Variable-length quantity: Difference between revisions

Added FreeBASIC
(Adjust output of Seed7 example)
(Added FreeBASIC)
 
(83 intermediate revisions by 38 users not shown)
Line 3:
Implement some operations on [[wp:Variable-length quantity|variable-length quantities]], at least including conversions from a normal number in the language to the binary representation of the variable-length quantity for that number, and ''vice versa''. Any variants are acceptable.
 
 
'''Task :''' With above operations,
;Task:
With above operations,
*convert these two numbers 0x200000 (2097152 in decimal) and 0x1fffff (2097151 in decimal) into sequences of octets (an eight-bit byte);
*display these sequences of octets;
*convert these sequences of octets back to numbers, and check that they are equal to original numbers.
<br><br>
 
=={{header|11l}}==
{{trans|C++}}
 
<syntaxhighlight lang="11l">F to_str(v)
R ‘[ ’v.map(n -> hex(n).lowercase().zfill(2)).join(‘ ’)‘ ]’
 
F to_seq(UInt64 x)
V i = 0
L(ii) (9.<0).step(-1)
I x [&] (UInt64(127) << ii * 7) != 0
i = ii
L.break
 
[Byte] out
L(j) 0 .. i
out [+]= ((x >> ((i - j) * 7)) [&] 127) [|] 128
 
out[i] (+)= 128
R out
 
F from_seq(seq)
UInt64 r = 0
 
L(b) seq
r = (r << 7) [|] (b [&] 127)
 
R r
 
L(x) [UInt64(7'F), 40'00, 0, 003F'FFFE, 001F'FFFF, 0020'0000, 3311'A123'4DF3'1413]
V s = to_seq(x)
print(‘seq from ’hex(x).lowercase()‘ ’to_str(s)‘ back: ’hex(from_seq(s)).lowercase())</syntaxhighlight>
 
{{out}}
<pre>
seq from 7f [ 7f ] back: 7f
seq from 4000 [ 81 80 00 ] back: 4000
seq from 0 [ 00 ] back: 0
seq from 3ffffe [ 81 ff ff 7e ] back: 3ffffe
seq from 1fffff [ ff ff 7f ] back: 1fffff
seq from 200000 [ 81 80 80 00 ] back: 200000
seq from 3311a1234df31413 [ b3 88 e8 a4 b4 ef cc a8 13 ] back: 3311a1234df31413
</pre>
 
=={{header|Ada}}==
 
<langsyntaxhighlight Adalang="ada">with Ada.Containers.Vectors;
with Ada.Text_IO;
with Ada.Unchecked_Conversion;
Line 101 ⟶ 147:
Nat_IO.Put (To_Int (Test), 10, 16); Ada.Text_IO.Put (" = ");
Print (Test);
end VLQ;</langsyntaxhighlight>
 
Output:
Line 110 ⟶ 156:
16#1FFFFF# = :16#FF#:16#FF#:16#7F#
16#200000# = :16#81#:16#80#:16#80#: 16#0#</pre>
 
=={{header|BASIC}}==
==={{header|ANSI BASIC}}===
{{works with|Decimal BASIC}}
<syntaxhighlight lang="basic">INPUT s$
LET s$ = LTRIM$(RTRIM$(s$))
LET v = 0
FOR i = 1 TO LEN(s$)
LET c$ = s$(i:i)
LET k = POS("0123456789abcdef", c$)
IF k > 0 THEN LET v = v*16 + k - 1
NEXT i
PRINT "S= ";s$, "V=";v
! Convert back to hex
LET hex$ ="0123456789abcdef"
LET hs$=" "
FOR i = LEN(hs$) TO 1 STEP -1
IF v = 0 THEN EXIT FOR
LET d = MOD(v, 16) + 1
LET hs$(i:i) = hex$(d:d)
LET v = INT(v/16)
NEXT i
PRINT hs$
END</syntaxhighlight>
{{out}}
<pre>
S= 200000 V= 2097152
200000
S= 1fffff V= 2097151
1fffff
</pre>
 
==={{header|FreeBASIC}}===
{{trans|Wren}}
<syntaxhighlight lang="vbnet">Sub toOctets(n As Integer, octets() As Integer)
Dim As String s = Bin(n)
Dim As Integer le = Len(s)
Dim As Integer r = le Mod 7
Dim As Integer d = le \ 7
If (r > 0) Then
d += 1
s = Right("0000000" & s, 7 * d)
End If
For i As Integer = 0 To d - 2
Redim Preserve octets(i+1) As Integer
octets(i) = Val("&B1" & Mid(s, i * 7 + 1, 7))
Next i
octets(d - 1) = Val("&B0" & Mid(s, (d - 1) * 7 + 1, 7))
End Sub
 
Function fromOctets(octets() As Integer) As Integer
Dim As String s = ""
For i As Integer = 0 To Ubound(octets)
s &= Right("0000000" & Bin(octets(i)), 7)
Next i
Return Val("&B" & s)
End Function
 
Dim As Integer tests(1) = {2097152, 2097151}
Dim As Integer i
For i = 0 To Ubound(tests)
Dim As Integer octets()
toOctets(tests(i), octets())
Dim As String display = ""
For j As Integer = 0 To Ubound(octets)
display &= "0x" & Hex(octets(j), 2) & " "
Next j
Print tests(i); " -> "; display; "-> "; fromOctets(octets())
Next i
 
Sleep</syntaxhighlight>
{{out}}
<pre> 2097152 -> 0x81 0x80 0x80 0x00 -> 2097152
2097151 -> 0xFF 0xFF 0x7F -> 2097151</pre>
 
==={{header|Visual Basic .NET}}===
{{trans|C#}}
<syntaxhighlight lang="vbnet">Module Module1
 
Function ToVlq(v As ULong) As ULong
Dim array(8) As Byte
Dim buffer = ToVlqCollection(v).SkipWhile(Function(b) b = 0).Reverse().ToArray
buffer.CopyTo(array, 0)
Return BitConverter.ToUInt64(array, 0)
End Function
 
Function FromVlq(v As ULong) As ULong
Dim collection = BitConverter.GetBytes(v).Reverse()
Return FromVlqCollection(collection)
End Function
 
Iterator Function ToVlqCollection(v As ULong) As IEnumerable(Of Byte)
If v > Math.Pow(2, 56) Then
Throw New OverflowException("Integer exceeds max value.")
End If
 
Dim index = 7
Dim significantBitReached = False
Dim mask = &H7FUL << (index * 7)
While index >= 0
Dim buffer = mask And v
If buffer > 0 OrElse significantBitReached Then
significantBitReached = True
buffer >>= index * 7
If index > 0 Then
buffer = buffer Or &H80
End If
Yield buffer
End If
mask >>= 7
index -= 1
End While
End Function
 
Function FromVlqCollection(vlq As IEnumerable(Of Byte)) As ULong
Dim v = 0UL
Dim significantBitReached = False
 
Using enumerator = vlq.GetEnumerator
Dim index = 0
While enumerator.MoveNext
Dim buffer = enumerator.Current
If buffer > 0 OrElse significantBitReached Then
significantBitReached = True
v <<= 7
v = v Or (buffer And &H7FUL)
End If
 
index += 1
If index = 8 OrElse (significantBitReached AndAlso (buffer And &H80) <> &H80) Then
Exit While
End If
End While
End Using
 
Return v
End Function
 
Sub Main()
Dim values = {&H7FUL << 7 * 7, &H80, &H2000, &H3FFF, &H4000, &H200000, &H1FFFFF}
For Each original In values
Console.WriteLine("Original: 0x{0:X}", original)
 
REM collection
Dim seq = ToVlqCollection(original)
Console.WriteLine("Sequence: 0x{0}", seq.Select(Function(b) b.ToString("X2")).Aggregate(Function(a, b) String.Concat(a, b)))
 
Dim decoded = FromVlqCollection(seq)
Console.WriteLine("Decoded: 0x{0:X}", decoded)
 
REM ints
Dim encoded = ToVlq(original)
Console.WriteLine("Encoded: 0x{0:X}", encoded)
 
decoded = FromVlq(encoded)
Console.WriteLine("Decoded: 0x{0:X}", decoded)
 
Console.WriteLine()
Next
End Sub
 
End Module</syntaxhighlight>
{{out}}
<pre>Original: 0xFE000000000000
Sequence: 0xFF80808080808000
Decoded: 0xFE000000000000
Encoded: 0xFF80808080808000
Decoded: 0xFE000000000000
 
Original: 0x80
Sequence: 0x8100
Decoded: 0x80
Encoded: 0x8100
Decoded: 0x80
 
Original: 0x2000
Sequence: 0xC000
Decoded: 0x2000
Encoded: 0xC000
Decoded: 0x2000
 
Original: 0x3FFF
Sequence: 0xFF7F
Decoded: 0x3FFF
Encoded: 0xFF7F
Decoded: 0x3FFF
 
Original: 0x4000
Sequence: 0x818000
Decoded: 0x4000
Encoded: 0x818000
Decoded: 0x4000
 
Original: 0x200000
Sequence: 0x81808000
Decoded: 0x200000
Encoded: 0x81808000
Decoded: 0x200000
 
Original: 0x1FFFFF
Sequence: 0xFFFF7F
Decoded: 0x1FFFFF
Encoded: 0xFFFF7F
Decoded: 0x1FFFFF</pre>
 
