Find square difference
- Task
Find and show on this page the least positive integer number n, where difference of n*n and (n-1)*(n-1) greater than 1000.
The result is 501 because 501*501 - 500*500 = 251001 - 250000 = 1001 > 1000.
11l
L(n) 1..
I n^2 - (n - 1)^2 > 1000
print(n)
L.break
- Output:
501
Ada
with Ada.Text_IO; use Ada.Text_IO;
procedure Find_Square_Difference is
Last : Natural := 0;
Square : Positive;
Diff : Positive;
begin
for N in 1 .. Positive'Last loop
Square := N ** 2;
Diff := Square - Last;
Last := Square;
if Diff > 1000 then
Put_Line (N'Image);
exit;
end if;
end loop;
end Find_Square_Difference;
- Output:
501
ALGOL 68
Also shows the least positive integer where the difference between n^2 and (n-1)^2 is greater than 32 000 and 2 000 000 000.
BEGIN # find the lowest positive n where the difference between n^2 and (n-1)^2 is > 1000 #
# shows the smalled square n where n^2 - (n-1)^2 is greater than required difference #
# n^2 - ( n - 1 )^2 is n^2 - n^2 + 2n - 1, i.e. 2n - 1 #
# so 2n - 1 > required difference or n > ( required difference + 1 ) / 2 #
PROC show least square = ( INT required difference )VOID:
print( ( "Smallest n where n^2 - (n-1)^2 is > ", whole( required difference, -12 )
, " is: ", whole( ( ( required difference + 1 ) OVER 2 ) + 1, -12 )
, newline
)
);
show least square( 1 000 );
show least square( 32 000 );
show least square( 2 000 000 000 )
END
- Output:
Smallest n where n^2 - (n-1)^2 is > 1000 is: 501 Smallest n where n^2 - (n-1)^2 is > 32000 is: 16001 Smallest n where n^2 - (n-1)^2 is > 2000000000 is: 1000000001
ALGOL W
begin % find the lowest positive n where the difference between n^2 and (n-1)^2 is > 1000 %
integer requiredDifference;
requiredDifference := 1000;
write( i_w := 1, s_w := 0,
, "Smallest n where n^2 - (n-1)^2 is > ", requiredDifference
, " is: ", ( ( requiredDifference + 1 ) div 2 ) + 1
)
end.
- Output:
Smallest n where n^2 - (n-1)^2 is > 1000 is: 501
Arturo
i: new 1
while ø [
if 1000 < (i^2)-(dec i)^2
-> break
inc 'i
]
print i
- Output:
501
Asymptote
int fpow(int n) {
int i = 0;
while (i^2 - (i-1)^2 < n) ++i;
return i;
}
write(fpow(1000));
AutoHotkey
while ((n:=A_Index)**2 - (n-1)**2 < 1000)
continue
MsgBox % result := n
- Output:
501
AWK
# syntax: GAWK -f FIND_SQUARE_DIFFERENCE.AWK
BEGIN {
n = 1001
while (i^2-(i-1)^2 < n) {
i++
}
printf("%d\n",i)
exit(0)
}
- Output:
501
BASIC
BASIC256
function fpow(n)
i = 0
while i^2 - (i-1)^2 < n
i += 1
end while
Return i
end function
print fpow(1001)
end
PureBasic
Procedure fpow(n.i)
Define i.i
While Pow(i, 2) - Pow((i-1), 2) < n
i + 1
Wend
ProcedureReturn i
EndProcedure
OpenConsole()
Print(Str(fpow(1001)))
Input()
CloseConsole()
QBasic
FUNCTION fpow (n)
WHILE (i * i) - ((i - 1) * (i - 1)) < n
i = i + 1
WEND
fpow = i
END FUNCTION
PRINT fpow(1001)
Run BASIC
function fpow(n)
while i^2-(i-1)^2 < n
i = i+1
wend
fpow = i
end function
print fpow(1001)
True BASIC
FUNCTION fpow (n)
DO WHILE i ^ 2 - (i - 1) ^ 2 < n
LET i = i + 1
LOOP
LET fpow = I
END FUNCTION
PRINT fpow(1001)
END
Tiny BASIC
LET N = 1001
LET I = 0
10 LET R = I*I - (I-1)*(I-1)
IF R >= N THEN GOTO 20
IF R < N THEN LET I = I + 1
GOTO 10
20 PRINT I
END
Yabasic
sub fpow(n)
while i^2 - (i-1)^2 < n
i = i + 1
wend
Return i
end sub
print fpow(1001)
end
bc
(1000 + 1) / 2 + 1
- Output:
501
C
#include<stdio.h>
#include<stdlib.h>
int f(int n) {
int i, i1;
for(i=1;i*i-i1*i1<n;i1=i, i++);
return i;
}
int main(void) {
printf( "%d\n", f(1000) );
return 0;
}
- Output:
501
C++
The C solution is also idomatic in C++. An alterate approach is to use Ranges from C++20.
