Repeat: Difference between revisions

From Rosetta Code
m (fix markup)
(FutureBasic solution added)
Line 742: Line 742:
 
4 proc called
 
4 proc called
 
5 proc called
 
5 proc called
  +
</pre>
  +
  +
=={{header|FutureBasic}}==
  +
<syntaxhighlight lang="futurebasic">
  +
include "NSLog.incl"
  +
  +
void local fn Example( value as long )
  +
NSLog(@"Example %ld",value)
  +
end fn
  +
  +
void local fn DoIt( fnAddress as ptr, count as long )
  +
def fn Repeat( j as long ) using fnAddress
  +
  +
long i
  +
for i = 1 to count
  +
fn Repeat( i )
  +
next
  +
end fn
  +
  +
fn DoIt( @fn Example, 3 )
  +
  +
HandleEvents
  +
</syntaxhighlight>
  +
  +
{{out}}
  +
<pre>
  +
Example 1
  +
Example 2
  +
Example 3
 
</pre>
 
</pre>
   

Revision as of 06:40, 1 October 2022

Task
Repeat
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Write a procedure which accepts as arguments another procedure and a positive integer.

The latter procedure is executed a number of times equal to the accepted integer.

11l

Translation of: Python
F repeat(f, n)
   L 1..n
      f()

F procedure()
   print(‘Example’)

repeat(procedure, 3)
Output:
Example
Example
Example

6502 Assembly

Using a trampoline

This routine is a bit messy, and assumes the called routine doesn't clobber the zero-page memory used to maintain it. This can be modified to push/pop those values before/after the routine is executed.

macro RepeatProc,addr,count ;VASM macro syntax
; input: 
; addr = the label of the routine you wish to call repeatedly
; count = how many times you want to DO the procedure. 1 = once, 2 = twice, 3 = three times, etc. Enter "0" for 256 times.
lda #<\addr
sta z_L ;a label for a zero-page memory address
lda #>\addr
sta z_H ;a label for the zero-page memory address immediately after z_L
lda \count
jsr doRepeatProc
endm

doRepeatProc:
sta z_C   ;another zero-page memory location
loop_RepeatProc:
jsr Trampoline_RepeatProc
dec z_C
lda z_C
bne loop_RepeatProc
rts

Trampoline_RepeatProc:
db $6c,z_L,$00 
;when executed, becomes an indirect JMP to the address stored at z_L and z_H. Some assemblers will let you type
;JMP (z_L) and it will automatically replace it with the above during the assembly process.
;This causes an indirect JMP to the routine. Its RTS will return execution to just after the "JSR Trampoline_RepeatProc" 
;and flow into the loop overhead.

Once the macro and the underlying subroutine are created, this is very simple to use:

RepeatProc foo,#20 ;perform the subroutine "foo" twenty times.

Using self-modifying code

This version requires that your "wrapper" executes in RAM, so that it can be modified. For this to work, it is assumed that the routine you're using doesn't clobber Y, or require that its parameters are passed in by A or X (so admittedly this method is a bit limited, but if you use the zero page to hold the parameters you can set them up prior to calling the wrapper itself.

RepeatProc:
;input: low byte of desired function address in A
;       high byte of desired function address in X
;       repeat count in Y

STA smc_repeatproc+1
STX smc_repeatproc+2
smc_repeatproc:
jsr $0000  ;this is modified by the STA and STX above.
dey        
bne smc_repeatproc
rts

68000 Assembly

This example code prints an exclamation point to the screen 4 times. It is assumed that the functions called do not clobber A5 or D7, as doing so would cause undefined behavior (read: a crash or a program counter "escape.")

	lea foo,a5            ;function to execute
	move.w #4-1,d7        ;times to repeat
	jsr Repeater
	
	jmp *                 ;halt the CPU, we're done
	
repeater:
	jsr repeaterhelper    ;this also need to be a call, so that the RTS of the desired procedure
                              ;returns us to the loop rather than the line after "jsr Repeater".
	DBRA D7,repeater
	rts
	
repeaterhelper:
	jmp (a5)       ;keep in mind, this is NOT a dereference, it simply sets the program counter equal to A5.
                       ;A bit misleading if you ask me.
foo:
	MOVE.B #'!',D0
	JSR PrintChar
	rts
Output:
!!!!

Action!

DEFINE PTR="CARD"

PROC OutputText(CHAR ARRAY s)
  PrintE(s)
RETURN

PROC Procedure=*(CHAR ARRAY s)
  DEFINE JSR="$20"
  DEFINE RTS="$60"
  [JSR $00 $00 ;JSR to address set by SetProcedure
   RTS]

PROC SetProcedure(PTR p)
  PTR addr

  addr=Procedure+1 ;location of address of JSR
  PokeC(addr,p)
RETURN

PROC Repeat(PTR procFun CHAR ARRAY s BYTE n)
  BYTE i

  SetProcedure(procFun)
  FOR i=1 TO n
  DO
    Procedure(s)
  OD
RETURN

PROC Main()
  Repeat(OutputText,"Action!",5)
RETURN
Output:

Screenshot from Atari 8-bit computer

Action!
Action!
Action!
Action!
Action!

Ada

with Ada.Text_IO;

procedure Repeat_Example is
   
   procedure Repeat(P: access Procedure; Reps: Natural) is
   begin
      for I in 1 .. Reps loop
	 P.all; -- P points to a procedure, and P.all actually calls that procedure
      end loop;
   end Repeat;
   
   procedure Hello is
   begin
      Ada.Text_IO.Put("Hello! ");
   end Hello;
   
begin
   Repeat(Hello'Access, 3); -- Hello'Access points to the procedure Hello
end Repeat_Example;

Output:

Hello! Hello! Hello! 

