000000000000000000000000000000000000000000 (((((((((((((((X)))))))))))))))
100000000000000000000000000000000000000000000000 (((((((((((((((C)))))))))))))))
1000000000000000000000000000000000000000000000000 (((((((((((((((M)))))))))))))))
10000000000000000000000000000000000000000000000000 ((((((((((((((((X))))))))))))))))
100000000000000000000000000000000000000000000000000 ((((((((((((((((C))))))))))))))))


## Ring

arabic = [1000, 900, 500, 400, 100, 90, 50,  40,  10,  9,  5,   4,  1]
roman  = ["M", "CM", "D", "CD", "C" ,"XC", "L", "XL" ,"X", "IX", "V", "IV", "I"]

see "2009 = " + toRoman(2009) + nl
see "1666 = " + toRoman(1666) + nl
see "3888 = " + toRoman(3888) + nl

func toRoman val
result = ""
for i = 1 to 13
while val >= arabic[i]
result = result + roman[i]
val = val - arabic[i]
end
next
return result

## Ruby

Roman numeral generation was used as an example for demonstrating Test Driven Development in Ruby. The solution came to be:

Symbols = { 1=>'I', 5=>'V', 10=>'X', 50=>'L', 100=>'C', 500=>'D', 1000=>'M' }
Subtractors = [ [1000, 100], [500, 100], [100, 10], [50, 10], [10, 1], [5, 1], [1, 0] ]

def roman(num)
return Symbols[num]  if Symbols.has_key?(num)
Subtractors.each do |cutPoint, subtractor|
return roman(cutPoint) + roman(num - cutPoint)      if num >  cutPoint
return roman(subtractor) + roman(num + subtractor)  if num >= cutPoint - subtractor and num < cutPoint
end
end

[1990, 2008, 1666].each do |i|
puts "%4d => %s" % [i, roman(i)]
end

Output:
1990 => MCMXC
2008 => MMVIII
1666 => MDCLXVI


Another shorter version if we don't consider calculating the substractors:

Symbols = [ [1000, 'M'], [900, 'CM'], [500, 'D'], [400, 'CD'], [100, 'C'], [90, 'XC'], [50, 'L'], [40, 'XL'], [10, 'X'], [9, 'IX'], [5, 'V'], [4, 'IV'], [1, 'I'] ]

def arabic_to_roman(arabic)
return '' if arabic.zero?
Symbols.each { |arabic_rep, roman_rep| return roman_rep + arabic_to_roman(arabic - arabic_rep) if arabic >= arabic_rep }
end


Yet another way to solve it in terms of reduce

Symbols = [ [1000, 'M'], [900, 'CM'], [500, 'D'], [400, 'CD'], [100, 'C'], [90, 'XC'], [50, 'L'], [40, 'XL'], [10, 'X'], [9, 'IX'], [5, 'V'], [4, 'IV'], [1, 'I'] ]

def to_roman(num)
Symbols.reduce "" do |memo, (divisor, letter)|
div, num = num.divmod(divisor)
memo + letter * div
end
end


## Rust

struct RomanNumeral {
symbol: &'static str,
value: u32
}

const NUMERALS: [RomanNumeral; 13] = [
RomanNumeral {symbol: "M",  value: 1000},
RomanNumeral {symbol: "CM", value: 900},
RomanNumeral {symbol: "D",  value: 500},
RomanNumeral {symbol: "CD", value: 400},
RomanNumeral {symbol: "C",  value: 100},
RomanNumeral {symbol: "XC", value: 90},
RomanNumeral {symbol: "L",  value: 50},
RomanNumeral {symbol: "XL", value: 40},
RomanNumeral {symbol: "X",  value: 10},
RomanNumeral {symbol: "IX", value: 9},
RomanNumeral {symbol: "V",  value: 5},
RomanNumeral {symbol: "IV", value: 4},
RomanNumeral {symbol: "I",  value: 1}
];