#include <iostream>
#include <ranges>
int main()
{
const int maxSquareDiff = 1000;
auto squareCheck = [maxSquareDiff](int i){return 2 * i - 1 > maxSquareDiff;};
auto answer = std::views::iota(1) | // {1, 2, 3, 4, 5, ....}
std::views::filter(squareCheck) | // filter out the ones that are below 1000
std::views::take(1); // take the first one
std::cout << answer.front() << '\n';
}
- Output:
501
Dart
import 'dart:math';
int leastSquare(int gap) {
for (int n = 1;; n++) {
if (pow(n, 2) - pow((n - 1), 2) > gap) {
return n;
}
}
}
void main() {
print(leastSquare(1000));
}
- Output:
501
dc
1000 1+2/1+p
- Output:
501
EasyLang
repeat
i += 1
square = pow i 2
diffSquare = pow (i - 1) 2
difference = square - diffSquare
until difference > 1000
.
print i
F#
let n=1000 in printfn $"%d{((n+1)/2)+1}"
- Output:
501
Factor
The difference between squares is the odd numbers, so ls(n)=⌈n/2+1⌉.
USING: math math.functions prettyprint ;
: least-sq ( m -- n ) 2 / 1 + ceiling ;
1000 least-sq .
- Output:
501
Fermat
Func F(n) =
i:=0;
while i^2-(i-1)^2<n do i:=i+1 od; i.;
!!F(1000);
- Output:
501
Forth
: square dup * ;
: square-diff
0 begin 1+
dup square over 1- square -
1000 > until . ;
square-diff
- Output:
501 ok
FreeBASIC
function fpow(n as uinteger) as uinteger
dim as uinteger i
while i^2-(i-1)^2 < n
i+=1
wend
return i
end function
print fpow(1001)
- Output:
501
Go
package main
import (
"fmt"
"math"
)
func squareDiff(k int) int {
return int(math.Ceil(float64(k+1) * 0.5))
}
func main() {
fmt.Println(squareDiff(1000))
}
- Output:
501
Haskell
The sequence of differences between successive squares is the sequence of odd numbers.
import Data.List (findIndex)
f = succ . flip div 2
-- Or, with redundant verbosity
g n = i
where
Just i = succ <$> findIndex (> n) [1, 3 ..]
main = mapM_ print $ [f, g] <*> [1000]
- Output:
501 501
J
Through inspection, we can see that the "square difference' for a number n
is (2*n)-1
:
(*: - *:&<:) 1 2 3 4 5
1 3 5 7 9
Therefore, we expect that n=501 would give us a "square difference' of 1001. Testing, we can see that this is the case:
(*: - *:&<:) 501
1001
Joy
1000 succ 2 / succ.
- Output:
501
jq
Works with gojq, the Go implementation of jq
So this question is essentially asking to solve `2n - 1 > 1000`. Wow.
At the risk of hastening RC's demise, one could offer a jq solution like so:
first( range(1; infinite) | select( 2 * . - 1 > 1000 ) )
Or, for anyone envious of Bitcoin's contribution to global warming:
first( range(1; infinite) | select( .*. - ((.-1) | .*.) > 1000 ) )
- Output:
501
Julia
julia> findfirst(n -> n*n - (n-1)*(n-1) > 1000, 1:1_000_000)
501
OCaml
let calculate x =
succ (succ x lsr 1)
let () =
Printf.printf "%u\n" (calculate 1000)
- Output:
501
Pari/GP
F(n)=i=0;while(i^2-(i-1)^2<n,i=i+1);return(i);
print(F(1000))
- Output:
501
Pencil and Paper
Find the smallest positive integer number n, where the difference of n2 and (n - 1)2 is greater than 1000.
r: roots of squares s: successive squares d: differences between successive squares, (a.k.a, the list of positive odd integers) r: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... s: 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ... d: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, ... r: n s: n * n d: n * 2 + 1 solve for d > 1,000 the first odd integer greater than 1,000 is 1,001 (1,001 + 1) / 2 = 501 ( = n)
Perl
#!/usr/bin/perl
use strict; # https://rosettacode.org/wiki/Least_square
use warnings;
my $n = 1;
$n++ until $n ** 2 - ($n-1) ** 2 > 1000;
print "$n\n";
- Output:
501
Phix
Essentially Wren equivalent, but explained in excruciating detail especially for enyone that evidently needs elp, said Eeyore.