ALGOL 68

Works with: ALGOL 68G version Any - tested with release 2.8.win32
# operator that executes a procedure the specified number of times            #
OP REPEAT = ( INT count, PROC VOID routine )VOID:
    TO count DO routine OD;

# make REPEAT a low priority operater                                         #
PRIO REPEAT = 1;


# can also create variant that passes the iteration count as a parameter      #
OP REPEAT = ( INT count, PROC( INT )VOID routine )VOID:
    FOR iteration TO count DO routine( iteration ) OD;

main: (

    # PROC to test the REPEAT operator with                                   #
    PROC say something = VOID: print( ( "something", newline ) );

    3 REPEAT say something;

    # PROC to test the variant                                                #
    PROC show squares = ( INT n )VOID: print( ( n, n * n, newline ) );

    3 REPEAT show squares

)

Output:

something
something
something
         +1         +1
         +2         +4
         +3         +9

ALGOL W

As well as the names of procedures, Algol W allows statements to be passed as parameters where a procedure is expected.

begin
    % executes the procedure routine the specified number of times            %
    procedure repeat ( integer value count; procedure routine ) ;
        for i := 1 until count do routine;
    begin
        integer x;
        % print "hello" three times                                           %
        repeat( 3, write( "hello" ) );
        % print the first 10 squares                                          %
        write();
        x := 1;
        repeat( 10
              , begin
                    writeon( i_w := s_w := 1, x * x );
                    x := x + 1
                end
              )
    end
end.
Output:
hello
hello
hello
1 4 9 16 25 36 49 64 81 100

AppleScript

-- applyN :: Int -> (a -> a) -> a -> a
on applyN(n, f, x)
    script go
        on |λ|(a, g)
            |λ|(a) of mReturn(g)
        end |λ|
    end script
    foldl(go, x, replicate(n, f))
end applyN


-------- SAMPLE FUNCTIONS FOR REPEATED APPLICATION --------

on double(x)
    2 * x
end double


on plusArrow(s)
    s & " -> "
end plusArrow


on squareRoot(n)
    n ^ 0.5
end squareRoot

-------------------------- TESTS --------------------------
on run
    log applyN(10, double, 1)
    --> 1024
    
    log applyN(5, plusArrow, "")
    --> " ->  ->  ->  ->  -> "
    
    log applyN(3, squareRoot, 65536)
    --> 4.0
end run


-------------------- GENERIC FUNCTIONS --------------------

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
    tell mReturn(f)
        set v to startValue
        set lng to length of xs
        repeat with i from 1 to lng
            set v to |λ|(v, item i of xs, i, xs)
        end repeat
        return v
    end tell
end foldl


-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
    -- 2nd class handler function lifted into 1st class script wrapper. 
    if script is class of f then
        f
    else
        script
            property |λ| : f
        end script
    end if
end mReturn

-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary 
-- assembly of a target length
-- replicate :: Int -> a -> [a]
on replicate(n, a)
    set out to {}
    if 1 > n then return out
    set dbl to {a}
    
    repeat while (1 < n)
        if 0 < (n mod 2) then set out to out & dbl
        set n to (n div 2)
        set dbl to (dbl & dbl)
    end repeat
    return out & dbl
end replicate
Output:
(*1024*)
(* ->  ->  ->  ->  -> *)
(*4.0*)

Applesoft BASIC

http://hoop-la.ca/apple2/2016/winterwarmup/#repeat.bas

Arturo

print "---------------------------"
print "As a loop"
print "---------------------------"
loop 4 'x ->
    print "Example 1"

repeatFunc: function [f,times][
    loop times 'x ->
        do f
]

print "---------------------------"
print "With a block param"
print "---------------------------"
repeatFunc [print "Example 2"] 4

repeatFunc: function [f,times][
    loop times 'x ->
        f
]

print "---------------------------"
print "With a function param"
print "---------------------------"
repeatFunc $[][print "Example 3"] 4
Output:
---------------------------
As a loop
---------------------------
Example 1
Example 1
Example 1
Example 1
---------------------------
With a block param
---------------------------
Example 2
Example 2
Example 2
Example 2
---------------------------
With a function param
---------------------------
Example 3
Example 3
Example 3
Example 3

AutoHotkey

repeat("fMsgBox",3)
return

repeat(f, n){
	loop % n
		%f%()
}

fMsgBox(){
	MsgBox hello
}

AWK

# syntax: GAWK -f REPEAT.AWK
BEGIN {
    for (i=0; i<=3; i++) {
      f = (i % 2 == 0) ? "even" : "odd"
      @f(i) # indirect function call
    }
    exit(0)
}
function even(n,  i) {
    for (i=1; i<=n; i++) {
      printf("inside even %d\n",n)
    }
}
function odd(n,  i) {
    for (i=1; i<=n; i++) {
      printf("inside odd %d\n",n)
    }
}

output:

inside odd 1
inside even 2
inside even 2
inside odd 3
inside odd 3
inside odd 3

Batch File

@echo off

:_main
setlocal
call:_func1 _func2 3
pause>nul
exit/b

:_func1
setlocal enabledelayedexpansion
for /l %%i in (1,1,%2) do call:%1
exit /b

:_func2
setlocal
echo _func2 has been executed
exit /b

BQN

BQN has a builtin called Repeat which fulfills the criteria for the challenge(and allows multiple iteration counts), hence there is a recursive implementation of repeat added in as well.

•Show {2+𝕩}⍟3 1

_repeat_ ← {(𝕘>0)◶⊢‿(𝔽_𝕣_(𝕘-1)𝔽)𝕩}

•Show {2+𝕩} _repeat_ 3 1
7
7

C

#include <stdio.h>

void repeat(void (*f)(void), unsigned int n) {
 while (n-->0)
  (*f)(); //or just f()
}

void example() {
 printf("Example\n");
}

int main(int argc, char *argv[]) {
 repeat(example, 4);
 return 0;
}

C#

Translation of: Java
using System;

namespace Repeat {
    class Program {
        static void Repeat(int count, Action<int> fn) {
            if (null == fn) {
                throw new ArgumentNullException("fn");
            }
            for (int i = 0; i < count; i++) {
                fn.Invoke(i + 1);
            }
        }

        static void Main(string[] args) {
            Repeat(3, x => Console.WriteLine("Example {0}", x));
        }
    }
}
Output:
Example 1
Example 2
Example 3

C++

template <typename Function>
void repeat(Function f, unsigned int n) {
 for(unsigned int i=n; 0<i; i--)
  f();
}

usage:

#include <iostream>
void example() {
 std::cout << "Example\n";
}

repeat(example, 4);
Works with: C++11
 repeat([]{std::cout << "Example\n";}, 4);

Clojure

(defn repeat-function [f n] 
  (dotimes [i n] (f)))
Output:
user=> (repeat-function #(println "bork") 3)
bork
bork
bork