fn to_roman(mut number: u32) -> String {
let mut min_numeral = String::new();
for numeral in NUMERALS.iter() {
while numeral.value <= number {
min_numeral = min_numeral + numeral.symbol;
number -= numeral.value;
}
}
min_numeral
}

fn main() {
let nums = [2014, 1999, 25, 1666, 3888];
for &n in nums.iter() {
// 4 is minimum printing width, for alignment
println!("{:2$} = {}", n, to_roman(n), 4); } }  Output: 2014 = MMXIV 1999 = MCMXCIX 25 = XXV 1666 = MDCLXVI 3888 = MMMDCCCLXXXVIII  ## Scala Works with: Scala version 2.8 val romanDigits = Map( 1 -> "I", 5 -> "V", 10 -> "X", 50 -> "L", 100 -> "C", 500 -> "D", 1000 -> "M", 4 -> "IV", 9 -> "IX", 40 -> "XL", 90 -> "XC", 400 -> "CD", 900 -> "CM") val romanDigitsKeys = romanDigits.keysIterator.toList sortBy (x => -x) def toRoman(n: Int): String = romanDigitsKeys find (_ >= n) match { case Some(key) => romanDigits(key) + toRoman(n - key) case None => "" }  Output: scala> List(1990, 2008, 1666) map toRoman res55: List[String] = List(MCMXC, MMVIII, MDCLXVI) ### Using foldLeft def toRoman( v:Int ) : String = { val romanNumerals = List(1000->"M",900->"CM",500->"D",400->"CD",100->"C",90->"XC", 50->"L",40->"XL",10->"X",9->"IX",5->"V",4->"IV",1->"I") var n = v romanNumerals.foldLeft(""){(s,t) => {val c = n/t._1; n = n-t._1*c; s + (t._2 * c) } } } // A small test def test( arabic:Int ) = println( arabic + " => " + toRoman( arabic ) ) test(1990) test(2008) test(1666)  ### Different code-style def toRoman(num: Int): String = { case class RomanUnit(value: Int, token: String) val romanNumerals = List( RomanUnit(1000, "M"), RomanUnit(900, "CM"), RomanUnit(500, "D"), RomanUnit(400, "CD"), RomanUnit(100, "C"), RomanUnit(90, "XC"), RomanUnit(50, "L"), RomanUnit(40, "XL"), RomanUnit(10, "X"), RomanUnit(9, "IX"), RomanUnit(5, "V"), RomanUnit(4, "IV"), RomanUnit(1, "I")) var remainingNumber = num romanNumerals.foldLeft("") { (outputStr, romanUnit) => { val times = remainingNumber / romanUnit.value remainingNumber -= romanUnit.value * times outputStr + (romanUnit.token * times) } } }  Output: 1990 => MCMXC 2008 => MMVIII 1666 => MDCLXVI ## Scheme This uses format directives supported in Chez Scheme since v6.9b; YMMV. (define (to-roman n) (format "~@r" n))  This is a general example using Chicken Scheme. (define roman-decimal '(("M" . 1000) ("CM" . 900) ("D" . 500) ("CD" . 400) ("C" . 100) ("XC" . 90) ("L" . 50) ("XL" . 40) ("X" . 10) ("IX" . 9) ("V" . 5) ("IV" . 4) ("I" . 1))) (define (to-roman value) (apply string-append (let loop ((v value) (decode roman-decimal)) (let ((r (caar decode)) (d (cdar decode))) (cond ((= v 0) '()) ((>= v d) (cons r (loop (- v d) decode))) (else (loop v (cdr decode)))))))) (let loop ((n '(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 25 30 40 50 60 69 70 80 90 99 100 200 300 400 500 600 666 700 800 900 1000 1009 1444 1666 1945 1997 1999 2000 2008 2010 2011 2500 3000 3999))) (unless (null? n) (printf "~a ~a\n" (car n) (to-roman (car n))) (loop (cdr n))))  ## Seed7 The following program writes the numbers between 1 and 3999 as roman numerals. The wrinum.s7i library contains the function str(ROMAN,), which writes a roman numeral to a string. $ include "seed7_05.s7i";
include "stdio.s7i";
include "wrinum.s7i";

const proc: main is func
local
var integer: number is 0;
begin
for number range 1 to 3999 do
writeln(str(ROMAN, number));
end for;
end func;

Original source [1].