with javascript_semantics printf(1,""" n*n - (n - 1)*(n - 1) > 1000 n*n - (n*n - 2*n + 1) > 1000 n*n - n*n + 2*n - 1 > 1000 2*n - 1 > 1000 2*n > 1001 n > 500.5 n = %d """,ceil(500.5))
- Output:
n*n - (n - 1)*(n - 1) > 1000 n*n - (n*n - 2*n + 1) > 1000 n*n - n*n + 2*n - 1 > 1000 2*n - 1 > 1000 2*n > 1001 n > 500.5 n = 501
Or if you prefer, same output:
with javascript_semantics string e -- equation procedure p(string s) e := s -- set/save printf(1,"%s\n",s) end procedure p("n*n - (n - 1)*(n - 1) > 1000") -- original p(substitute(e,"(n - 1)*(n - 1)", "(n*n - 2*n + 1)")) -- expand string{l,m,r} = scanf(e,"%s - (%s)%s")[1] m = substitute_all(m,"-+|","|-+") -- unsign p(sprintf("%s - %s%s",{l,m,r})) p(substitute(e,"n*n - n*n + ","")) -- eliminate p(substitute_all(e,{" - 1","1000"},{"","1001"})) -- add 1 p(substitute_all(e,{"2*","1001"},{"","500.5"})) -- divide by 2 p(substitute(e,"> 500.5",sprintf("= %d",ceil(500.5)))) -- solve
or even:
without js -- (user defined types are not implicitly called) type pstring(string s) printf(1,"%s\n",s) return true end type pstring e -- equation e = "n*n - (n - 1)*(n - 1) > 1000" -- original e = substitute(e,"(n - 1)*(n - 1)", "(n*n - 2*n + 1)") -- expand string{l,m,r} = scanf(e,"%s - (%s)%s")[1] m = substitute_all(m,"-+|","|-+") -- unsign e = sprintf("%s - %s%s",{l,m,r}) e = substitute(e,"n*n - n*n + ","") -- eliminate e = substitute_all(e,{" - 1","1000"},{"","1001"}) -- add 1 e = substitute_all(e,{"2*","1001"},{"","500.5"}) -- divide by 2 e = substitute(e,"> 500.5",sprintf("= %d",ceil(500.5))) -- solve
Phixmonti
/# Rosetta Code problem: http://rosettacode.org/wiki/Find_square_difference
by Galileo, 10/2022 #/
def >1000
dup dup * over 1 - dup * - 1001 <
enddef
0 true while 1 + >1000 endwhile print
- Output:
501 === Press any key to exit ===
PL/M
This can be compiled with the original 8080 PL/M compiler and run under CP/M or an emulator.
Note that the original 8080 PL/M compiler only supports 8 and 16 bit unisgned numbers.
100H: /* FIND THE LEAST +VE N WHERE N SQUARED - (N-1) SQUARED > 1000 */
BDOS: PROCEDURE( FN, ARG ); /* CP/M BDOS SYSTEM CALL */
DECLARE FN BYTE, ARG ADDRESS;
GOTO 5;
END BDOS;
PR$CHAR: PROCEDURE( C ); DECLARE C BYTE; CALL BDOS( 2, C ); END;
PR$STRING: PROCEDURE( S ); DECLARE S ADDRESS; CALL BDOS( 9, S ); END;
PR$NL: PROCEDURE; CALL PR$CHAR( 0DH ); CALL PR$CHAR( 0AH ); END;
PR$NUMBER: PROCEDURE( N );
DECLARE N ADDRESS;
DECLARE V ADDRESS, N$STR( 6 ) BYTE, W BYTE;
V = N;
W = LAST( N$STR );
N$STR( W ) = '$';
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
DO WHILE( ( V := V / 10 ) > 0 );
N$STR( W := W - 1 ) = '0' + ( V MOD 10 );
END;
CALL PR$STRING( .N$STR( W ) );
END PR$NUMBER;
PRINT$LEAST: PROCEDURE( DIFF );
DECLARE DIFF ADDRESS;
CALL PR$STRING( . 'THE LOWEST N WHERE THE SQUARES OF N AND N-1 $' );
CALL PR$STRING( . 'DIFFER BY MORE THAN $' );
CALL PR$NUMBER( DIFF );
CALL PR$STRING( .' IS: $' );
CALL PR$NUMBER( ( ( DIFF + 1 ) / 2 ) + 1 );
CALL PR$NL;
END PRINT$LEAST ;
CALL PRINT$LEAST( 1000 );
CALL PRINT$LEAST( 32000 );
CALL PRINT$LEAST( 65000 );
EOF
- Output:
THE LOWEST N WHERE THE SQUARES OF N AND N-1 DIFFER BY MORE THAN 1000 IS: 501 THE LOWEST N WHERE THE SQUARES OF N AND N-1 DIFFER BY MORE THAN 32000 IS: 16001 THE LOWEST N WHERE THE SQUARES OF N AND N-1 DIFFER BY MORE THAN 65000 IS: 32501
Plain English
To run:
Start up.