Common Lisp

(defun repeat (f n)
  (dotimes (i n) (funcall f)))

(repeat (lambda () (format T "Example~%")) 5)

Cowgol

include "cowgol.coh";

# Only functions that implement an interface can be passed around
# The interface is a type and must be defined before it is used
# This defines an interface for a function that takes no arguments
interface Fn();

# This function repeats a function that implements Fn
sub Repeat(f: Fn, n: uint32) is
    while n != 0 loop
        f();
        n := n - 1;
    end loop;
end sub;

# Here is a function
sub Foo implements Fn is
    print("foo ");
end sub;

# Prints "foo foo foo foo"
Repeat(Foo, 4);
print_nl();

D

void repeat(void function() fun, in uint times) {
    foreach (immutable _; 0 .. times)
        fun();
}

void procedure() {
    import std.stdio;
    "Example".writeln;
}

void main() {
    repeat(&procedure, 3);
}
Output:
Example
Example
Example

Delphi

program Repeater;

{$APPTYPE CONSOLE}
{$R *.res}

type
  TSimpleProc = procedure;     // Can also define types for procedures (& functions) which
                               // require params.

procedure Once;
begin
  writeln('Hello World');
end;

procedure Iterate(proc : TSimpleProc; Iterations : integer);
var
  i : integer;
begin
  for i := 1 to Iterations do
    proc;
end;

begin
  Iterate(Once, 3);
  readln;
end.

Alternative

program Repeater;

{$APPTYPE CONSOLE}
{$R *.res}

uses
  System.SysUtils;

procedure Iterate(proc: TProc; Iterations: integer);
var
  i: integer;
begin
  for i := 1 to Iterations do
    proc;
end;

begin
  Iterate(
    procedure
    begin
      writeln('Hello World');
    end, 3);
  readln;
end.


Output:
Hello World
Hello World
Hello World

EchoLisp

(define (repeat f n) (for ((i n)) (f)))

(repeat (lambda () (write (random 1000))) 5)
     287 798 930 989 794 

;; Remark
;; It is also possible to iterate a function : f(f(f(f( ..(f x)))))
(define cos10 (iterate cos 10)
(define cos100 (iterate cos10 10))
(cos100 0.6)
      0.7390851332151605
(cos 0.7390851332151605)
     0.7390851332151608 ;; fixed point found

F#

open System

let Repeat c f =
    for _ in 1 .. c do
        f()

let Hello _ = 
    printfn "Hello world"

[<EntryPoint>]
let main _ =
    Repeat 3 Hello

    0 // return an integer exit code

Factor

Factor comes with the times word which does exactly this. For example,

3 [ "Hello!" print ] times
Output:
Hello!
Hello!
Hello!

The implementation of times:

: times ( ... n quot: ( ... -- ... ) -- ... )
    [ drop ] prepose each-integer ; inline

Forth

: times ( xt n -- )
  0 ?do dup execute loop drop ;

Or, taking care to keep the data stack clean for the XT's use, as is often desired:

: times { xt n -- }
  n 0 ?do xt execute loop ;

Or as a novel control structure, which is not demanded by this task but which is just as idiomatic in Forth as the XT-consuming alternatives above:

: times[  ]] 0 ?do [[ ; immediate compile-only
: ]times  postpone loop ;  immediate compile-only

Usage:

[: cr ." Hello" ;] 3 times

: 3-byes ( -- )  3 times[ cr ." Bye" ]times ;
3-byes
Output:
Hello

Hello Hello Bye Bye

Bye

FreeBASIC

' FB 1.05.0 Win64

Sub proc()
  Print " proc called"
End Sub

Sub repeat(s As Sub, n As UInteger)
  For i As Integer = 1 To n
    Print Using "##"; i;
    s()
  Next
End Sub

repeat(@proc, 5)
Print
Print "Press any key to quit"
Sleep
Output:
 1 proc called
 2 proc called
 3 proc called
 4 proc called
 5 proc called

FutureBasic

include "NSLog.incl"

void local fn Example( value as long )
  NSLog(@"Example %ld",value)
end fn

void local fn DoIt( fnAddress as ptr, count as long )
  def fn Repeat( j as long ) using fnAddress
  
  long i
  for i = 1 to count
    fn Repeat( i )
  next
end fn

fn DoIt( @fn Example, 3 )

HandleEvents
Output:
Example 1
Example 2
Example 3

Gambas

Note: Gambas (3.14.0) cannot perform this task as specified, as it does not have delegates, and pointers do not seem to work with procedures. What does work is using Object.Call, which is intended for executing procedures from external libraries. However the accepting procedure must refer to the object containing the procedure, and refer to the procedure by a String name. In this case, the current module/class reference (Me) is used, but the String name must be passed. This arrangement will only work within the same module/class. It may be possible to pass the parent reference to a method (taking 3 parameters) in another class if the named procedure is Public. The empty array ([]) in Object.Call represent a procedure without parameters, which are not an explicit requirement for this Task, but might require another parameter to the accepting procedure.

Public Sub Main()

    RepeatIt("RepeatableOne", 2)

    RepeatIt("RepeatableTwo", 3)

End

'Cannot pass procedure pointer in Gambas; must pass procedure name and use Object.Call()
Public Sub RepeatIt(sDelegateName As String, iCount As Integer)

    For iCounter As Integer = 1 To iCount
        Object.Call(Me, sDelegateName, [])
    Next

End

Public Sub RepeatableOne()

    Print "RepeatableOne"

End

Public Sub RepeatableTwo()

    Print "RepeatableTwo"

End

Output:

RepeatableOne
RepeatableOne
RepeatableTwo
RepeatableTwo
RepeatableTwo

Go

package main

import "fmt"

func repeat(n int, f func()) {
  for i := 0; i < n; i++ {
    f()
  }
}

func fn() {
  fmt.Println("Example")
}

func main() {
  repeat(4, fn)
}

Haskell

Such a function already exists

import Control.Monad (replicateM_)

sampleFunction :: IO ()
sampleFunction = putStrLn "a"

main = replicateM_ 5 sampleFunction

And if the requirement is for something like a Church numeral, compounding the application of a given function n times (rather than repeating the same IO event n times) then we could also write something like applyN below:

applyN :: Int -> (a -> a) -> a -> a
applyN n f = foldr (.) id (replicate n f)

main :: IO ()
main = print $ applyN 10 (\x -> 2 * x) 1
Output:
1024

Isabelle

Isabelle does not have procedures with side effects. So we cannot do things such as printing a string to stdout. Isabelle only has pure mathematical functions.