## SenseTalk

function RomanNumeralsEncode number
put [
(1, "I"),
(4, "IV"),
(5, "V"),
(9, "IX"),
(10, "X"),
(40, "XL"),
(50, "L"),
(90, "XC"),
(100, "C"),
(400, "CD"),
(500, "D"),
(900, "CM"),
(1000, "M")
] into values

repeat for index = each item of (the number of items in values)..1
put item index of values into pair
repeat while number is greater than or equal to the first item of pair
put the second item of pair after numerals
subtract the first item of pair from number
end repeat
end repeat
return numerals
end RomanNumeralsEncode
repeat for each item in [
1990,
2008,
1666
]
put RomanNumeralsEncode(it)
end repeat
Output:
MCMXC
MMVIII
MDCLXVI


## SETL

examples := [2008, 1666, 1990];

for example in examples loop
print( roman_numeral(example) );
end loop;

proc roman_numeral( n );
R := [[1000, 'M'], [900, 'CM'], [500, 'D'], [400, 'CD'], [100, 'C'], [90, 'XC'], [50, 'L'], [40, 'XL'], [10, 'X'], [9, 'IX'], [5, 'V'], [4, 'IV'], [1, 'I']];
roman := '';
for numeral in R loop
while n >= numeral(1) loop
n := n - numeral(1);
roman := roman + numeral(2);
end loop;
end loop;
return roman;
end;

Output:
MMVIII
MDCLXVI
MCMXC

## Shen

(define encodeGlyphs
ACC 0 _ -> ACC
ACC N [Glyph Value | Rest] -> (encodeGlyphs (@s ACC Glyph) (- N Value) [Glyph Value | Rest]) where (>= N Value)
ACC N [Glyph Value | Rest] -> (encodeGlyphs ACC N Rest)
)

(define encodeRoman
N -> (encodeGlyphs "" N ["M" 1000 "CM" 900 "D" 500 "CD" 400 "C" 100 "XC" 90 "L" 50 "XL" 40 "X" 10 "IX" 9 "V" 5 "IV" 4 "I" 1])
)

Output:
(4-) (encodeRoman 1990)
"MCMXC"

(5-) (encodeRoman 2008)
"MMVIII"

(6-) (encodeRoman 1666)
"MDCLXVI"


## Sidef

Translation of: ActionScript
func arabic2roman(num, roman='') {
static lookup = [
:M:1000, :CM:900, :D:500,
:CD:400, :C:100,  :XC:90,
:L:50,   :XL:40,  :X:10,
:IX:9,   :V:5,    :IV:4,
:I:1
];
lookup.each { |pair|
while (num >= pair.second) {
roman += pair.first;
num -= pair.second;
}
}
return roman;
}
say("1990 in roman is " + arabic2roman(1990));
say("2008 in roman is " + arabic2roman(2008));
say("1666 in roman is " + arabic2roman(1666));

Output:
1990 in roman is MCMXC
2008 in roman is MMVIII
1666 in roman is MDCLXVI

## Simula

BEGIN

TEXT PROCEDURE TOROMAN(N); INTEGER N;
BEGIN
PROCEDURE P(WEIGHT,LIT); INTEGER WEIGHT; TEXT LIT;
BEGIN
WHILE N >= WEIGHT DO
BEGIN
T :- T & LIT;
N := N - WEIGHT;
END WHILE;
END P;
TEXT T; T :- NOTEXT;
P( 1000, "M"  );
P(  900, "CM" );
P(  500, "D"  );
P(  400, "CD" );
P(  100, "C"  );
P(   90, "XC" );
P(   50, "L"  );
P(   40, "XL" );
P(   10, "X"  );
P(    9, "IX" );
P(    5, "V"  );
P(    4, "IV" );
P(    1, "I"  );
TOROMAN :- T;
END TOROMAN;