=={{header|Bracmat}}==
Bracmat has no native octet array type. Luckily, the only octet that possibly can be zero in a VLQ is the last octet. Therefore a solitary VLQ can be expressed as a Bracmat string, which, just as a C string, is null terminated. If the last byte of the VLQ string has the high bit set, we know that the last octet contained 0-bits only. A problem is of course that VLQ's probably are meant to be concatenizable. With null bytes missing, this is no option for the VLQ's generated by this solution.
<syntaxhighlight lang="bracmat">( ( VLQ
= b07 b8 vlq
. 0:?b8
& :?vlq
& whl
' ( !arg:>0
& mod$(!arg.128):?b07
& (chr$(!b8+!b07)|) !vlq:?vlq
& 128:?b8
& div$(!arg.128):?arg
)
& str$!vlq
)
& ( NUM
= c num d
. 0:?num:?d
& whl
' ( @(!arg:%@?c ?arg)
& asc$!c:?c:~<128
& 128*(!c+-128+!num):?num
& 1+!d:?d
)
& (!c:<128&!c+!num:?num|)
& !num
)
& ( printVLQ
= c h
. :?h
& whl
' ( @(!arg:%@?c ?arg)
& d2x$(asc$!c):?x
& !h (@(!x:? [1)&0|) !x
: ?h
)
& ( asc$!c:~<128&!h 00:?h
|
)
& out$("VLQ :" str$!h)
)
& ( test
= vlq num
. out$("input:" !arg)
& VLQ$(x2d$!arg):?vlq
& printVLQ$!vlq
& NUM$!vlq:?num
& out$("back :" d2x$!num \n)
)
& test$200000
& test$1fffff
& test$00
& test$7f
& test$80
& test$81
& test$82
& test$894E410E0A
);</syntaxhighlight>
Output:
<pre>input: 200000
VLQ : 81808000
back : 200000
 
input: 1fffff
VLQ : FFFF7F
back : 1FFFFF
 
input: 00
VLQ :
back : 0
 
input: 7f
VLQ : 7F
back : 7F
 
input: 80
VLQ : 8100
back : 80
 
input: 81
VLQ : 8101
back : 81
 
input: 82
VLQ : 8102
back : 82
 
input: 894E410E0A
VLQ : 9194F2849C0A
back : 894E410E0A
</pre>
 
=={{header|C}}==
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdint.h>
 
Line 154 ⟶ 498:
 
return 0;
}</langsyntaxhighlight>output<syntaxhighlight lang="text">seq from 7f: [ 7f ] back: 7f
seq from 4000: [ 81 80 00 ] back: 4000
seq from 0: [ 00 ] back: 0
Line 160 ⟶ 504:
seq from 1fffff: [ ff ff 7f ] back: 1fffff
seq from 200000: [ 81 80 80 00 ] back: 200000
seq from 3311a1234df31413: [ b3 88 e8 a4 b4 ef cc a8 13 ] back: 3311a1234df31413</langsyntaxhighlight>
 
=={{header|DC++}}==
{{trans|C}}
<syntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
#include <vector>
 
std::ostream &operator<<(std::ostream &os, const std::vector<uint8_t> &v) {
auto it = v.cbegin();
auto end = v.cend();
 
os << "[ ";
if (it != end) {
os << std::setfill('0') << std::setw(2) << (uint32_t)*it;
it = std::next(it);
}
while (it != end) {
os << ' ' << std::setfill('0') << std::setw(2) << (uint32_t)*it;
it = std::next(it);
}
return os << " ]";
}
 
std::vector<uint8_t> to_seq(uint64_t x) {
int i;
for (i = 9; i > 0; i--) {
if (x & 127ULL << i * 7) {
break;
}
}
 
std::vector<uint8_t> out;
for (int j = 0; j <= i; j++) {
out.push_back(((x >> ((i - j) * 7)) & 127) | 128);
}
out[i] ^= 128;
return out;
}
 
uint64_t from_seq(const std::vector<uint8_t> &seq) {
uint64_t r = 0;
 
for (auto b : seq) {
r = (r << 7) | (b & 127);
}
 
return r;
}
 
int main() {
std::vector<uint64_t> src{ 0x7f, 0x4000, 0, 0x3ffffe, 0x1fffff, 0x200000, 0x3311a1234df31413ULL };
 
for (auto x : src) {
auto s = to_seq(x);
std::cout << std::hex;
std::cout << "seq from " << x << ' ' << s << " back: " << from_seq(s) << '\n';
std::cout << std::dec;
}
 
return 0;
}</syntaxhighlight>
{{out}}
<pre>seq from 7f [ 7f ] back: 7f
seq from 4000 [ 81 80 00 ] back: 4000
seq from 0 [ 00 ] back: 0
seq from 3ffffe [ 81 ff ff 7e ] back: 3ffffe
seq from 1fffff [ ff ff 7f ] back: 1fffff
seq from 200000 [ 81 80 80 00 ] back: 200000
seq from 3311a1234df31413 [ b3 88 e8 a4 b4 ef cc a8 13 ] back: 3311a1234df31413</pre>
 
=={{header|C sharp|C#}}==
For methods involving a '''BinaryReader''' or '''BinaryWriter''' please refer to [http://rosettacode.org/wiki/User:Shimmy/Variable-length_quantity this] page.
<syntaxhighlight lang="csharp">namespace Vlq
{
using System;
using System.Collections.Generic;
using System.Linq;
 
public static class VarLenQuantity
{
public static ulong ToVlq(ulong integer)
{
var array = new byte[8];
var buffer = ToVlqCollection(integer)
.SkipWhile(b => b == 0)
.Reverse()
.ToArray();
Array.Copy(buffer, array, buffer.Length);
return BitConverter.ToUInt64(array, 0);
}
 
public static ulong FromVlq(ulong integer)
{
var collection = BitConverter.GetBytes(integer).Reverse();
return FromVlqCollection(collection);
}
 
public static IEnumerable<byte> ToVlqCollection(ulong integer)
{
if (integer > Math.Pow(2, 56))
throw new OverflowException("Integer exceeds max value.");
 
var index = 7;
var significantBitReached = false;
var mask = 0x7fUL << (index * 7);
while (index >= 0)
{
var buffer = (mask & integer);
if (buffer > 0 || significantBitReached)
{
significantBitReached = true;
buffer >>= index * 7;
if (index > 0)
buffer |= 0x80;
yield return (byte)buffer;
}
mask >>= 7;
index--;
}
}
 
 
public static ulong FromVlqCollection(IEnumerable<byte> vlq)
{
ulong integer = 0;
var significantBitReached = false;
 
using (var enumerator = vlq.GetEnumerator())
{
int index = 0;
while (enumerator.MoveNext())
{
var buffer = enumerator.Current;
if (buffer > 0 || significantBitReached)
{
significantBitReached = true;
integer <<= 7;
integer |= (buffer & 0x7fUL);
}
 
if (++index == 8 || (significantBitReached && (buffer & 0x80) != 0x80))
break;
}
}
return integer;
}
 
public static void Main()
{
var integers = new ulong[] { 0x7fUL << 7 * 7, 0x80, 0x2000, 0x3FFF, 0x4000, 0x200000, 0x1fffff };
 
foreach (var original in integers)
{
Console.WriteLine("Original: 0x{0:X}", original);
 
//collection
var seq = ToVlqCollection(original);
Console.WriteLine("Sequence: 0x{0}", seq.Select(b => b.ToString("X2")).Aggregate(string.Concat));
 
var decoded = FromVlqCollection(seq);
Console.WriteLine("Decoded: 0x{0:X}", decoded);
 
//ints
var encoded = ToVlq(original);
Console.WriteLine("Encoded: 0x{0:X}", encoded);
 
decoded = FromVlq(encoded);
Console.WriteLine("Decoded: 0x{0:X}", decoded);
 
Console.WriteLine();
}
Console.WriteLine("Press any key to continue...");
Console.ReadKey();
}
}
}</syntaxhighlight>output<syntaxhighlight lang="text">Original: 0xFE000000000000
Sequence: 0xFF80808080808000
Decoded: 0xFE000000000000
Encoded: 0xFF80808080808000
Decoded: 0xFE000000000000
 
Original: 0x80
Sequence: 0x8100
Decoded: 0x80
Encoded: 0x8100
Decoded: 0x80
 
Original: 0x2000
Sequence: 0xC000
Decoded: 0x2000
Encoded: 0xC000
Decoded: 0x2000
 
Original: 0x3FFF
Sequence: 0xFF7F
Decoded: 0x3FFF
Encoded: 0xFF7F
Decoded: 0x3FFF
 
Original: 0x4000
Sequence: 0x818000
Decoded: 0x4000
Encoded: 0x818000
Decoded: 0x4000
 
Original: 0x200000
Sequence: 0x81808000
Decoded: 0x200000
Encoded: 0x81808000
Decoded: 0x200000
 
Original: 0x1FFFFF
Sequence: 0xFFFF7F
Decoded: 0x1FFFFF
Encoded: 0xFFFF7F
Decoded: 0x1FFFFF
 