theory Scratch
  imports Main
begin

text
Given the function we want to execute multiple times is of
type \<^typ>‹unit  unit.

fun pure_repeat :: "(unit ⇒ unit) ⇒ nat ⇒ unit" where
  "pure_repeat _ 0 = ()"
| "pure_repeat f (Suc n) = f (pure_repeat f n)"

text
Functions are pure in Isabelle. They don't have side effects.
This means, the \<^const>‹pure_repeat we implemented is always equal
to \<^term>‹() :: unit, independent of the function \<^typ>‹unit  unit
or \<^typ>‹nat.
Technically, functions are not even "executed", but only evaluated.

lemma "pure_repeat f n = ()" by simp

text
But we can repeat a value of \<^typ>‹'a \<^term>‹n times and return the result
in a list of length \<^term>‹n

fun repeat :: "'a ⇒ nat ⇒ 'a list" where
  "repeat _ 0 = []"
| "repeat f (Suc n) = f # (repeat f n)"

lemma "repeat ''Hello'' 4 = [''Hello'', ''Hello'', ''Hello'', ''Hello'']"
  by code_simp

lemma "length (repeat a n) = n" by(induction n) simp+

text
Technically, \<^typ>‹'a is not a function. We can wrap it in a dummy function
which takes a \<^typ>‹unit as first argument. This gives a function of type
\<^typ>‹unit  'a.


fun fun_repeat :: "(unit ⇒ 'a) ⇒ nat ⇒ 'a list" where
  "fun_repeat _ 0 = []"
| "fun_repeat f (Suc n) = (f ()) # (fun_repeat f n)"

lemma "fun_repeat (λ_. ''Hello'') 4 =
       [''Hello'', ''Hello'', ''Hello'', ''Hello'']"
  by code_simp

text
Yet, \<^const>‹fun_repeat with the dummy function \<^typ>‹unit  'a is
equivalent to \<^const>‹repeat with the value \<^typ>‹'a directly.

lemma "fun_repeat (λ_. a) n = repeat a n" by(induction n) simp+

end

J

   NB. ^: (J's power conjunction) repeatedly evaluates a verb.

   NB. Appending to a vector the sum of the most recent
   NB. 2 items can generate the Fibonacci sequence.

   (, [: +/ _2&{.)  (^:4)  0 1
0 1 1 2 3 5
   

   NB. Repeat an infinite number of times
   NB. computes the stable point at convergence

   cosine =: 2&o.

   cosine (^:_ ) 2    NB. 2 is the initial value
0.739085
   
   cosine 0.739085  NB. demonstrate the stable point x==Cos(x)
0.739085
   

   cosine^:(<_) 2  NB. show the convergence
2 _0.416147 0.914653 0.610065 0.819611 0.682506 0.775995 0.713725 0.755929 0.727635 0.74675 0.733901 0.742568 0.736735 0.740666 0.738019 0.739803 0.738602 0.739411 0.738866 0.739233 0.738986 0.739152 0.73904 0.739116 0.739065 0.739099 0.739076 0.739091 0.7...


   # cosine^:(<_) 2  NB. iteration tallyft
78

   f =: 3 :'smoutput ''hi'''

   f''
hi
   
   NB. pass verbs via a gerund
   repeat =: dyad def 'for_i. i.y do. (x`:0)0 end. EMPTY'

   (f`'')repeat 4
hi
hi
hi
hi
   
   

   NB. pass a verb directly to an adverb

   Repeat =: adverb def 'for_i. i.y do. u 0 end. EMPTY'

   f Repeat 4
hi
hi
hi
hi

Java

Works with: Java version 8
import java.util.function.Consumer;
import java.util.stream.IntStream;

public class Repeat {

    public static void main(String[] args) {
        repeat(3, (x) -> System.out.println("Example " + x));
    }

    static void repeat (int n, Consumer<Integer> fun) {
        IntStream.range(0, n).forEach(i -> fun.accept(i + 1));
    }
}

Output:

Example 1
Example 2
Example 3

jq

Works with: jq version 1.4

We first define "repeat" naively but in accordance with the task specification; we then define an optimized version that illustrates a general technique for taking advantage of jq's support for tail-call optimization (TCO).

Since jq is a purely functional language, repeat(f; n) is unlikely to be very useful so we define a similar filter, repeatedly(f; n), which generates n+1 terms: . (the input), f, f|f, ... ; that is, using conventional functional notation, it generates: x, f(x), f(f(x)), ...

Unoptimized version:

def unoptimized_repeat(f; n):
  if n <= 0 then empty
  else f, repeat(f; n-1)
  end;

Optimized for TCO:

def repeat(f; n):
  # state: [count, in]
  def r:
    if .[0] >= n then empty else (.[1] | f), (.[0] += 1 | r) end;
  [0, .] | r;

Variant:

# If n is a non-negative integer,
# then emit a stream of (n + 1) terms: ., f, f|f, f|f|f, ...
def repeatedly(f; n):
  # state: [count, in]
  def r:
    if .[0] < 0 then empty
    else .[1], ([.[0] - 1, (.[1] | f)] | r)
    end;
  [n, .] | r;

Examples:

0 | [ repeat(.+1; 3) ]

produces: [1,1,1]

0 | repeatedly(.+1; 3)

produces:

0 
1 
2
3

Julia

function sayHi()
	println("Hi")
end

function rep(f, n)
	for i = 1:n f() end
end

rep(sayHi, 3)
Output:
Hi
Hi
Hi

Kotlin

// version 1.0.6

fun repeat(n: Int, f: () -> Unit) {
    for (i in 1..n) {
        f()
        println(i)
    }
}

fun main(args: Array<String>) {
    repeat(5) { print("Example ") }
}
Output:
Example 1
Example 2
Example 3
Example 4
Example 5

Lean

It runs on Lean 3.4.2:

def repeat :   (  string)  string 
  | 0 f       := "done"
  | (n + 1) f :=  (f n) ++ (repeat n f) 


#eval repeat 5 $ λ b :  , "me "

LiveCode

rep "answer",3

command rep x,n
    repeat n times
        do merge("[[x]] [[n]]")
    end repeat
end rep

Lua

No particular magic required as Lua allows functions to be passed as arguments.

function myFunc ()
    print("Sure looks like a function in here...")
end

function rep (func, times)
    for count = 1, times do
        func()
    end
end

rep(myFunc, 4)
Output:
Sure looks like a function in here...
Sure looks like a function in here...
Sure looks like a function in here...
Sure looks like a function in here...