INTEGER Y;
FOR Y := 1990, 2008, 1666 DO
BEGIN
OUTTEXT("YEAR ");
OUTINT(Y, 4);
OUTTEXT(" => ");
OUTTEXT(TOROMAN(Y));
OUTIMAGE;
END FOR;

END PROGRAM;
Output:
YEAR 1990 => MCMXC
YEAR 2008 => MMVIII
YEAR 1666 => MDCLXVI


## Smalltalk

Works with: Smalltalk/X

in ST/X, integers already know how to print themselves as roman number:

2013 printRomanOn:Stdout naive:false

Output:
MMXIII

the implementation is:

printRomanOn:aStream naive:naive
"print the receiver as roman number to the argument, aStream.
The naive argument controls if the conversion is
correct (i.e. subtracting prefix notation for 4,9,40,90, etc.),
or naive (i.e. print 4 as IIII and 9 as VIIII); also called simple.
The naive version is often used for page numbers in documents."

|restValue spec|

restValue := self.
restValue > 0 ifFalse:[self error:'negative roman'].

naive ifTrue:[
spec := #(
" value string repeat "
1000 'M'    true
500 'D'    false
100 'C'    true
50 'L'    false
10 'X'    true
5 'V'    false
1 'I'    true
).
] ifFalse:[
spec := #(
" value string repeat "
1000 'M'    true
900 'CM'   false
500 'D'    false
400 'CD'   false
100 'C'    true
90 'XC'   false
50 'L'    false
40 'XL'   false
10 'X'    true
9 'IX'   false
5 'V'    false
4 'IV'   false
1 'I'    true
).
].

spec
inGroupsOf:3
do:[:rValue :rString :repeatFlag |

[
(restValue >= rValue) ifTrue:[
aStream nextPutAll:rString.
restValue := restValue - rValue.
].
] doWhile:[ repeatFlag and:[ restValue >= rValue] ].
].


## SNOBOL4

Adapted from Catspaw SNOBOL Tutorial, Chapter 6

* ROMAN(N) - Convert integer N to Roman numeral form.
*
*  N must be positive and less than 4000.
*
*  An asterisk appears in the result if N >= 4000.
*
*  The function fails if N is not an integer.

DEFINE('ROMAN(N)UNITS')              :(ROMAN_END)

*  Get rightmost digit to UNITS and remove it from N.
*  Return null result if argument is null.
ROMAN	N RPOS(1) LEN(1) . UNITS =           :F(RETURN)

*  Search for digit, replace with its Roman form.
*  Return failing if not a digit.
'0,1I,2II,3III,4IV,5V,6VI,7VII,8VIII,9IX,'  UNITS
+	BREAK(',') . UNITS                 :F(FRETURN)

*  Convert rest of N and multiply by 10.  Propagate a
*  failure return from recursive call back to caller.
ROMAN = REPLACE(ROMAN(N), 'IVXLCDM', 'XLCDM**')
+	UNITS            :S(RETURN) F(FRETURN)
ROMAN_END

*	Testing
OUTPUT = "1999 = " ROMAN(1999)
OUTPUT = "  24 = " ROMAN(24)
OUTPUT = " 944 = " ROMAN(944)

END
Output:
1999 = MCMXCIX
24 = XXIV
944 = CMXLIV


Here's a non-recursive version, and a Roman-to-Arabic converter to boot.