Press any key to continue...</syntaxhighlight>
 
=={{header|Cowgol}}==
<syntaxhighlight lang="cowgol">include "cowgol.coh";
 
sub VLQEncode(number: uint32, buf: [uint8]) is
var step := number;
while step > 0 loop
step := step >> 7;
buf := @next buf;
end loop;
var mark: uint8 := 0;
while number > 0 loop
buf := @prev buf;
[buf] := mark | (number as uint8 & 0x7F);
mark := 0x80;
number := number >> 7;
end loop;
end sub;
 
sub VLQDecode(buf: [uint8]): (result: uint32) is
result := 0;
loop
var byte := [buf];
buf := @next buf;
result := (result << 7) | (byte & 0x7F) as uint32;
if byte & 0x80 == 0 then
return;
end if;
end loop;
end sub;
 
sub VLQPrint(buf: [uint8]) is
loop
print_hex_i8([buf]);
if [buf] & 0x80 == 0 then
break;
end if;
buf := @next buf;
end loop;
end sub;
 
sub VLQTest(value: uint32) is
var buf: uint8[8];
print("Input: ");
print_hex_i32(value);
print_nl();
print("Encoded: ");
VLQEncode(value, &buf[0]);
VLQPrint(&buf[0]);
print_nl();
print("Decoded: ");
value := VLQDecode(&buf[0]);
print_hex_i32(value);
print_nl();
end sub;
 
VLQTest(0x200000);
print_nl();
VLQTest(0x1FFFFF);
print_nl();</syntaxhighlight>
{{out}}
<pre>Input: 00200000
Encoded: 81808000
Decoded: 00200000
 
Input: 001fffff
Encoded: ffff7f
Decoded: 001fffff</pre>
 
=={{header|D}}==
This implements a Variable-length Quantity struct for an ulong integer.
<syntaxhighlight lang="d">import std.stdio, std.string, std.file, std.algorithm;
 
/// Variable length quantity (unsigned long, max 63-bit).
<lang d>module vlq ;
struct VLQ {
private import std.string ;
ulong value;
 
// This allows VLQ to work like an ulong.
struct VLQ { // variable length quantity (unsiged long, max 63-bit)
ulongalias value this;
 
static ulong V2I(ubyte[] v) { return VLQ.init.from(v).value ; }
uint extract(in ubyte[] v) {pure
in ulong t = 0; {
uint idx = 0, limit = assert(v.length - 1> 0);
} body {
if(8 < limit) limit = 8 ;
immutable limit = min(v.length - 1, 8);
ulong t = 0;
size_t idx = 0;
while ((idx < limit) && ((v[idx] & 0x80) > 0))
t = (t << 7) | (0x7f & v[idx++]) ;
if (idx > limit)
throw new Exception("too large for ulong or invalid format") ;
"Too large for ulong or invalid format.");
else
value = (t << 7) | v[idx] ;
return idx + 1 ;
}
 
VLQ from(ubyte[] v) { extract(v) ; return this ; }
VLQ from(in ubyte[] v) pure {
@property
ubyte[] toVLQ extract(v) {;
ubyte[] v = [(0x7f & value)]return this;
ulong k = value >>> 7 ;
while(k > 0) {
v ~= (k & 0x7f) | 0x80 ;
k >>>= 7 ;
}
if(v.length > 9)
throw new Exception("value too large ") ;
return v.reverse ;
}
 
@property
string@property toStrubyte[] toVLQ() const pure {
stringubyte[] sv = [0x7f & value];
foreachfor (eulong k = value >>> 7; toVLQk > 0; k >>>= 7)
sv ~= std.string.format("%02X:",k e& 0x7f) ;| 0x80;
returnif "("~s[0v..$-1]~")"length ;> 9)
throw new Exception("Too large value.");
v.reverse();
return v;
}
 
static ulong[] split(ubyte[] b) {
static ulong[] split(in ulongubyte[] resb) pure ;{
VLQ vulong[] res;
VLQ v;
for(int i = 0, cnt = 1 ; i < b.length ; cnt++) {
for (size_t i = auto0; ki =< v.extract(b[i..$]length; ) ;{
resi ~+= v.valueextract(b[i .. $]);
ires +~= k v.value;
}
return res ;
}
alias value this ; // this allow VLQ works like ulong, eg add, multiply etc.
}</lang>
 
string toString() const pure /*nothrow*/ {
test code :
return format("(%(%02X:%))", this.toVLQ);
}
}
 
<lang d>import std.stdio ;
import vlq ;
void main() {
VLQ a = VLQ(0x7f), b = VLQ(0x4000), c ;
writefln("a:%8x = %s\nb:%8x = %s\nc:%8x = %s",
a.value, a.toStr, b.value, b.toStr, c.value, c.toStr) ;
c = (a + 1) * b ;
a = c - 1 ;
b = VLQ.init.from(a.toVLQ) ;
a <<= 1 ;
// convert ulong to octet sequence : VLQ(number).toVLQ
writefln("a:%8x = %s\nb:%8x = %s\nc:%8x = %s",
a.value, a.toStr, b.value, b.toStr, c.value, c.toStr) ;
//write them to a binary file
std.file.write("vlqtest.bin", a.toVLQ ~ b.toVLQ ~ c.toVLQ) ;
//read them back
auto buf = cast(ubyte[]) std.file.read("vlqtest.bin") ;
writefln("File length : %d", buf.length) ;
auto cnt = 0 ;
// convert octet sequence to ulong : (VLQ.init).from(octet sequence)
foreach(v; VLQ.split(buf))
writefln("%d:%8x = %s", 1 + cnt++, v, VLQ(v).toStr ) ;
}</lang>
 
void main() { // VLQ demo code.
output:
VLQ a = VLQ(0x7f),
b = VLQ(0x4000),
c;
writefln("a:%8x = %s\nb:%8x = %s\nc:%8x = %s",
a.value, a, b.value, b, c.value, c);
 
// Some operations.
c = (a + 1) * b;
a = c - 1;
b = VLQ().from(a.toVLQ);
a <<= 1;
 
// Convert ulong to octet sequence.
writefln("\na:%8x = %s\nb:%8x = %s\nc:%8x = %s",
a.value, a, b.value, b, c.value, c);
 
// Write them to a binary file.
std.file.write("vlqtest.bin", a.toVLQ ~ b.toVLQ ~ c.toVLQ);
 
// Read them back.
const buf = cast(ubyte[])std.file.read("vlqtest.bin");
writefln("\nFile length: %d bytes.", buf.length);
 
// Convert octet sequence to ulongs.
foreach (immutable i, immutable v; VLQ.split(buf))
writefln("%d:%8x = %s", i + 1, v, VLQ(v));
}</syntaxhighlight>
{{out}}
<pre>a: 7f = (7F)
b: 4000 = (81:80:00)
c: 0 = (00)
 
a: 3ffffe = (81:FF:FF:7E)
b: 1fffff = (FF:FF:7F)
c: 200000 = (81:80:80:00)
 
File length : 11
File length: 11 bytes.
1: 3ffffe = (81:FF:FF:7E)
2: 1fffff = (FF:FF:7F)
3: 200000 = (81:80:80:00)</pre>
 
=={{header|Delphi}}==
{{works with|Delphi|6.0}}
{{libheader|SysUtils,StdCtrls}}
 
 
<syntaxhighlight lang="Delphi">
 
 
 
function NumberToVLQ(Num: int64): string;
{Convert Num to Variable-Length Quantity VLQ Octets (bytes)}
{Octet = 7-bit data and MSB indicating the last data item = 0 }
{Note: String are being used as byte-array because they are easy}
var I: integer;
var T: byte;
var BA: string;
begin
Result:='';
BA:='';
{Get array of octets}
while Num>0 do
begin
BA:=BA+char($7F and Num);
Num:=Num shr 7;
end;
{Reverse data and flag more data is coming}
Result:='';
for I:=Length(BA) downto 1 do
begin
T:=Byte(BA[I]);
if I<>1 then T:=T or $80;
Result:=Result+char(T);
end;
end;
 
 
function VLQToNumber(VLQ: string): int64;
{Convert Variable-Length Quantity VLQ Octets (bytes) to numbers}
{Octet = 7-bit data and MSB indicating the last data item = 0 }
{Note: String are being used as byte-array because they are easy}
var I: integer;
var T: byte;
var BA: string;
begin
Result:=0;
for I:=1 to Length(VLQ) do
Result:=(Result shl 7) or (Byte(VLQ[I]) and $7F);
end;
 
 
 
function VLQToString(VLQ: string): string;
{Convert VLQ to string of hex numbers}
var I: integer;
begin
Result:='(';
for I:=1 to Length(VLQ) do
begin
if I>1 then Result:=Result+', ';
Result:=Result+IntToHex(byte(VLQ[I]),2);
end;
Result:=Result+')';
end;
 
 
 
procedure ShowVLQ(Memo: TMemo; Num: int64);
var VLQ: string;
var I: int64;
var S: string;
begin
VLQ:=NumberToVLQ(Num);
S:=VLQToString(VLQ);
I:=VLQToNumber(VLQ);
Memo.Lines.Add('Original Number: '+Format('%x',[Num]));
Memo.Lines.Add('Converted to VLQ: '+Format('%s',[S]));
Memo.Lines.Add('Back to Original: '+Format('%x',[I]));
Memo.Lines.Add('');
end;
 
const Num1 = $0;
const Num2 = $7F;
const Num3 = $4000;
const Num4 = $1FFFFF;
const Num5 = $200000;
const Num6 = $3FFFFE;
const Num7 = $3311A1234DF31413;
 