Mathematica/Wolfram Language

Note that anything of this form is not considered good practice.

repeat[f_, n_] := Do[f[], {n}];
repeat[Print["Hello, world!"] &, 5];
Output:
Hello, world!
Hello, world!
Hello, world!
Hello, world!
Hello, world!

min

This operator already exists in min and is called times.

Works with: min version 0.19.6
("Hello" puts!) 3 times
Output:
Hello
Hello
Hello

MiniScript

sayHi = function()
    print "Hi!"
end function

rep = function(f, n)
    for i in range(1, n)
        f
    end for
end function

rep @sayHi, 3
Output:
Hi!
Hi!
Hi!

МК-61/52

1	П4

3	^	1	6	ПП	09	С/П

П7	<->	П0	КПП7	L0	12	В/О

ИП4	С/П	КИП4	В/О

Modula-2

MODULE Repeat;
FROM Terminal IMPORT WriteString,WriteLn,ReadChar;

TYPE F = PROCEDURE;

PROCEDURE Repeat(fun : F; c : INTEGER);
VAR i : INTEGER;
BEGIN
    FOR i:=1 TO c DO
        fun
    END
END Repeat;

PROCEDURE Print;
BEGIN
    WriteString("Hello");
    WriteLn
END Print;

BEGIN
    Repeat(Print, 3);

    ReadChar
END Repeat.

Nanoquery

Translation of: Python
def repeat(f,n)
    for i in range(1, n)
        f()
    end
end

def procedure()
    println "Example"
end

repeat(procedure, 3)

Nim

proc example = 
  echo "Example"

# Ordinary procedure
proc repeatProc(fn: proc, n: int) = 
  for x in 0..<n:
    fn()

repeatProc(example, 4)

# Template (code substitution), simplest form of metaprogramming
# that Nim has
template repeatTmpl(n: int, body: untyped): untyped = 
  for x in 0..<n:
    body

# This gets rewritten into a for loop
repeatTmpl 4:
  example()

import std/macros
# A macro which takes some code block and returns code
# with that code block repeated n times. Macros run at
# compile-time
macro repeatMacro(n: static[int], body: untyped): untyped = 
  result = newStmtList()

  for x in 0..<n:
    result.add body

# This gets rewritten into 4 calls to example()
# at compile-time
repeatMacro 4:
  example()

Objeck

class Repeat {
  function : Main(args : String[]) ~ Nil {
    Repeat(Example() ~ Nil, 3);
  }
  
  function : Repeat(e : () ~ Nil, i : Int) ~ Nil {
    while(i-- > 0) {
      e();
    };
  }
  
  function : Example() ~ Nil {
    "Example"->PrintLine();
  }
}

OCaml

let repeat ~f ~n =
  for i = 1 to n do
    f ()
  done

let func () =
  print_endline "Example"

let () =
  repeat ~n:4 ~f:func

Oforth

This method is already defined : times. This method can be used on all runnables (functions, methods, blocks, ...).

: hello "Hello, World!" println ;
10 #hello times
Output:
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!
Hello, World!

Ol

; sample function
(define (function) (display "+"))

; simple case for 80 times
(for-each (lambda (unused) (function)) (iota 80))
(print) ; print newline
; ==> ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

; detailed case for 80 times
(let loop ((fnc function) (n 80))
   (unless (zero? n)
      (begin
         (fnc)
         (loop fnc (- n 1)))))
(print) ; print newline
; ==> ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

PARI/GP

repeat(f, n)=for(i=1,n,f());
repeat( ()->print("Hi!"), 2);
Output:
Hi!
Hi!

Pascal

program Repeater;

type
  TProc = procedure(I: Integer);

procedure P(I: Integer);
begin
  WriteLn('Iteration ', I);
end;

procedure Iterate(P: TProc; N: Integer);
var
  I: Integer;
begin
  for I := 1 to N do
    P(I);
end;

begin
  Iterate(P, 3);
end.
Output:
Iteration           1
Iteration           2
Iteration           3

Perl

Translation of: C
sub repeat {
    my ($sub, $n) = @_;
    $sub->() for 1..$n;
}

sub example {
    print "Example\n";
}

repeat(\&example, 4);

Phix

procedure Repeat(integer rid, integer n)
    for i=1 to n do
        rid()
    end for
end procedure
 
procedure Hello()
    ?"Hello"
end procedure
 
Repeat(Hello,5)

Phixmonti

def myFunc
    "Sure looks like a function in here..." print nl
enddef
 
def rep /# func times -- #/
    for drop
	dup exec
    endfor
    drop
enddef

getid myFunc 4 rep

PicoLisp

# The built-in function "do" can be used to achieve our goal,
# however, it has a slightly different syntax than what the
# problem specifies.

# Native solution.
(do 10 (version))

# Our solution.
(de dofn (Fn N)
   (do N (Fn)) )

(dofn version 10)

PowerShell

Translation of: Python
(Made more PowerShelly.)
function Out-Example
{
    "Example"
}

function Step-Function ([string]$Function, [int]$Repeat)
{
    for ($i = 1; $i -le $Repeat; $i++)
    { 
        "$(Invoke-Expression -Command $Function) $i"
    }
}

Step-Function Out-Example -Repeat 3
Output:
Example 1
Example 2
Example 3

Prolog

repeat(_, 0).
repeat(Callable, Times) :-
	succ(TimesLess1, Times),
	Callable,
	repeat(Callable, TimesLess1).

test :- write('Hello, World'), nl.	
test(Name) :- format('Hello, ~w~n', Name).
Output:
?- repeat(test, 3).
Hello, World
Hello, World
Hello, World
true ;
false.

?- repeat(test('Fred'), 3).
Hello, Fred
Hello, Fred
Hello, Fred
true ;
false.