*       # Arabic to Roman
define('roman(n)s,ch,val,str') :(roman_end)
roman   roman = ge(n,4000) n :s(return)
s = 'M1000 CM900 D500 CD400 C100 XC90 L50 XL40 X10 IX9 V5 IV4 I1 '
rom1    s span(&ucase) . ch break(' ') . val span(' ') = :f(rom2)
str = str dupl(ch,(n / val))
n = remdr(n,val) :(rom1)
rom2    roman = str :(return)
roman_end

*       # Roman to Arabic
define('arabic(n)s,ch,val,sum,x') :(arabic_end)
arabic  s = 'M1000 D500 C100 L50 X10 V5 I1 '
n = reverse(n)
arab1   n len(1) . ch = :f(arab2)
s ch break(' ') . val
val = lt(val,x) (-1 * val)
sum = sum + val; x = val :(arab1)
arab2   arabic = sum :(return)
arabic_end

*       # Test and display
tstr = '2010 1999 1492 1066 476 '
tloop   tstr break(' ') . year span(' ') = :f(out)
r = roman(year)
rstr = rstr year '=' r ' '
astr = astr r '=' arabic(r) ' ' :(tloop)
out     output = rstr; output = astr
end
Output:
2010=MMX 1999=MCMXCIX 1492=MCDXCII 1066=MLXVI 476=CDLXXVI
MMX=2010 MCMXCIX=1999 MCDXCII=1492 MLXVI=1066 CDLXXVI=476

## SPL

a2r(a)=
r = ""
n = [["M","CM","D","CD","C","XC","L","XL","X","IX","V","IV","I"],[1000,900,500,400,100,90,50,40,10,9,5,4,1]]
> i, 1..13
> a!<n[i,2]
r += n[i,1]
a -= n[i,2]
<
<
<= r
.

t = [1990,2008,1666]
> i, 1..#.size(t,1)
#.output(t[i]," = ",a2r(t[i]))
<
Output:
1990 = MCMXC
2008 = MMVIII
1666 = MDCLXVI


## SQL

--
-- This only works under Oracle and has the limitation of 1 to 3999

SQL> select to_char(1666, 'RN') urcoman, to_char(1666, 'rn') lcroman from dual;

URCOMAN         LCROMAN
--------------- ---------------
MDCLXVI         mdclxvi


## Swift

func ator(var n: Int) -> String {

var result = ""

for (value, letter) in
[( 1000,    "M"),
(  900,   "CM"),
(  500,    "D"),
(  400,   "CD"),
(  100,    "C"),
(   90,   "XC"),
(   50,    "L"),
(   40,   "XL"),
(   10,    "X"),
(    9,   "IX"),
(    5,    "V"),
(    4,   "IV"),
(    1,    "I")]
{
while n >= value {
result += letter
n   -= value
}
}
return result
}


Sample call:

Works with: Swift version 1.x
println(ator(1666)) // MDCLXVI

Works with: Swift version 2.0
print(ator(1666)) // MDCLXVI

Output:
MDCLXVI

## Tailspin

def digits: [(M:1000"1"), (CM:900"1"), (D:500"1"), (CD:400"1"), (C:100"1"), (XC:90"1"), (L:50"1"), (XL:40"1"), (X:10"1"), (IX:9"1"), (V:5"1"), (IV:4"1"), (I:1"1")];
templates encodeRoman
@: 1"1";
'$-> ($)"1" -> #;' !
when <$digits($@)::value..> do
$digits($@)::key !
$-$digits($@)::value -> # when <1"1"..> do @:$@ + 1"1";
$-> # end encodeRoman 1990 -> encodeRoman -> !OUT::write ' ' -> !OUT::write 2008 -> encodeRoman -> !OUT::write ' ' -> !OUT::write 1666 -> encodeRoman -> !OUT::write Output: MCMXC MMVIII MDCLXVI  ## Tcl proc to_roman {i} { set map {1000 M 900 CM 500 D 400 CD 100 C 90 XC 50 L 40 XL 10 X 9 IX 5 V 4 IV 1 I} foreach {value roman}$map {
while {$i >=$value} {
append res $roman incr i -$value
}
}
return $res }  ## TUSCRIPT $$MODE TUSCRIPT LOOP arab_number="1990'2008'1666" roman_number = ENCODE (arab_number,ROMAN) PRINT "Arabic number ",arab_number, " equals ", roman_number ENDLOOP Output: Arabic number 1990 equals MCMXC Arabic number 2008 equals MMVIII Arabic number 1666 equals MDCLXVI  ## TypeScript Translation of: DWScript Weights and symbols in tuples. // Roman numerals/Encode const weightsSymbols: [number, string][] = [[1000, 'M'], [900, 'CM'], [500, 'D'], [400, 'CD'], [100, 'C'], [90, 'XC'], [50, 'L'], [40, 'XL'], [10, 'X'], [9, 'IX'], [5, 'V'], [4, 'IV'], [1, 'I']]; // 3888 or MMMDCCCLXXXVIII (15 chars) is the longest string properly encoded // with these symbols. function toRoman(n: number): string { var roman = ""; // Result for (i = 0; i <= 12 && n > 0; i++) { var w = weightsSymbols[i][0]; while (n >= w) { roman += weightsSymbols[i][1]; n -= w; } } return roman; } console.log(toRoman(1990)); // MCMXC console.log(toRoman(2022)); // MMXXII console.log(toRoman(3888)); // MMMDCCCLXXXVIII  Output: MCMXC MMXXII MMMDCCCLXXXVIII  ## UNIX Shell Translation of: Tcl Works with: bash roman() { local values=( 1000 900 500 400 100 90 50 40 10 9 5 4 1 ) local roman=( [1000]=M [900]=CM [500]=D [400]=CD [100]=C [90]=XC [50]=L [40]=XL [10]=X [9]=IX [5]=V [4]=IV [1]=I ) local nvmber="" local num=$1
for value in ${values[@]}; do while (( num >= value )); do nvmber+=${roman[value]}
((num -= value))
done
done
echo $nvmber } for test in 1999 24 944 1666 2008; do printf "%d = %s\n"$test $(roman$test)
done

Output:
1999 = MCMXCIX
24 = XXIV
944 = CMXLIV
1666 = MDCLXVI
2008 = MMVIII

## Ursala

The algorithm is to implement the subtractive principle by string substitution only after constucting the numeral from successive remainders. The order among the substitutions matters. For example, occurrences of DCCCC must be replaced by CM before any occurrences of CCCC are replaced by CD. The substitution operator (%=) is helpful here.

#import nat

roman =

-+
'IIII'%='IV'+ 'VIIII'%='IX'+ 'XXXX'%='XL'+ 'LXXXX'%='XC'+ 'CCCC'%='CD'+ 'DCCCC'%='CM',
~&plrDlSPSL/'MDCLXVI'+ iota*+ +^|(^|C/~&,\/division)@rlX=>~&iNC <1000,500,100,50,10,5>+-

This test program applies the function to each member of a list of numbers.

#show+

test = roman* <1990,2008,1,2,64,124,1666,10001>
Output:
MCMXC
MMVIII
I
II
LXIV
CXXIV
MDCLXVI
MMMMMMMMMMI

## Vala

Translation of: D
string to_roman(int n)
requires (n > 0 && n < 5000)
{
const int[] weights = {1000, 900, 500, 400, 100, 90,
50, 40, 10, 9, 5, 4, 1};
const string[] symbols = {"M","CM","D","CD","C","XC","L",
"XL","X","IX","V","IV","I"};

var roman = "", count = 0;
foreach (var w in weights) {
while (n >= w) {
roman += symbols[count];
n -= w;
}
if (n == 0)
break;
count++;
}
return roman;
}

void main() {
print("%s\n", to_roman(455));
print("%s\n", to_roman(3456));
print("%s\n", to_roman(2488));
}