 
 
procedure VariableLengthOctets(Memo: TMemo);
begin
ShowVLQ(Memo, Num1);
ShowVLQ(Memo, Num2);
ShowVLQ(Memo, Num3);
ShowVLQ(Memo, Num4);
ShowVLQ(Memo, Num5);
ShowVLQ(Memo, Num6);
ShowVLQ(Memo, Num7);
end;
 
 
 
 
</syntaxhighlight>
{{out}}
<pre>
Original Number: 0
Converted to VLQ: ()
Back to Original: 0
 
Original Number: 7F
Converted to VLQ: (7F)
Back to Original: 7F
 
Original Number: 4000
Converted to VLQ: (81, 80, 00)
Back to Original: 4000
 
Original Number: 1FFFFF
Converted to VLQ: (FF, FF, 7F)
Back to Original: 1FFFFF
 
Original Number: 200000
Converted to VLQ: (81, 80, 80, 00)
Back to Original: 200000
 
Original Number: 3FFFFE
Converted to VLQ: (81, FF, FF, 7E)
Back to Original: 3FFFFE
 
Original Number: 3311A1234DF31413
Converted to VLQ: (B3, 88, E8, A4, B4, EF, CC, A8, 13)
Back to Original: 3311A1234DF31413
 
Elapsed Time: 42.717 ms.
</pre>
 
 
=={{header|Erlang}}==
This is built in.
<pre>
7> binary:encode_unsigned(2097152).
<<32,0,0>>
8> binary:decode_unsigned(<<32,0,0>>).
2097152
13> binary:encode_unsigned(16#1fffff).
<<31,255,255>>
14> binary:decode_unsigned(<<31,255,255>>).
2097151
</pre>
 
=={{header|Euphoria}}==
<langsyntaxhighlight lang="euphoria">function vlq_encode(integer n)
sequence s
s = {}
Line 296 ⟶ 1,091:
s = vlq_encode(testNumbers[i])
printf(1, "#%02x -> %s -> #%02x\n", {testNumbers[i], svlg(s), vlq_decode(s)})
end for</langsyntaxhighlight>
 
Output:
Line 305 ⟶ 1,100:
#80 -> #81:#00 -> #80
</pre>
 
=={{header|Go}}==
Go has an implementation of variable length quantities in the standard library.
<langsyntaxhighlight lang="go">package main
 
import (
Line 322 ⟶ 1,118:
fmt.Println(x, "decoded")
}
}</langsyntaxhighlight>
Output required by task:
<pre>
Line 354 ⟶ 1,150:
=={{header|Groovy}}==
Solution:
<langsyntaxhighlight lang="groovy">final RADIX = 7
final MASK = 2**RADIX - 1
Line 369 ⟶ 1,165:
(n << RADIX) + ((int)(octet) & MASK)
}
}</langsyntaxhighlight>
 
Test (samples borrowed from [[Java]] example):
<langsyntaxhighlight lang="groovy">def testNumbers = [ 0x200000, 0x1fffff, 1, 127, 128, 589723405834L ]
testNumbers.each { a ->
Line 379 ⟶ 1,175:
def a1 = deoctetify(octets)
assert a1 == a
}</langsyntaxhighlight>
 
Output:
Line 388 ⟶ 1,184:
0x81 0x00
0x91 0x94 0xf2 0x84 0x9c 0x0a</pre>
 
=={{header|Haskell}}==
 
<syntaxhighlight lang="haskell">import Numeric (readOct, showOct)
import Data.List (intercalate)
 
to :: Int -> String
to = flip showOct ""
 
from :: String -> Int
from = fst . head . readOct
 
main :: IO ()
main =
mapM_
(putStrLn .
intercalate " <-> " . (pure (:) <*> to <*> (return . show . from . to)))
[2097152, 2097151]</syntaxhighlight>
 
Homemade Version:
 
<syntaxhighlight lang="haskell">import Data.List (intercalate)
 
to :: Int -> Int -> [Int]
to _ 0 = []
to base i = to base q <> [r]
where
(q, r) = quotRem i base
 
from :: Int -> [Int] -> Int
from base = foldl1 ((+) . (base *))
 
 
--------------------------- TEST ---------------------------
main :: IO ()
main =
mapM_
(putStrLn .
intercalate " <-> " .
(((:) . (=<<) show . toBase) <*> (return . show . fromBase . toBase)))
[2097152, 2097151]
where
b = 8
fromBase = from b
toBase = to b</syntaxhighlight>
{{out}}
<pre>10000000 <-> 2097152
7777777 <-> 2097151</pre>
 
=={{header|Icon}} and {{header|Unicon}}==
<langsyntaxhighlight Iconlang="icon">procedure main()
every i := 2097152 | 2097151 | 1 | 127 | 128 | 589723405834 | 165 | 256 do
write(image(i)," = ",string2hex(v := uint2vlq(i))," = ",vlq2uint(v))
Line 419 ⟶ 1,263:
h ||:= "0123456789abcdef"[i/16+1] || "0123456789abcdef"[i%16+1]
return h
end</langsyntaxhighlight>
 
Output:<pre>2097152 = 81808000 = 2097152
Line 432 ⟶ 1,276:
=={{header|J}}==
 
<langsyntaxhighlight lang="j">N=: 128x
v2i=: (N&| N&#./.~ [: +/\ _1 |. N&>)@i.~&a.
i2v=: a. {~ [:;}.@(N+//.@,:N&#.inv)&.>
ifv=: v2i :. i2v
vfi=: i2v :. v2i</lang>
av=: 3 u: ] </syntaxhighlight>
 
<code>ifv</code> is an invertible function which gets an (unsigned, arbitrary precision) integer sequence from a variable-length quantity sequence. <code>vfi</code> is an invertable function which gets a variable-length quantity sequence from an unsigned integer sequence. <code>av</code> displays character code numbers corresponding to the characters in its argument.
Line 442 ⟶ 1,287:
Example use:
 
<syntaxhighlight lang="j"> numbers=: 16b7f 16b4000 0 16b3ffffe 16b1fffff 200000
<lang j> require'convert'
numbers=: 16b7f 16b4000 0 16b3ffffe 16b1fffff 200000
av vlq=: vfi numbers
127 129 128 0 0 129 255 255 126 255 255 127 140 154 64
av (vfi 1 2 3 4 5 6) +&.ifv vlq
129 0 129 128 2 3 130 128 128 2 129 128 128 4 140 154 70</langsyntaxhighlight>
 
=={{header|Java}}==
 
<langsyntaxhighlight lang="java">public class VLQCode
{
public static byte[] encode(long n)
Line 510 ⟶ 1,354:
}
}
</syntaxhighlight>
</lang>
 
Output:
Line 519 ⟶ 1,363:
Original input=128, encoded = [81, 00], decoded=128, OK
Original input=589723405834, encoded = [91, 94, f2, 84, 9c, 0a], decoded=589723405834, OK</pre>
 
=={{header|JavaScript}}==
{{trans|Groovy}}
Based on programmatic experimentation, it breaks at 2147483648 (2^31).
 
<syntaxhighlight lang="javascript">const RADIX = 7;
const MASK = 2**RADIX - 1;
 
const octetify = (n)=> {
if (n >= 2147483648) {
throw new RangeError("Variable Length Quantity not supported for numbers >= 2147483648");
}
const octets = [];
for (let i = n; i != 0; i >>>= RADIX) {
octets.push((((i & MASK) + (octets.empty ? 0 : (MASK + 1)))));
}
octets.reverse();
return octets;
};
 
const deoctetify = (octets)=>
octets.reduce((n, octet)=>
(n << RADIX) + (octet & MASK)
, 0);
 
// Test (assuming Node.js)
 
const assert = require("assert");
const testNumbers = [ 0x200000, 0x1fffff, 1, 127, 128, 2147483647 /*, 589723405834*/ ]
 
testNumbers.forEach((number)=> {
const octets = octetify(number)
console.log(octets);
const got_back_number = deoctetify(octets)
assert.strictEqual(got_back_number, number);
});</syntaxhighlight>
 
=={{header|jq}}==
{{works with|jq}}
'''Also works with gojq and fq, the Go implementations'''
 
'''With minor tweaks, also works with jaq, the Rust implementation'''
 
<syntaxhighlight lang=jq>
# "VARIABLE-LENGTH QUANTITY"
# A VLQ is a variable-length encoding of a number into a sequence of octets,
# with the most-significant octet first, and with the most significant bit first in each octet.
# The first (left-most) bit in each octet is a continuation bit: all octets except the last have the left-most bit set.
# The bits of the original number are taken 7 at a time from the right to form the octets.
# Thus, if the number is between 0 and 127, it is represented exactly as one byte.
 
