Teacup rim text: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 473: Line 473:


=={{header|J}}==
=={{header|J}}==
Definitions, which are developed following the solution
<lang J>
read=: CR -.~ 1!:1@boxopen NB. dang that line end!
Filter=:(#~`)(`:6)

prep=: (;~ /:~);._2

gba=: <@:([: ,/ (>@}."1))/.~ 0&{"1
ew=: (>:&# {.)S:_1 Filter
le=: (2 < #@{.)S:_1 Filter
ra=: a: -.~ rotations&>

NB. prep was separated for fun, not necessity
teacup=: ra@:le@:ew@:gba

rotations=: 3 :0
subset=: 0 = #@:-.
assert. 0 1 -: 'ab'(subset~ , subset)'cabag'
N=. # {. y
for_word. y do.
a=. N ]\ (, (<: N)&{.) word
if. a subset y do. word return. end.
end.
''
)
</lang>
Solution finds "apt", "arc", and "ate".
<lang J>
NB. D includes the ordered anagram
D=: prep read'd:\tmp\dict'

NB. transposed samples of the input to teacup
|: ({~ (7 ?@$ #)) D
┌──────────┬────────────┬───────┬──────────┬──────┬────────┬────────┐
│ aaegnprty│ aadeiloprtz│ gmpsuy│ eimnnptuu│ aipst│ agggint│ effoprr│
├──────────┼────────────┼───────┼──────────┼──────┼────────┼────────┤
│pageantry │trapezoidal │gypsum │neptunium │tapis │tagging │proffer │
└──────────┴────────────┴───────┴──────────┴──────┴────────┴────────┘

teacup D
┌───┬───┬───┐
│apt│arc│ate│
└───┴───┴───┘
</lang>
The action of the individual verbs shown here along with intermediate pronouns having such descriptive names as to describe the proverbial names demonstrates the construction of teacup.
<lang J>
TEST_DICTIONARY=: 'abc ah ate bac bca blort cab eat ha rat tar tea tra '
TEST=: prep TEST_DICTIONARY

] GROUPS_BY_ANAGRAM=: gba TEST
┌───┬──┬───┬─────┬───┐
│abc│ah│ate│blort│rat│
│bac│ha│eat│ │tar│
│bca│ │tea│ │tra│
│cab│ │ │ │ │
└───┴──┴───┴─────┴───┘
] ENOUGH_WORDS=: ew GROUPS_BY_ANAGRAM
┌───┬──┬───┬───┐
│abc│ah│ate│rat│
│bac│ha│eat│tar│
│bca│ │tea│tra│
│cab│ │ │ │
└───┴──┴───┴───┘
] LONG_ENOUGH=: le ENOUGH_WORDS
┌───┬───┬───┐
│abc│ate│rat│
│bac│eat│tar│
│bca│tea│tra│
│cab│ │ │
└───┴───┴───┘

] SOLUTION=: ROTATIONS_ACCEPTABLE=: ra LONG_ENOUGH
┌───┬───┐
│abc│ate│
└───┴───┘
</lang>

=={{header|Java}}==
=={{header|Java}}==
{{trans|C++}}
{{trans|C++}}

Revision as of 16:00, 30 June 2020

Task
Teacup rim text
You are encouraged to solve this task according to the task description, using any language you may know.

On a set of coasters we have, there's a picture of a teacup. On the rim of the teacup the word "TEA" appears a number of times separated by bullet characters. It occurred to me that if the bullet were removed and the words run together, you could start at any letter and still end up with a meaningful three-letter word. So start at the "T" and read "TEA". Start at the "E" and read "EAT", or start at the "A" and read "ATE".

That got me thinking that maybe there are other words that could be used rather that "TEA". And that's just English. What about Italian or Greek or ... um ... Telugu. For English, we use the unixdict (now) located at http://wiki.puzzlers.org/pub/wordlists/unixdict.txt . (This maintains continuity with other RC tasks that also use it.)

So here's the task: You're in search of a set of words that could be printed around the edge of a teacup. The words in each set are to be of the same length, that length being greater than two (thus precluding AH and HA, for example.) Having listed a set, for example [ate tea eat], refrain from displaying permutations of that set, e.g. [eat tea ate] etc. The words should also be made of more than one letter (thus precluding III and OOO etc.)