Output:
CDLV
MMMCDLVI
MMCDLXXXVIII


## VBA

Private Function roman(n As Integer) As String
roman = WorksheetFunction.roman(n)
End Function
Public Sub main()
s = [{10, 2016, 800, 2769, 1666, 476, 1453}]
For Each x In s
Debug.Print roman(CInt(x)); " ";
Next x
End Sub

Output:
X MMXVI DCCC MMDCCLXIX MDCLXVI CDLXXVI MCDLIII

## Vedit macro language

// Main program for testing the function
//
do {
#1 = Get_Num("Number to convert: ", STATLINE)
Call("NUM_TO_ROMAN")
Num_Type(#1, NOCR) Message(" = ") Reg_Type(1) Type_Newline
} while (Reg_Size(1))
Return

// Convert numeric value into Roman number
//  #1 = number to convert; on return: T-reg(1) = Roman number
//
:NUM_TO_ROMAN:
Reg_Empty(1)                        // @1 = Results (Roman number)
if (#1 < 1) { Return }              // non-positive numbers return empty string

Buf_Switch(Buf_Free)
Ins_Text("M1000,CM900,D500,CD400,C100,XC90,L50,XL40,X10,IX9,V5,IV4,I1")

BOF
#2 = #1
Repeat(ALL) {
Search("|A|[|A]", ADVANCE+ERRBREAK)         // get next item from conversion list
Reg_Copy_Block(20, CP-Chars_Matched, CP)    // @20 = Letter(s) to be inserted
#11 = Num_Eval()                            // #11 = magnitude (1000...1)
while (#2 >= #11) {
Reg_Set(1, @20, APPEND)
#2 -= #11
}
}
Buf_Quit(OK)
Return
Output:
    4 = IV
12 = XII
1666 = MDCLXVI
1990 = MCMXC
2011 = MMXI

## Wren

Translation of: Kotlin
var romans = [
[1000, "M"],
[900, "CM"],
[500,  "D"],
[400, "CD"],
[100,  "C"],
[90,  "XC"],
[50,   "L"],
[40,  "XL"],
[10,   "X"],
[9,   "IX"],
[5,    "V"],
[4,   "IV"],
[1,    "I"]
]

var encode = Fn.new { |n|
if (n > 5000 || n < 1) return null
var res = ""
for (r in romans) {
while (n >= r[0]) {
n = n - r[0]
res = res + r[1]
}
}
return res
}

System.print(encode.call(1990))
System.print(encode.call(1666))
System.print(encode.call(2008))
System.print(encode.call(2020))

Output:
MCMXC
MDCLXVI
MMVIII
MMXX


## XLISP

(defun roman (n)
(define roman-numerals '((1000 "m") (900 "cm") (500 "d") (400 "cd") (100 "c") (90 "xc") (50 "l") (40 "xl") (10 "x") (9 "ix") (5 "v") (4 "iv") (1 "i")))
(defun romanize (arabic-numeral numerals roman-numeral)
(if (= arabic-numeral 0)
roman-numeral
(if (>= arabic-numeral (caar numerals))
(romanize (- arabic-numeral (caar numerals)) numerals (string-append roman-numeral (cadar numerals)))
(romanize arabic-numeral (cdr numerals) roman-numeral))))
(romanize n roman-numerals ""))

; test the function:
(display (mapcar roman '(10 2016 800 2769 1666 476 1453)))

Output:
(x mmxvi dccc mmdcclxix mdclxvi cdlxxvi mcdliii)