PureBasic

Prototype.i fun(x.i)

Procedure.i quark(z.i)
  Debug "Quark "+Str(z) : ProcedureReturn z-1
EndProcedure

Procedure rep(q.fun,n.i)
  Repeat : n=q(n) : Until n=0
EndProcedure

rep(@quark(),3)
Output:
Quark 3
Quark 2
Quark 1

Python

Procedural

#!/usr/bin/python
def repeat(f,n):
  for i in range(n):
    f();

def procedure():
  print("Example");

repeat(procedure,3); #prints "Example" (without quotes) three times, separated by newlines.

Functional

Repeated function application:

Works with: Python version 3.7
'''Application of a given function, repeated N times'''

from itertools import repeat
from functools import reduce
from inspect import getsource


# applyN :: Int -> (a -> a) -> a -> a
def applyN(n):
    '''n compounding applications of the supplied
       function f. Equivalent to Church numeral n.
    '''
    def go(f):
        return lambda x: reduce(
            lambda a, g: g(a), repeat(f, n), x
        )
    return lambda f: go(f)


# MAIN ----------------------------------------------------
def main():
    '''Tests - compounding repetition
       of function application.
    '''
    def f(x):
        return x + 'Example\n'

    def g(x):
        return 2 * x

    def h(x):
        return 1.05 * x

    print(
        fTable(__doc__ + ':')(
            lambda fx: '\nRepeated * 3:\n (' + (
                getsource(fst(fx)).strip() + ')(' +
                repr(snd(fx)) + ')'
            )
        )(str)(
            liftA2(applyN(3))(fst)(snd)
        )([(f, '\n'), (g, 1), (h, 100)])
    )


# GENERIC -------------------------------------------------

# compose (<<<) :: (b -> c) -> (a -> b) -> a -> c
def compose(g):
    '''Right to left function composition.'''
    return lambda f: lambda x: g(f(x))


# fst :: (a, b) -> a
def fst(tpl):
    '''First member of a pair.'''
    return tpl[0]


# liftA2 :: (a0 -> b -> c) -> (a -> a0) -> (a -> b) -> a -> c
def liftA2(op):
    '''Lift a binary function to a composition
       over two other functions.
       liftA2 (*) (+ 2) (+ 3) 7 == 90
    '''
    def go(f, g):
        return lambda x: op(
            f(x)
        )(g(x))
    return lambda f: lambda g: go(f, g)


# snd :: (a, b) -> b
def snd(tpl):
    '''Second member of a pair.'''
    return tpl[1]


# fTable :: String -> (a -> String) ->
#                     (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
    '''Heading -> x display function -> fx display function ->
                     f -> xs -> tabular string.
    '''
    def go(xShow, fxShow, f, xs):
        ys = [xShow(x) for x in xs]
        w = max(map(len, ys))
        return s + '\n' + '\n'.join(map(
            lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
            xs, ys
        ))
    return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
        xShow, fxShow, f, xs
    )


# MAIN ---
if __name__ == '__main__':
    main()
Output:
Application of a given function, repeated N times:

Repeated * 3:
 (def f(x):
        return x + 'Example\n')('\n') -> 
Example
Example
Example

             
Repeated * 3:
 (def g(x):
        return 2 * x)(1) -> 8
        
Repeated * 3:
 (def h(x):
        return 1.05 * x)(100) -> 115.7625

Quackery

This is a function which is part of the Quackery language. times performs the word or nest after it the number of times specified on the stack. The definition is reproduced here, along with the additional functionality included in the language; i counts down to zero, i^ counts up from zero, step specifies the increment size from an argument on the stack (default is 1), conclude sets the iteration countdown to the final value (0) and refresh sets the iteration countdown to the initial value. times is nestable, and words such as witheach (which makes use of times to iterate over a nest) inherit its additional functionality.

The word rosetta-times is also defined here, using times. It takes both the repeat number and the function as stack arguments.

  [ stack ]                     is times.start  (     --> s   )
  protect times.start

  [ stack ]                     is times.count  (     --> s   )
  protect times.count

  [ stack ]                     is times.action (     --> s   )
  protect times.action

  [ ]'[ times.action put
    dup times.start put
    [ 1 - dup -1 > while
      times.count put
      times.action share do
      times.count take again ]
    drop
    times.action release
    times.start release ]       is times         (   n -->   )

  [ times.count share ]         is i             (     --> n )

  [ times.start share i 1+ - ]  is i^            (     --> n )

  [ 0 times.count replace ]     is conclude      (     -->   )

  [ times.start share
    times.count replace ]       is refresh       (     -->   )

  [ times.count take 1+
    swap - times.count put ]    is step          (     --> s )

  [ nested ' times nested 
    swap join do ]              is rosetta-times ( n x -->   )
Output:

rosetta-times demonstrated in the Quackery shell. (REPL)

/O> [ say "hello" cr ] is hi 
... 5 ' hi rosetta-times
... 
hello
hello
hello
hello
hello

Stack empty.

R

f1 <- function(...){print("coucou")}

f2 <-function(f,n){
lapply(seq_len(n),eval(f))
}

f2(f1,4)

Racket

The racket guide has a section called "Iterators and Comprehensions", which shows that for isn't just for repeating n times!

#lang racket/base
(define (repeat f n) ; the for loop is idiomatic of (although not exclusive to) racket
  (for ((_ n)) (f)))

(define (repeat2 f n) ; This is a bit more "functional programmingy"
  (when (positive? n) (f) (repeat2 f (sub1 n))))

(display "...")
(repeat (λ () (display " and over")) 5)
(display "...")
(repeat2 (λ () (display " & over")) 5)
(newline)
Output:
... and over and over and over and over and over... & over & over & over & over & over

Raku

(formerly Perl 6)

sub repeat (&f, $n) { f() xx $n };

sub example { say rand }

repeat(&example, 3);
Output:
0.435249779778396
0.647701200726486
0.279289335968417
Of course, we could have just written
example() xx 3;
or even
(say rand) xx 3;
directly – the custom repeat subroutine is just here to satisfy the task description.

Notes on the xx operator:

  • Unlike other operators, it evaluates its left-hand-side argument lazily - that's why we can simply call f() there rather than passing it as a function object.
  • The operator has a return value: A list consisting of the return values of the left-hand-side (and building lists is in fact what xx is usually used for).