# Produce a stream of the base $b "digits" of the input number,
# least significant first, with a final 0
def digits($b):
def mod: . % $b;
def div: ((. - mod) / $b);
recurse( select(. > 0) | div) | mod ;
 
# 2 <= $b <= 36
def tobase($b):
def digit: "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[.:.+1];
if . == 0 then "0"
else [digits($b) | digit] | reverse[1:] | add
end;
 
# input: a decimal integer
# output: the corresponding variable-length quantity expressed as an array of strings of length 2,
# each representing an octet in hexadecimal notation, with most-significant octet first.
def vlq:
def lpad: if length == 2 then . else "0" + . end;
[digits(128) + 128] | reverse[1:] | .[-1] -=128 | map(tobase(16) | lpad);
 
# Input: a VLQ as produced by vlq/0
# Output: the corresponding decimal
def vlq2dec:
def x2d: # convert the character interpreted as a hex digit to a decimal
explode[0] as $x
| if $x < 65 then $x - 48 elif $x < 97 then $x - 55 else $x - 87 end;
map( ((.[0:1] | x2d) * 16) + (.[1:] | x2d) - 128)
| .[-1] += 128 # the most significant bit of the least significant octet
| reduce reverse[] as $x ({x: 0, m: 1}; .x += ($x * .m) | .m *= 128)
| .x ;
 
# The task
 
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
 
2097152, 2097151
| vlq as $vlq
| "\(lpad(8)) => \($vlq|join(",")|lpad(12)) => \($vlq | vlq2dec | lpad(8))"
</syntaxhighlight>
{{output}}
<pre>
2097152 => 81,80,80,00 => 2097152
2097151 => FF,FF,7F => 2097151
</pre>
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">using Printf
 
mutable struct VLQ
quant::Vector{UInt8}
end
 
function VLQ(n::T) where T <: Integer
quant = UInt8.(digits(n, 128))
@inbounds for i in 2:length(quant) quant[i] |= 0x80 end
VLQ(reverse(quant))
end
 
import Base.UInt64
function Base.UInt64(vlq::VLQ)
quant = reverse(vlq.quant)
n = shift!(quant)
p = one(UInt64)
for i in quant
p *= 0x80
n += p * ( i & 0x7f)
end
return n
end
 
const test = [0x00200000, 0x001fffff, 0x00000000, 0x0000007f,
0x00000080, 0x00002000, 0x00003fff, 0x00004000,
0x08000000, 0x0fffffff]
 
for i in test
vlq = VLQ(i)
j = UInt(vlq)
@printf "0x%-8x => [%-25s] => 0x%x\n" i join(("0x" * hex(r, 2) for r in vlq.quant), ", ") j
end</syntaxhighlight>
 
{{out}}
<pre>0x200000 => [0x81, 0x80, 0x80, 0x00 ] => 0x200000
0x1fffff => [0xff, 0xff, 0x7f ] => 0x1fffff
0x0 => [0x00 ] => 0x0
0x7f => [0x7f ] => 0x7f
0x80 => [0x81, 0x00 ] => 0x80
0x2000 => [0xc0, 0x00 ] => 0x2000
0x3fff => [0xff, 0x7f ] => 0x3fff
0x4000 => [0x81, 0x80, 0x00 ] => 0x4000
0x8000000 => [0xc0, 0x80, 0x80, 0x00 ] => 0x8000000
0xfffffff => [0xff, 0xff, 0xff, 0x7f ] => 0xfffffff</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.0.6
 
fun Int.toOctets(): ByteArray {
var s = Integer.toBinaryString(this)
val r = s.length % 7
var z = s.length / 7
if (r > 0) {
z++
s = s.padStart(z * 7, '0')
}
s = Array(z) { "1" + s.slice(it * 7 until (it + 1) * 7) }.joinToString("")
s = s.take(s.length - 8) + "0" + s.takeLast(7)
return ByteArray(z) { Integer.parseInt(s.slice(it * 8 until (it + 1) * 8), 2).toByte() }
}
 
fun ByteArray.fromOctets(): Int {
var s = ""
for (b in this) s += Integer.toBinaryString(b.toInt()).padStart(7, '0').takeLast(7)
return Integer.parseInt(s, 2)
}
 
fun main(args: Array<String>) {
val tests = intArrayOf(0x7f, 0x3fff, 0x200000, 0x1fffff)
for (test in tests) {
val ba = test.toOctets()
print("${"0x%x".format(test).padEnd(8)} -> ")
var s = ""
ba.forEach { s += "0x%02x ".format(it) }
println("${s.padEnd(20)} <- ${"0x%x".format(ba.fromOctets())}")
}
}</syntaxhighlight>
 
{{out}}
<pre>
0x7f -> 0x7f <- 0x7f
0x3fff -> 0xff 0x7f <- 0x3fff
0x200000 -> 0x81 0x80 0x80 0x00 <- 0x200000
0x1fffff -> 0xff 0xff 0x7f <- 0x1fffff
</pre>
 
=={{header|xTalk}}==
{{works with|LiveCode}}
 
This task was completed a different (and better) way a long time ago in UDI's PMD/MakeSMF Lib for LiveCode (back when it was MetaCard).
Here is my own (and probably slower) version.
-- Paul McClernan
 
<syntaxhighlight lang="livecode">
on DecToVLQ
Ask "Enter base 10 value:" -- input dialog box
if it is not empty then
if it is a number then
put it into theString
if isWholeNumString(theString) is false then -- I think there is built in equivalent for this but I rolled my own!
answer "Only Whole Decimal Numbers Are Allowed!"
exit DecToVLQ
end if
if theString>4294967295 then
answer "This function fails with whole numbers over 4294967295!"&cr\
& "4294967295 is the maximum allowed value for 32bits (4 bytes)"
exit DecToVLQ
end if
if theString>268435455 then
answer "This function is not accurate with whole numbers over 268435455!"&cr\
& "268435455 is the maximum allowed value for 28bit (7bits per byte) MIDI delta-time VLQ"
end if
put "Original Whole Number="& theString & cr & \
"Original Whole Number in Hex="& baseConvert(theString,10,16) & cr & \ --- LC's built in baseConvert function
"Variable Length Quantity in Hex=" & wholeNumToVLQ(theString) into fld "Output"
else
answer "Only Whole Decimal Numbers Are Allowed!"
end if
end if
end DecToVLQ
 
function wholeNumToVLQ theWholeNum
-- baseConvert(number,originalBase,destinationBase) -- there is also bitwise operations in LC but I took the long road
if theWholeNum < 127 then -- if it fits into a single 7bit byte value and theres no need to process it
put baseConvert(theWholeNum,10,16) into VQLinHex
if the number of chars in VQLinHex=1 then put "0" before VQLinHex
return VQLinHex
exit wholeNumToVLQ
end if
put baseConvert(theWholeNum,10,2) into theBits
put number of chars in theBits into x
put 0 into bitCounter
put empty into the7bitBytes
repeat
if char x of theBits is not empty then
put char x theBits before the7bitBytes
delete char x of theBits
if theBits is empty then exit repeat
put number of chars in theBits into x
add 1 to bitCounter
if bitCounter=7 then
put "," before the7bitBytes
put 0 into bitCounter
next repeat
end if
else
exit repeat
end if
end repeat
get the number of chars in item 1 of the7bitBytes
if it<7 then
put 7 - it into x
repeat x
put "0" before item 1 of the7bitBytes
end repeat
end if
put the number of items in the7bitBytes into y
repeat with x = 1 to y
if x is not y then
put "1" before item x of the7bitBytes
else
put "0" before item x of the7bitBytes
end if
put baseConvert(item x of the7bitBytes,2,16) into item x of the7bitBytes
if the number of chars in item x of the7bitBytes<2 then put "0" before item x of the7bitBytes
put item x of the7bitBytes after VQLinHex
end repeat
return VQLinHex
end wholeNumToVLQ
 
function isWholeNumString theString
put the number of chars in theString into y
repeat with x = 1 to y
if char x of theString is not in "0123456789" then
return false
exit isWholeNumString
end if
end repeat
return true
end isWholeNumString
</syntaxhighlight>
 
{{out}}
<pre>
Original Whole Number=2097152
Original Whole Number in Hex=200000
Variable Length Quantity in Hex=81808000
</pre>
 
Convert back:
 
<syntaxhighlight lang="livecode">
function VLQtoWholeNum theHexVLQ
-- The number must be an integer between zero and 4,294,967,295
put baseConvert(theHexVLQ,16,2) into theBits
put 0 into bitCounter
put empty into the8bitBytes
repeat
if char 1 of theBits is not empty then
put char 1 theBits after the8bitBytes
delete char 1 of theBits
if theBits is empty then exit repeat
add 1 to bitCounter
if bitCounter=8 then
put "," after the8bitBytes
put 0 into bitCounter
next repeat
end if
else
exit repeat
end if
end repeat
put the number of items in the8bitBytes into y
repeat with x = 1 to y
put char 1 of item x of the8bitBytes into lengthCntrlBit
delete char 1 of item x of the8bitBytes
if the number of chars in item x of the8bitBytes < 7 then
repeat 7 - (the number of chars in item x of the8bitBytes)
put "0" before item x of the8bitBytes
end repeat
end if
put item x of the8bitBytes after WholeNumInBinary
switch lengthCntrlBit
case "1"
next repeat
break
case "0"
exit repeat
break
end switch
end repeat
return baseConvert(WholeNumInBinary,2,10)
end VLQtoWholeNum
 
function isHexString theString
---again there is probably an easier way to do this:
if char 1 to 2 of theString is "0x" then delete char 1 to 2 of theString
put the number of chars in theString into y
repeat with x = 1 to y
if char x of theString is not in "abcdefABCDEF0123456789" then
return false
end if
end repeat
end isHexString
 
on VLQHexToWholeNum
Ask "Enter Variable Length Quantity Hex Value:" -- input dialog
if it is not empty then
if char 1 to 2 of it is "0x" then delete char 1 to 2 of it
put it into hexString
if isHexString(hexString) is false then
answer "Only Valid Hex Digits Are Allowed!"
exit VLQHexToWholeNum
else
put "Original Variable Length Quantity in Hex="& hexString & cr & \
"Whole Number=" & VLQtoWholeNum(hexString) into fld "Output"
end if
end if
end VLQHexToWholeNum
</syntaxhighlight>
 