## XPL0

proc    Rom(N, A, B, C);        \Display 1..9 in Roman numerals
int     N, A, B, C, I;
[case N of
9:      [ChOut(0, C);  ChOut(0, A)];                            \XI
8,7,6,5:[ChOut(0, B);  for I:= 1 to rem(N/5) do ChOut(0, C)];   \V
4:      [ChOut(0, C);  ChOut(0, B)]                             \IV
other   for I:= 1 to N do ChOut(0, C);                          \I
];

proc    Roman(N);               \Display N in Roman numerals
int     N, Q;
[Q:= N/1000;  N:= rem(0);       \0..3999
Rom(Q, ^?, ^?, ^M);
Q:= N/100;  N:= rem(0);         \0..999
Rom(Q, ^M, ^D, ^C);
Q:= N/10;  N:= rem(0);          \0..99
Rom(Q, ^C, ^L, ^X);
Rom(N, ^X, ^V, ^I);             \0..9
];

int     Tbl, I;
[Tbl:= [1990, 2008, 1666, 0, 1, 3999, 2020, 1234];
for I:= 0 to 7 do
[IntOut(0, Tbl(I));  Text(0, ". ");  Roman(Tbl(I));  CrLf(0)];
]
Output:
1990.   MCMXC
2008.   MMVIII
1666.   MDCLXVI
0.
1.      I
3999.   MMMCMXCIX
2020.   MMXX
1234.   MCCXXXIV


## XSLT

<xsl:stylesheet  version="1.0"    xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/data/number">
<xsl:call-template name="for">
<xsl:with-param name="stop">13</xsl:with-param>
<xsl:with-param name="value"><xsl:value-of select="@value"></xsl:value-of></xsl:with-param>
</xsl:call-template>
</xsl:template>

<xsl:template name="for">
<xsl:param name="start">1</xsl:param>
<xsl:param name="stop">1</xsl:param>
<xsl:param name="step">1</xsl:param>
<xsl:param name="value">1</xsl:param>
<xsl:text/>
<xsl:choose>
<xsl:when test="($value &gt; /data/roman /numeral[@pos=$start]/@value or $value = /data/roman /numeral[@pos=$start]/@value) ">
<xsl:value-of select="/data/roman
/numeral[@pos=$start]/@letter"/> <xsl:call-template name="for"> <xsl:with-param name="stop"> <xsl:value-of select="$stop"/>
</xsl:with-param>
<xsl:with-param name="start">
<xsl:value-of select="$start"/> </xsl:with-param> <xsl:with-param name="value"> <xsl:value-of select="$value - /data/roman/numeral[@pos=$start]/@value"/> </xsl:with-param> </xsl:call-template> </xsl:when> <xsl:otherwise> <xsl:if test="$start &lt; $stop"> <xsl:call-template name="for"> <xsl:with-param name="stop"> <xsl:value-of select="$stop"/>
</xsl:with-param>
<xsl:with-param name="start">
<xsl:value-of select="$start +$step"/>
</xsl:with-param>
<xsl:with-param name="value">
<xsl:value-of select="$value"/> </xsl:with-param> </xsl:call-template> </xsl:if> </xsl:otherwise> </xsl:choose> </xsl:template> </xsl:stylesheet>  ## zkl var [const] romans = L( L("M", 1000), L("CM", 900), L("D", 500), L("CD", 400), L("C", 100), L("XC", 90), L("L", 50), L("XL", 40), L("X", 10), L("IX", 9), L("V", 5), L("IV", 4), L("I", 1)); fcn toRoman(i){ // convert int to a roman number reg text = ""; foreach R,N in (romans){ text += R*(i/N); i = i%N; } return(text); } toRoman(1990) //-->"MCMXC" toRoman(2008) //-->"MMVIII" toRoman(1666) //-->"MDCLXVI"  ## Zoea program: decimal_roman input: 12 output: 'XII' ## Zoea Visual ## Zsh Based on the python solution. function printroman () { local -a conv local number=$1 div rom num out
conv=(I 1 IV 4 V 5 IX 9 X 10 XL 40 L 50 XC 90 C 100 CD 400 D 500 CM 900 M 1000)
for num rom in ${(Oa)conv}; do (( div = number / num, number = number % num )) while (( div-- > 0 )); do out+=$rom
done
done
echo \$out
}