Put 1 into a counter.
Loop.
If the counter does have a square difference, write the counter to the output; break.
Bump the counter.
Repeat.
Wait for the escape key.
Shut down.
To decide if a number does have a square difference:
Put the number into another number.
Raise the other number to 2.
Put the number into a third number.
Subtract 1 from the third number.
Raise the third number to 2.
If the other number minus the third number is greater than 1000, say yes.
Say no.
Python
import math
print("working...")
limit1 = 6000
limit2 = 1000
oldSquare = 0
newSquare = 0
for n in range(limit1):
newSquare = n*n
if (newSquare - oldSquare > limit2):
print("Least number is = ", end = "");
print(int(math.sqrt(newSquare)))
break
oldSquare = n*n
print("done...")
print()
- Output:
working... Least number is = 501 done...
Quackery
[ dup * ] is squared ( n --> n )
0
[ 1+
dup squared
over 1 - squared -
1000 > until ]
echo
- Output:
501
Using algebra
Noting that a²-b² ≡ (a+b)(a-b), and that in this instance a = b+1.
1000 2 / 1+ echo
- Output:
501
Raku
say first { $_² - ($_-1)² > 1000 }, ^Inf;
- Output:
501
Ring
load "stdlib.ring"
see "working..." + nl
limit1 = 6000
limit2 = 1000
oldPrime = 0
newPrime = 0
for n = 1 to limit1
newPrime = n*n
if newPrime - oldPrime > limit2
see "Latest number is = " + sqrt(newPrime) + nl
exit
ok
oldPrime = n*n
next
see "done..." + nl
- Output:
working... Latest number is = 501 done...
RPL
≪ 1 1 DO SWAP 1 + DUP SQ UNTIL DUP 4 ROLL - 1000 > END DROP ≫ EVAL
- Output:
1: 501
The above program takes 16.4 seconds to be executed on a HP-28S.
Algebraic approach
≪ 'n^2-(n-1)^2-1000' EXPAN COLCT 'n' ISOL CEIL ≫ EVAL
which returns the same result in only 9.2 seconds.
Ruby
p (1..).detect{|n| n*n - (n-1)*(n-1) > 1000 }
- Output:
501
Sidef
var N = 1000
# Binary search
var n = bsearch_ge(1, N, {|k|
k**2 - (k-1)**2 <=> N+1
})
# Closed-form
var m = ceil((N + 1 + N&1) / 2)
assert(n**2 - (n-1)**2 > N)
assert_eq(n, m)
say "#{n}^2 - #{n-1}^2 = #{n**2 - (n-1)**2}"
- Output:
501^2 - 500^2 = 1001
Verilog
module main;
integer i, n;
initial begin
n = 1000;
i = 0;
while (i ** 2 - (i - 1) ** 2 < n) i=i+1;
$display(i);
$finish ;
end
endmodule
Wren
The solution n for some non-negative integer k needs to be such that: n² - (n² - 2n + 1) > k which reduces to: n > (k + 1)/2.
var squareDiff = Fn.new { |k| ((k + 1) * 0.5).ceil }
System.print(squareDiff.call(1000))
- Output:
501
XPL0
n^2 - (n - 1)^2 > 1000 n^2 - (n^2 - 2n + 1) > 1000 2n - 1 > 1000 2n > 1001 n > 500.5 n = 501
- Pages with syntax highlighting errors
- Draft Programming Tasks
- 11l
- Ada
- ALGOL 68
- ALGOL W
- Arturo
- Asymptote
- AutoHotkey
- AWK
- BASIC
- BASIC256
- PureBasic
- QBasic
- Run BASIC
- True BASIC
- Tiny BASIC
- Yabasic
- Bc
- C
- C++
- Dart
- Dc
- EasyLang
- F Sharp
- Factor
- Fermat
- Forth
- FreeBASIC
- Go
- Haskell
- J
- Joy
- Jq
- Julia
- OCaml
- Pari/GP
- Pencil and Paper
- Perl
- Phix
- Phixmonti
- PL/M
- Plain English
- Plain English-output
- Python
- Quackery
- Using algebra
- Raku
- Ring
- RPL
- Ruby
- Sidef
- Verilog
- Wren
- XPL0
- Simple