{{out}}
<pre>
Original Variable Length Quantity in Hex=FFFF7F
Whole Number=2097151
</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">toOctets[n_Integer] :=
StringJoin @@@
Partition[
PadLeft[Characters@IntegerString[n, 16],
2 Ceiling[Plus @@ DigitCount[n, 16]/2], {"0"}], 2]
fromOctets[octets_List] := FromDigits[StringJoin @@ octets, 16]
Grid[{#, toOctets@#, fromOctets[toOctets@#]} & /@ {16^^3ffffe, 16^^1fffff, 16^^200000}]</syntaxhighlight>
{{out}}
<pre>4194302 {3f,ff,fe} 4194302
2097151 {1f,ff,ff} 2097151
2097152 {20,00,00} 2097152</pre>
 
=={{header|Nim}}==
<syntaxhighlight lang="nim">import strformat
 
proc toSeq(x: uint64): seq[uint8] =
var x = x
var f = 0u64
for i in countdown(9u64, 1):
if (x and 127'u64 shl (i * 7)) > 0:
f = i
break
for j in 0u64..f:
result.add uint8((x shr ((f - j) * 7)) and 127) or 128
 
result[f] = result[f] xor 128'u8
 
proc fromSeq(xs: openArray[uint8]): uint64 =
for x in xs:
result = (result shl 7) or (x and 127)
 
for x in [0x7f'u64, 0x4000'u64, 0'u64, 0x3ffffe'u64, 0x1fffff'u64,
0x200000'u64, 0x3311a1234df31413'u64]:
let c = toSeq(x)
echo &"seq from {x}: {c} back: {fromSeq(c)}"</syntaxhighlight>
 
{{out}}
<pre>seq from 127: @[127] back: 127
seq from 16384: @[129, 128, 0] back: 16384
seq from 0: @[0] back: 0
seq from 4194302: @[129, 255, 255, 126] back: 4194302
seq from 2097151: @[255, 255, 127] back: 2097151
seq from 2097152: @[129, 128, 128, 0] back: 2097152
seq from 3679899543542109203: @[179, 136, 232, 164, 180, 239, 204, 168, 19] back: 3679899543542109203</pre>
 
=={{header|OCaml}}==
<langsyntaxhighlight lang="ocaml">let to_vlq n =
let a, b = n lsr 7, n land 0x7F in
let rec aux n acc =
Line 545 ⟶ 1,800:
v_rep 0x200000;
v_rep 0x1FFFFF
</syntaxhighlight>
</lang>
 
Outputs:
Line 552 ⟶ 1,807:
2097152 -> 0x81 0x80 0x80 0x00 -> 2097152
2097151 -> 0xFF 0xFF 0x7F -> 2097151</pre>
 
=={{header|PARI/GP}}==
<syntaxhighlight lang="parigp">hex(s)=my(a=10,b=11,c=12,d=13,e=14,f=15);subst(Pol(eval(Vec(s))),'x,16);
n1=hex("200000");n2=hex("1fffff");
v1=digits(n1,256)
v2=digits(n2,256)
subst(Pol(v1),'x,256)==n1
subst(Pol(v2),'x,256)==n2</syntaxhighlight>
{{out}}
<pre>%1 = [32, 0, 0]
%2 = [31, 255, 255]
%3 = 1
%4 = 1</pre>
 
=={{header|Perl}}==
The vlg_encode sub returns an array of octets in most -> least significant order. Simply reverse the array to reverse the order.
 
<langsyntaxhighlight lang="perl">
use warnings;
use strict;
Line 587 ⟶ 1,855:
return oct '0b' . $num;
}
</syntaxhighlight>
</lang>
 
Output:
Line 606 ⟶ 1,874:
2097152 81:80:80:00 2097152
</pre>
=={{header|Perl 6}}==
vlq_encode() returns a string of characters whose ordinals are the encoded octets. vlq_decode() takes a string and returns a decimal number.
<lang perl6>sub vlq_encode ($number is copy) {
my $string = '';
my $t = 0x7F +& $number;
$number +>= 7;
$string = $t.chr ~ $string;
while ($number) {
$t = 0x7F +& $number;
$string = (0x80 +| $t).chr ~ $string;
$number +>= 7;
}
return $string;
}
 
=={{header|Phix}}==
sub vlq_decode ($string is copy) {
Copy of [[Variable-length_quantity#Euphoria|Euphoria]], modified to pack several numbers into a single stream. Also added an explicit check that (as per wp) only unsigned numbers are attempted.
my $number = '0b';
for $string.ords -> $oct {
$number ~= ($oct +& 0x7F).fmt("%07b");
}
return :2($number);
}
 
<!--<syntaxhighlight lang="phix">-->
#test encoding and decoding
<span style="color: #008080;">function</span> <span style="color: #000000;">vlq_encode</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
for (
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
0, 0xa, 123, 254, 255, 256,
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">to</span> <span style="color: #000000;">1</span> <span style="color: #008080;">by</span> <span style="color: #0000FF;">-</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
257, 65534, 65535, 65536, 65537, 0x1fffff,
<span style="color: #004080;">integer</span> <span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span> <span style="color: #000000;">msb</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
0x200000
<span style="color: #008080;">if</span> <span style="color: #000000;">n</span><span style="color: #0000FF;"><</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #7060A8;">crash</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"unsigned integers only!"</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
) -> $testcase {
<span style="color: #008080;">while</span> <span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
my $encoded = vlq_encode($testcase);
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">prepend</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">msb</span><span style="color: #0000FF;">+</span><span style="color: #7060A8;">and_bits</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">,</span><span style="color: #000000;">#7F</span><span style="color: #0000FF;">))</span>
printf "%8s %12s %8s\n", $testcase,
<span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">/</span><span style="color: #000000;">#80</span><span style="color: #0000FF;">)</span>
( join ':', $encoded.ords>>.fmt("%02X") ),
<span style="color: #008080;">if</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">0</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
vlq_decode($encoded);
<span style="color: #000000;">msb</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">#80</span>
}</lang>
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">vlq_decode</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #004080;">integer</span> <span style="color: #000000;">si</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span>
<span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">*</span><span style="color: #000000;">#80</span><span style="color: #0000FF;">+</span><span style="color: #7060A8;">and_bits</span><span style="color: #0000FF;">(</span><span style="color: #004080;">byte</span><span style="color: #0000FF;">,</span><span style="color: #000000;">#7F</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">if</span> <span style="color: #008080;">not</span> <span style="color: #7060A8;">and_bits</span><span style="color: #0000FF;">(</span><span style="color: #000000;">si</span><span style="color: #0000FF;">,</span><span style="color: #000000;">#80</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">append</span><span style="color: #0000FF;">(</span><span style="color: #000000;">res</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
<span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">svlg</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">string</span> <span style="color: #000000;">res</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">""</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">res</span> <span style="color: #0000FF;">&=</span> <span style="color: #7060A8;">sprintf</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"#%02x:"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]})</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">res</span><span style="color: #0000FF;">[</span><span style="color: #000000;">1</span><span style="color: #0000FF;">..$-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">]</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">testNumbers</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span> <span style="color: #000000;">#200000</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">#1FFFFF</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">127</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">128</span> <span style="color: #0000FF;">}</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">vlq_encode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">testNumbers</span><span style="color: #0000FF;">),</span>
<span style="color: #000000;">decoded</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">vlq_decode</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%s -> %s -> %s\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">svlg</span><span style="color: #0000FF;">(</span><span style="color: #000000;">testNumbers</span><span style="color: #0000FF;">),</span><span style="color: #000000;">svlg</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">),</span><span style="color: #000000;">svlg</span><span style="color: #0000FF;">(</span><span style="color: #000000;">decoded</span><span style="color: #0000FF;">)})</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">decoded</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">testNumbers</span> <span style="color: #008080;">then</span> <span style="color: #7060A8;">crash</span><span style="color: #0000FF;">(</span><span style="color: #008000;">"something wrong"</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<!--</syntaxhighlight>-->
 
{{out}}
Output:
<pre>
#200000:#1FFFFF:#01:#7F:#80 -> #81:#80:#80:#00:#FF:#FF:#7F:#01:#7F:#81:#00 -> #200000:#1FFFFF:#01:#7F:#80
0 00 0
10 0A 10
123 7B 123
254 81:7E 254
255 81:7F 255
256 82:00 256
257 82:01 257
65534 83:FF:7E 65534
65535 83:FF:7F 65535
65536 84:80:00 65536
65537 84:80:01 65537
2097151 FF:FF:7F 2097151
2097152 81:80:80:00 2097152
</pre>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(de numToVlq (Num)
(let Res (cons (& Num 127))
(while (gt0 (setq Num (>> 7 Num)))
Line 672 ⟶ 1,941:
(for Num (0 15 16 127 128 255 2097151 2097152)
(let Vlq (numToVlq Num)
(tab (12 12 12) Num (glue ":" (mapcar hex Vlq)) (vlqToNum Vlq)) ) )</langsyntaxhighlight>
Output:
<pre> 0 0 0
Line 684 ⟶ 1,953:
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
test: procedure options(main);
declare s character (20) varying;
Line 713 ⟶ 1,982:
put skip list (hs);
end test;
</syntaxhighlight>
</lang>
OUTPUT:
<pre>
Line 727 ⟶ 1,996:
When transmitting the Vlq, octets are sent from the rightmost of the Vlq first.
 