General notes:

  • The & sigil in the repeat subroutine signature restricts that parameter to types that implement the Callable role, and makes it available inside the repeat subroutine body as if it were a lexically scoped sub.
  • The parentheses in the last line are necessary to disambiguate it as a call to our custom subroutine, rather than an attempt to use the built-in repeat { ... } while ... construct.

Red

Red[]

myrepeat: function [fn n] [loop n [do fn]]

myrepeat [print "hello"] 3
Output:
hello
hello
hello

REXX

The procedure name (that is being repeatedly executed) isn't restricted to an   internal   REXX subroutine (procedure),
it may be an   external   program (procedure) written in any language.

/*REXX program   executes   a  named  procedure  a specified number of times.           */
parse arg pN # .                                 /*obtain optional arguments from the CL*/
if #=='' | #==","   then #= 1                    /*assume  once  if not specified.      */
if pN\==''          then call repeats pN, #      /*invoke the REPEATS procedure for  pN.*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
repeats: procedure;  parse arg x,n               /*obtain the procedureName & # of times*/
                do n;  interpret 'CALL' x;  end  /*repeat the invocation    N    times. */
         return                                  /*return to invoker of the REPEATS proc*/
/*──────────────────────────────────────────────────────────────────────────────────────*/
yabba:   say 'Yabba, yabba do!';          return /*simple code;  no need for  PROCEDURE.*/
output   when using the input of:     yabba   4
Yabba, yabba do!
Yabba, yabba do!
Yabba, yabba do!
Yabba, yabba do!

output when the input is:   $date 3

[The (external)   $DATE.REX   program isn't supplied here.]

day-of-year= 159                Gregorian date= 06/08/2014               Sunday
day-of-year= 159                Gregorian date= 06/08/2014               Sunday
day-of-year= 159                Gregorian date= 06/08/2014               Sunday

Ring

Func Main
     times(5,:test)

Func Test
     see "Message from the test function!" + nl

Func Times nCount, F
     for x = 1 to nCount
         Call F()
     next

Ruby

4.times{ puts "Example" }  # idiomatic way

def repeat(proc,num)
  num.times{ proc.call }
end

repeat(->{ puts "Example" }, 4)

Rust

Rust has higher-order functions.

fn repeat(f: impl FnMut(usize), n: usize) {
    (0..n).for_each(f);
}

Here we define the function repeat which takes the function Fn(usize), which is an anonymous trait constraint by the impl Trait syntax, in such a way that it's size can be known statically at compile time. The range iterator 0..n is used, in combination with the Iterator::for_each method to consume it.

Closure

It's idiomatic to use a closure.

fn main() {
    repeat(|x| print!("{};", x), 5);
}
Output:
0;1;2;3;4;

Static Function

Also possible to define a static function.

fn function(x: usize) {
    print!("{};", x);
}

fn main() {
    repeat(function, 4);
}
Output:
0;1;2;3;

Static Method

Sometimes it may be convenient to call a static method.

struct Foo;
impl Foo {
    fn associated(x: usize) {
        print!("{};", x);
    }
}

fn main() {
    repeat(Foo::associated, 8);
}
Output:
0;1;2;3;4;5;6;7;

Trait Method

You can also use implemented trait-methods as a function-argument. This works because the implemented type is usize which is what the iterator supplied to Fn(usize).

trait Bar {
    fn run(self);
}

impl Bar for usize {
    fn run(self) {
        print!("{};", self);
    }
}

fn main() {
    repeat(Bar::run, 6);
}
Output:
0;1;2;3;4;5;

Mutable Closure

The most interesting application would probably be a mutable closure, which requires changing the type signature from Fn to FnMut, because they are constrained by slightly different rules, but otherwise work the same.

fn repeat(f: impl FnMut(usize), n: usize) {
    (0..n).for_each(f);
}

fn main() {
    let mut mult = 1;
    repeat(|x| {
        print!("{};", x * mult);
        mult += x;
    }, 5);
}
Output:
0;1;4;12;28;

Scala

Intuitive solution

  1. Call by name
  2. Type parameterization
  3. Higher order function
  def repeat[A](n:Int)(f: => A)= ( 0 until n).foreach(_ => f)

  repeat(3) { println("Example") }

Advanced Scala-ish

  1. Call by name
  2. Type parameterization
  3. Implicit method
  4. Tail recursion
  5. Infix notation
object Repeat2 extends App {
  
   implicit class IntWithTimes(x: Int) {
      def times[A](f: => A):Unit = {
    @tailrec
      def loop( current: Int): Unit =
        if (current > 0) {
          f
          loop(current - 1)
        }
      loop(x)
    }
  }

  5 times println("ha") // Not recommended infix for 5.times(println("ha")) aka dot notation
}

Most Scala-ish

  1. Call by name
  2. Type parameterization
  3. Implicit method
  4. Tail recursion
  5. Infix notation
  6. Operator overloading
import scala.annotation.tailrec

object Repeat3 extends App {

  implicit class UnitWithNtimes(f: => Unit) {
    def *[A](n: Int): Unit = { // Symbol * used instead of literal method name
      @tailrec
      def loop(current: Int): Unit =
        if (current > 0) {
          f
          loop(current - 1)
        }
      loop(n)
    }
  }

  print("ha") * 5 // * is the method, effective should be A.*(5) 
}

Scheme

Scheme is mostly made up from expressions which return values. However some functions, such as display, return an unspecified value. The actual value returned varies depending on the Scheme implementation itself.

(import (scheme base)
        (scheme write))

(define (repeat proc n)
  (do ((i 0 (+ 1 i))
       (res '() (cons (proc) res)))
    ((= i n) res)))

;; example returning an unspecified value
(display (repeat (lambda () (display "hi\n")) 4)) (newline)

;; example returning a number
(display (repeat (lambda () (+ 1 2)) 5)) (newline)
Output:

(Using chibi-scheme: returns #<undef> from display.)

hi
hi
hi
hi
(#<undef> #<undef> #<undef> #<undef>)
(3 3 3 3 3)

Seed7

$ include "seed7_05.s7i";

const proc: myRepeat (in integer: times, in proc: aProcedure) is func
  local
    var integer: n is 0;
  begin
    for n range 1 to times do
      aProcedure;
    end for;
  end func;

const proc: main is func
  begin
    myRepeat(3, writeln("Hello!"));
  end func;
Output:
Hello!
Hello!
Hello!