<langsyntaxhighlight lang="python">def tobits(n, _group=8, _sep='_', _pad=False):
'Express n as binary bits with separator'
bits = '{0:b}'.format(n)[::-1]
Line 749 ⟶ 2,018:
def vlqsend(vlq):
for i, byte in enumerate(vlq.split('_')[::-1]):
print('Sent byte {0:3}: {1:#04x}'.format(i, int(byte,2)))</langsyntaxhighlight>
 
<br>'''Sample Output'''
The underscore separates groups of eight bits (octets), for readability
<langsyntaxhighlight lang="python">>>> for n in (254, 255, 256, 257, -2+(1<<16), -1+(1<<16), 1<<16, 1+(1<<16), 0x200000, 0x1fffff ):
print('int: %7i bin: %26s vlq: %35s vlq->int: %7i' % (n, tobits(n,_pad=True), tovlq(n), toint(tovlq(n))))
 
Line 776 ⟶ 2,045:
Sent byte 1: 0xff
Sent byte 2: 0x7f
>>> </langsyntaxhighlight>
 
=={{header|Racket}}==
 
<syntaxhighlight lang="racket">
=={{header|REXX}}==
#lang racket
<lang rexx>/*REXX program to test displaying of octets. */
 
(define (try n)
num1=x2d(200000) ; say 'number1='num1 ' [in hex='d2x(num1)"]"
(printf "Original number: ~s (0x~x)\n" n n)
num2=x2d(1fffff) ; say 'number2='num2 ' [in hex='d2x(num2)"]"
(define 4octets (integer->integer-bytes n 4 #f))
num3=2097172 ; say 'number3='num3 ' [in hex='d2x(num3)"]"
(printf "Octets: ~a (byte-string: ~s)\n"
num4=2097151 ; say 'number4='num4 ' [in hex='d2x(num4)"]"
(string-join (map (λ(o) (~r o #:base say16))
(bytes->list 4octets))
onum1=octet(num1) ; say 'number1 octet='onum1
onum2=octet(num2) ; say 'number2 octet='onum2 ":")
4octets)
onum3=octet(num3) ; say 'number3 octet='onum3
(define m (integer-bytes->integer 4octets #f))
onum4=octet(num4) ; say 'number4 octet='onum4
(printf "Back to a number: ~s (~a)\n"
say
m (if (= m n) "OK" "BAD")))
bnum1=x2d(space(onum1,0)) ; say 'number1='bnum1
bnum2=x2d(space(onum2,0)) ; say 'number2='bnum2
bnum3=x2d(space(onum3,0)) ; say 'number3='bnum3
bnum4=x2d(space(onum4,0)) ; say 'number4='bnum4
say
if num1==bnum1 &,
num2==bnum2 &,
num3==bnum3 &,
num4==bnum4 then say 'numbers are OK'
else say 'trouble in River City'
exit /*stick a fork in it, we're done.*/
/*──────────────────────────────────OCTET subroutine────────────────────*/
octet: procedure; parse arg a,_; x=d2x(a) /*convert A to hex octet.*/
do j=length(x) by -2 to 1 /*process little end first.*/
_=substr(x,j-1,2,0) _ /*pad odd hexchars with an 0 on left*/
end /*j*/
return _</lang>
'''output'''
<pre style="overflow:scroll">
number1=2097152 [in hex=200000]
number2=2097151 [in hex=1FFFFF]
number3=2097172 [in hex=200014]
number4=2097151 [in hex=1FFFFF]
 
(for-each try '(#x200000 #x1fffff))
number1 octet=20 00 00
</syntaxhighlight>
number2 octet=1F FF FF
number3 octet=20 00 14
number4 octet=1F FF FF
 
Output:
number1=2097152
<pre>
number2=2097151
Original number: 2097152 (0x200000)
number3=2097172
Octets: 0:0:20:0 (byte-string: #"\0\0 \0")
number4=2097151
Back to a number: 2097152 (OK)
Original number: 2097151 (0x1fffff)
Octets: ff:ff:1f:0 (byte-string: #"\377\377\37\0")
Back to a number: 2097151 (OK)
</pre>
 
=={{header|Raku}}==
numbers are OK
(formerly Perl 6)
vlq_encode() returns a string of encoded octets. vlq_decode() takes a string and returns a decimal number.
<syntaxhighlight lang="raku" line>sub vlq_encode ($number is copy) {
my @vlq = (127 +& $number).fmt("%02X");
$number +>= 7;
while ($number) {
@vlq.push: (128 +| (127 +& $number)).fmt("%02X");
$number +>= 7;
}
@vlq.reverse.join: ':';
}
 
sub vlq_decode ($string) {
sum $string.split(':').reverse.map: {(:16($_) +& 127) +< (7 × $++)}
}
 
#test encoding and decoding
for (
0, 0xa, 123, 254, 255, 256,
257, 65534, 65535, 65536, 65537, 0x1fffff,
0x200000
) -> $testcase {
printf "%8s %12s %8s\n", $testcase,
my $encoded = vlq_encode($testcase),
vlq_decode($encoded);
}</syntaxhighlight>
 
Output:
<pre>
0 00 0
10 0A 10
123 7B 123
254 81:7E 254
255 81:7F 255
256 82:00 256
257 82:01 257
65534 83:FF:7E 65534
65535 83:FF:7F 65535
65536 84:80:00 65536
65537 84:80:01 65537
2097151 FF:FF:7F 2097151
2097152 81:80:80:00 2097152
</pre>
 
=={{header|REXX}}==
<syntaxhighlight lang="rexx">/*REXX program displays (and also tests/verifies) some numbers as octets. */
nums = x2d(200000) x2d(1fffff) 2097172 2097151
#=words(nums)
say ' number hex octet original'
say '══════════ ══════════ ══════════ ══════════'
ok=1
do j=1 for #; @.j= word(nums,j)
onum.j=octet(@.j)
orig.j= x2d( space(onum.j, 0) )
w=10
say center(@.j, w) center(d2x(@.j), w) center(onum.j, w) center(orig.j, w)
if @.j\==orig.j then ok=0
end /*j*/
say
if ok then say 'All ' # " numbers are OK." /*all of the numbers are good. */
else say "Some numbers are not OK." /*some of the numbers are ¬good. */
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
octet: procedure; parse arg z,$ /*obtain Z from the passed arguments.*/
x=d2x(z) /*convert Z to a hexadecimal octet. */
do j=length(x) by -2 to 1 /*process the "little" end first. */
$= substr(x, j-1, 2, 0) $ /*pad odd hexadecimal characters with */
end /*j*/ /* ··· a zero on the left. */
return strip($)</syntaxhighlight>
{{out|output|text=&nbsp; when using the default input:}}
<pre>
number hex octet original
══════════ ══════════ ══════════ ══════════
2097152 200000 20 00 00 2097152
2097151 1FFFFF 1F FF FF 2097151
2097172 200014 20 00 14 2097172
2097151 1FFFFF 1F FF FF 2097151
 
All 4 numbers are OK.
</pre>
 
=={{header|RPL}}==
{{works with|Halcyon Calc|4.2.8}}
{| class="wikitable"
! RPL code
! Comment
|-
|
R→B { } SWAP 1 SF
'''WHILE''' DUP #0 ≠ '''REPEAT'''
DUP #7Fh AND
'''IF''' 1 FC?C '''THEN''' #80h OR '''END''''
ROT + SWAP
1 7 '''START''' SR '''NEXT '''
'''END''' DROP
≫ ''''R→VLQ'''' STO
#0 SWAP 1 OVER SIZE '''FOR''' j
DUP j GET #7Fh AND
ROT SLB SR + SWAP
'''NEXT''' DROP B→R
≫ ''''VLQ→R'''' STO
|
'''R→VLQ''' ''( n -- { #VLQ } )''
initialize stack and flag
scan the input number
keep last 7 bits
set sign bit if not the first set of 7 bits
store in list
shift 7 bits right
clean stack
'''R→VLQ''' ''( { #VLQ } -- n )''
initialize stack and VLQ scan
get a byte, remove 1st bit
multiply previous sum by 128 then add byte
clean stack, convert to floating point
|}
{{in}}
<pre>
2097152 R→VLQ
2097151 R→VLQ
106903 R→VLQ
DUP VLQ→R
</pre>
{{out}}
<pre>
4: { #81h #80h #80h #0h }
3: { #FFh #FFh #7Fh }
2: { #86h #C3h #17h }
1: 106903
</pre>
 
Line 833 ⟶ 2,218:
Array#pack can encode the ''BER-compressed integer'', which is identical to the ''variable-length quantity'' from the [http://sander.vanzoest.com/talks/2002/audio_and_apache/midispec.html MIDI specification]. String#unpack can decode it.
 