Sidef

func repeat(f, n) {
    { f() } * n;
}

func example {
    say "Example";
}

repeat(example, 4);

Standard ML

fun repeat (_, 0) = ()
  | repeat (f, n) = (f (); repeat (f, n - 1))

fun testProcedure () =
  print "test\n"

val () = repeat (testProcedure, 5)

Stata

function repeat(f,n) {
	for (i=1; i<=n; i++) (*f)()
}

function hello() {
	printf("Hello\n")
}

repeat(&hello(),3)

Swift

func repeat(n: Int, f: () -> ()) {
  for _ in 0..<n {
    f()
  }
}

repeat(4) { println("Example") }

Tcl

The usual way of doing a repeat would be:

proc repeat {command count} {
    for {set i 0} {$i < $count} {incr i} {
        uplevel 1 $command
    }
}

proc example {} {puts "This is an example"}
repeat example 4

However, the time command can be used as long as the return value (the report on the timing information) is ignored.

time example 4

It should be noted that the “command” can be an arbitrary script, not just a call to a procedure:

repeat {puts "hello world"} 3

uBasic/4tH

Proc _Repeat (_HelloWorld, 5) : End

_Repeat Param (2) : Local (1) : For c@ = 1 To b@ : Proc a@ : Next : Return
_HelloWorld Print "Hello world!" : Return

Output:

Hello world!
Hello world!
Hello world!
Hello world!
Hello world!

0 OK, 0:35 

Ursa

def repeat (function f, int n)
	for (set n n) (> n 0) (dec n)
		f
	end for
end repeat

def procedure ()
	out "Hello! " console
end procedure

# outputs "Hello! " 5 times
repeat procedure 5

VBA

Translation of: Phix
Private Sub Repeat(rid As String, n As Integer)
    For i = 1 To n
        Application.Run rid
    Next i
End Sub
 
Private Sub Hello()
    Debug.Print "Hello"
End Sub
 
Public Sub main()
    Repeat "Hello", 5
End Sub

Verilog

module main;
    initial begin
        repeat(5) begin
            $display("Inside loop");
        end
        $display("Loop Ended");
    end
endmodule
Output:
Inside loop
Inside loop
Inside loop
Inside loop
Inside loop
Loop Ended

Visual Basic .NET

Translation of: C#
Module Module1

    Sub Repeat(count As Integer, fn As Action(Of Integer))
        If IsNothing(fn) Then
            Throw New ArgumentNullException("fn")
        End If

        For i = 1 To count
            fn.Invoke(i)
        Next
    End Sub

    Sub Main()
        Repeat(3, Sub(x) Console.WriteLine("Example {0}", x))
    End Sub

End Module
Output:
Example 1
Example 2
Example 3

Vlang

fn repeat(n int, f fn()) {
  for _ in 0.. n {
    f()
  }
}
 
fn func() {
  println("Example")
}
 
fn main() {
  repeat(4, func)
}
Output:
Example
Example
Example
Example

Wren

var f = Fn.new { |g, n|
    for (i in 1..n) g.call(n)
}

var g = Fn.new { |k|
    for (i in 1..k) System.write("%(i) ")
    System.print()
}

f.call(g, 5)
Output:
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 
1 2 3 4 5 

XBS

XBS has a built-in repeat keyword.

func rep(callback:function,amount:number,*args:array=[]):null{
	repeat amount {
		callback(*args);
	}
}

rep(func(a,b,c){
	log(a+b+c);
},3,1,2,3);
Output:
6
6
6

XLISP

(defun repeat (f n)
    (f)
    (if (> n 1)
        (repeat f (- n 1)) ) )

;; an example to test it:
(repeat (lambda () (print '(hello rosetta code))) 5)
Output:
(HELLO ROSETTA CODE) 
(HELLO ROSETTA CODE) 
(HELLO ROSETTA CODE) 
(HELLO ROSETTA CODE) 
(HELLO ROSETTA CODE)

Yabasic

Translation of: Lua
sub myFunc ()
    print "Sure looks like a function in here..."
end sub
 
sub rep (func$, times)
    for count = 1 to times
        execute(func$)
    next
end sub
 
rep("myFunc", 4)

Z80 Assembly

Return Trick

This technique is called the "Return Trick", it's efficient but makes the program more difficult to read. It works on the principle that the processor's RET command assumes the return address is the top item of the stack. The programmer can abuse this to "return" to a section of code that has never actually been executed. This is essentially just another form of the computed goto. Most processors that use the stack to store return addresses can use this technique, though the method of doing it depends on the processor itself.

ld b,&05  ;load the decrement value into b
ld hl,myFunc ;load the address of "myFunc" into HL

call repeatProcedure

forever:
jp forever ;trap the program counter here

repeatProcedure: ;input: b = times to repeat, hl = which procedure to repeat
call trampoline
; the "ret" in myFunc will bring you here
djnz repeatProcedure
ret ;exit "repeatProcedure" and proceed to "forever"

trampoline:
push hl
ret     
;this is effectively a call to whatever is in HL, in this case "myFunc." The "ret" at the end of myFunc will return us to 
;just after the line "call trampoline"


myFunc: ;this doesn't do anything useful but that's not the point
push hl ;not needed for this routine but if it altered HL we would need this so that we come back here next time we loop
or a
pop hl
ret

Indirect Jump

Same as above but uses an indirect jump to the address in HL.

trampoline:
jp (hl) ;despite the parentheses this does NOT dereference HL, it merely acts as "LD PC,HL".

Using self-modifying code

This method assumes the routine doesn't use the B register, or restores it before returning. Also, the actual "wrapper" used to repeat the passed function must be in RAM so that its instructions can be modified at runtime.

LD HL,myFunc
LD (repeatproc+1),HL
LD B,5 ;repeat count
CALL repeatProc

;somewhere far away from here:
repeatProc:
call &0000 ;gets overwritten with the address of MyFunc
djnz repeatProc
ret

zkl

fcn repeat(f,n){ do(n){ f() } }
repeat("ho ".print,3);
Output:
ho ho ho