<langsyntaxhighlight lang="ruby">[20971520x200000, 20971510x1fffff].each do |i|
# Encode i => BER
ber = [i].pack("w")
Line 842 ⟶ 2,227:
j = ber.unpack("w").first
i == j or fail "BER not preserve integer"
end</langsyntaxhighlight>
 
<pre>2097152 => 81:80:80:00
Line 848 ⟶ 2,233:
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">object VlqCode {
def encode(x:Long)={
val result=scala.collection.mutable.Stack[Byte]()
Line 874 ⟶ 2,259:
xs foreach test
}
}</langsyntaxhighlight>
Output:
<pre>0x0 => [00] => 0x0
Line 893 ⟶ 2,278:
The example below uses [http://seed7.sourceforge.net/libraries/bigint.htm bigInteger] numbers,
since variable-length quantities are able to represent integer numbers of unlimited size.
<langsyntaxhighlight lang="seed7">$ include "seed7_05.s7i";
include "bigint.s7i";
Line 935 ⟶ 2,320:
write("sequence from " <& testValue <& ": [ ");
for element range sequence do
write(str(ord(element), radix 16) lpad0 2 <& " ");
end for;
writeln("] back: " <& fromSequence(sequence));
end for;
end func;</langsyntaxhighlight>
 
Output:
Line 956 ⟶ 2,341:
sequence from 2097151: [ ff ff 7f ] back: 2097151
sequence from 2097152: [ 81 80 80 00 ] back: 2097152
</pre>
 
=={{header|Sidef}}==
{{trans|Raku}}
<syntaxhighlight lang="ruby">func vlq_encode(num) {
var t = (0x7F & num)
var str = t.chr
while (num >>= 7) {
t = (0x7F & num)
str += chr(0x80 | t)
}
str.reverse
}
 
func vlq_decode(str) {
var num = ''
str.each_byte { |b|
num += ('%07b' % (b & 0x7F))
}
Num(num, 2)
}
 
var tests = [0, 0xa, 123, 254, 255, 256,
257, 65534, 65535, 65536, 65537, 0x1fffff,
0x200000]
 
tests.each { |t|
var vlq = vlq_encode(t)
printf("%8s %12s %8s\n", t,
vlq.bytes.join(':', { "%02X" % _ }), vlq_decode(vlq))
}</syntaxhighlight>
{{out}}
<pre>
0 00 0
10 0A 10
123 7B 123
254 81:7E 254
255 81:7F 255
256 82:00 256
257 82:01 257
65534 83:FF:7E 65534
65535 83:FF:7F 65535
65536 84:80:00 65536
65537 84:80:01 65537
2097151 FF:FF:7F 2097151
2097152 81:80:80:00 2097152
</pre>
 
=={{header|Tcl}}==
<langsyntaxhighlight lang="tcl">package require Tcl 8.5
 
proc vlqEncode number {
Line 981 ⟶ 2,412:
}
return $n
}</langsyntaxhighlight>
Demo code:
<langsyntaxhighlight lang="tcl">proc numtohex {num} {
binary scan [string trimleft [binary format W $num] \0] H* hexEncoded
regsub -all "..(?=.)" $hexEncoded "&:"
Line 1,005 ⟶ 2,436:
[strtohex $encoded] ([string length $encoded] bytes) ==>\
$decoded"
}</langsyntaxhighlight>
Output:
<pre>
Line 1,021 ⟶ 2,452:
12345678901234566789 (ab:54:a9:8c:eb:1f:06:85) ==> 81:ab:aa:aa:b1:ce:d8:fc:8d:05 (10 bytes) ==> 12345678901234566789
</pre>
 
=={{header|TXR}}==
 
TXR's <code>carray</code> type, closely associated with the Foreign Function Interface, has functions for converting between integers and foreign arrays. The arrays can use any element type. The integer is stored in big endian order, and "right justified" within the buffer, so that its least significant byte is aligned with the least significant byte of the last element of the array.
 
Two representations are supported: unsigned and signed. The unsigned representation takes only non-negative integers. It is a straightforward pure binary enumeration. The signed representation uses twos complement. The most significant byte of the array representation is in the range 80-FF if the value is negative, otherwise in the range 0 to 7F. This means that in some cases, a zero byte has to be added.
 
Interactive session:
 
<pre>1> (carray-num #x200000)
#<carray 3 #<ffi-type uchar>>
2> (carray-get *1)
#(32 0 0)
3> (carray-num #x1FFFFF)
#<carray 3 #<ffi-type uchar>>
4> (carray-get *3)
#(31 255 255)
5> (num-carray *1)
2097152
6> (num-carray *3)
2097151</pre>
 
Conversion to a <code>carray</code> not based on the default <code>uchar</code>:
 
<pre>1> (carray-num #x123456789 (ffi uint32))
#<carray 2 #<ffi-type uint32>>
2> (carray-get *1)
#(16777216 2305246499)</pre>
 
This number requires two 32-bit units to store. Because <code>uint32</code> is in the native endian, opposite to the big endian storage of the integer, the words come out byte swapped. The <code>be-uint32</code> type could be used to change this.
 
=={{header|Wren}}==
{{libheader|Wren-fmt}}
{{libheader|Wren-str}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt, Conv
import "./str" for Str
 
var toOctets = Fn.new { |n|
var s = Conv.itoa(n, 2)
var le = s.count
var r = le % 7
var d = (le/7).floor
if (r > 0) {
d = d + 1
s = Fmt.zfill(7 * d, s)
}
var chunks = Str.chunks(s, 7)
var last = "0" + chunks[-1]
s = chunks[0..-2].map { |ch| "1" + ch }.join() + last
return Str.chunks(s, 8).map { |ch| Conv.atoi(ch, 2) }.toList
}
 
var fromOctets = Fn.new { |octets|
var s = ""
for (oct in octets) {
var bin = Conv.itoa(oct, 2)
bin = Fmt.zfill(7, bin)
s = s + bin[-7..-1]
}
return Conv.atoi(s, 2)
}
 
var tests = [2097152, 2097151]
for (test in tests) {
var octets = toOctets.call(test)
var display = octets.map { |oct| "Ox" + Fmt.xz(2, oct) }.toList
System.write("%(test) -> %(Fmt.v("s", 4, display, 0, " ", "")) -> ")
System.print(fromOctets.call(octets))
}</syntaxhighlight>
 
{{out}}
<pre>
2097152 -> Ox81 Ox80 Ox80 Ox00 -> 2097152
2097151 -> Oxff Oxff Ox7f -> 2097151
</pre>
 
=={{header|XPL0}}==
<syntaxhighlight lang="xpl0">func OctIn(Dev); \Input from device value of sequence of octets
int Dev, N, Oct;
[N:= 0;
repeat Oct:= HexIn(Dev);
N:= N<<7 + (Oct&$7F);
until (Oct&$80) = 0;
return N;
];
 
proc OctOut(Dev, Num, Lev); \Output value to device as sequence of octets
int Dev, Num, Lev, Rem;
[Rem:= Num & $7F;
Num:= Num >> 7;
if Num # 0 then OctOut(Dev, Num, Lev+1);
if Lev > 0 then Rem:= Rem + $80;
SetHexDigits(2);
HexOut(Dev, Rem);
ChOut(Dev, ^ );
];
 
\Device 8 is a circular buffer that can be written and read back.
int N;
[for N:= 0 to $40_0000 do
[OctOut(8, N, 0);
if N # OctIn(8) then
[Text(0, "Error!"); exit];
];
OctOut(0, $1F_FFFF, 0); CrLf(0);
OctOut(0, $20_0000, 0); CrLf(0);
OctOut(0, $7F, 0); CrLf(0);
OctOut(0, $4000, 0); CrLf(0);
OctOut(0, 0, 0); CrLf(0);
OctOut(0, $3F_FFFE, 0); CrLf(0);
OctOut(0, $FFFF_FFFF, 0); CrLf(0);
]</syntaxhighlight>
 
{{out}}
<pre>
FF FF 7F
81 80 80 00
7F
81 80 00
00
81 FF FF 7E
8F FF FF FF 7F
</pre>
 
=={{header|zkl}}==
{{trans|C}}
<syntaxhighlight lang="zkl">fcn to_seq(x){ //--> list of ints
z:=(x.log2()/7);
(0).pump(z+1,List,'wrap(j){
x.shiftRight((z-j)*7).bitAnd(0x7f).bitOr((j!=z) and 0x80 or 0)
});
}
 
fcn from_seq(in){ in.reduce(fcn(p,n){ p.shiftLeft(7).bitOr(n.bitAnd(0x7f)) },0) }</syntaxhighlight>
<syntaxhighlight lang="zkl">ns:=T(0x7f, 0x4000, 0, 0x3ffffe, 0x1fffff, 0x200000, 0x3311a1234df31413);
ms:=ns.apply(to_seq);
ns.zipWith(fcn{"%8,x --> %s --> %,x".fmt(vm.arglist.xplode()).println()},
ms.apply("apply","%,x".fmt),
ms.apply(from_seq));</syntaxhighlight>
{{out}}
<pre>
7f --> L("7f") --> 7f
40|00 --> L("81","80","0") --> 40|00
0 --> L("0") --> 0
3f|ff|fe --> L("81","ff","ff","7e") --> 3f|ff|fe
1f|ff|ff --> L("ff","ff","7f") --> 1f|ff|ff
20|00|00 --> L("81","80","80","0") --> 20|00|00
33|11|a1|23|4d|f3|14|13 --> L("b3","88","e8","a4","b4","ef","cc","a8","13")
--> 33|11|a1|23|4d|f3|14|13
</pre>
Note: the strings in the output are numbers formatted to hex (ie to_seq returns a list of ints). A "|" is used between bytes for ease of reading.
2,130

edits