The relationship between these words is (using ATE as an example) that the first letter of the first becomes the last letter of the second. The first letter of the second becomes the last letter of the third. So ATE becomes TEA and TEA becomes EAT. All of the possible permutations, using this particular permutation technique, must be words in the list. The set you generate for ATE will never included the word ETA as that cannot be reached via the first-to-last movement method.

Display one line for each set of teacup rim words.

AWK

<lang AWK>

  1. syntax: GAWK -f TEACUP_RIM_TEXT.AWK UNIXDICT.TXT
  2. sorting:
  3. PROCINFO["sorted_in"] is used by GAWK
  4. SORTTYPE is used by Thompson Automation's TAWK

{ for (i=1; i<=NF; i++) {

     arr[tolower($i)] = 0
   }

} END {

   PROCINFO["sorted_in"] = "@ind_str_asc" ; SORTTYPE = 1
   for (i in arr) {
     leng = length(i)
     if (leng > 2) {
       delete tmp_arr
       words = str = i
       tmp_arr[i] = ""
       for (j=2; j<=leng; j++) {
         str = substr(str,2) substr(str,1,1)
         if (str in arr) {
           words = words " " str
           tmp_arr[str] = ""
         }
       }
       if (length(tmp_arr) == leng) {
         count = 0
         for (j in tmp_arr) {
           (arr[j] == 0) ? arr[j]++ : count++
         }
         if (count == 0) {
           printf("%s\n",words)
           circular++
         }
       }
     }
   }
   printf("%d words, %d circular\n",length(arr),circular)
   exit(0)

} </lang>

Output:

using UNIXDICT.TXT

apt pta tap
arc rca car
ate tea eat
25104 words, 3 circular

using MIT10000.TXT

aim ima mai
arc rca car
asp spa pas
ate tea eat
ips psi sip
10000 words, 5 circular

C

Library: GLib

<lang c>#include <stdbool.h>

  1. include <stdio.h>
  2. include <stdlib.h>
  3. include <glib.h>

bool get_line(FILE* in, GString* line) {

   int c, count = 0;
   g_string_set_size(line, 0);
   while ((c = getc(in)) != EOF) {
       ++count;
       if (c == '\n')
           break;
       g_string_append_c(line, c);
   }
   return count > 0;

}

int string_compare(gconstpointer p1, gconstpointer p2) {

   const char* const* s1 = p1;
   const char* const* s2 = p2;
   return strcmp(*s1, *s2);

}

GPtrArray* load_dictionary(const char* file) {

   FILE* in = fopen(file, "r");
   if (in == 0) {
       perror(file);
       return NULL;
   }
   GPtrArray* dict = g_ptr_array_new_full(1024, g_free);
   GString* line = g_string_sized_new(64);
   while (get_line(in, line))
       g_ptr_array_add(dict, g_strdup(line->str));
   g_ptr_array_sort(dict, string_compare);
   g_string_free(line, TRUE);
   fclose(in);
   return dict;

}

void rotate(char* str, size_t len) {

   char c = str[0];
   memmove(str, str + 1, len - 1);
   str[len - 1] = c;

}

char* dictionary_search(const GPtrArray* dictionary, const char* word) {

   char** result = bsearch(&word, dictionary->pdata, dictionary->len,
                           sizeof(char*), string_compare);
   return result != NULL ? *result : NULL;

}

void find_teacup_words(GPtrArray* dictionary) {

   GHashTable* found = g_hash_table_new(g_str_hash, g_str_equal);
   GPtrArray* teacup_words = g_ptr_array_new();
   GString* temp = g_string_sized_new(8);
   for (size_t i = 0, n = dictionary->len; i < n; ++i) {
       char* word = g_ptr_array_index(dictionary, i);
       size_t len = strlen(word);
       if (len < 3 || g_hash_table_contains(found, word))
           continue;
       g_ptr_array_set_size(teacup_words, 0);
       g_string_assign(temp, word);
       bool is_teacup_word = true;
       for (size_t i = 0; i < len - 1; ++i) {
           rotate(temp->str, len);
           char* w = dictionary_search(dictionary, temp->str);
           if (w == NULL) {
               is_teacup_word = false;
               break;
           }
           if (strcmp(word, w) != 0 && !g_ptr_array_find(teacup_words, w, NULL))
               g_ptr_array_add(teacup_words, w);
       }
       if (is_teacup_word && teacup_words->len > 0) {
           printf("%s", word);
           g_hash_table_add(found, word);
           for (size_t i = 0; i < teacup_words->len; ++i) {
               char* teacup_word = g_ptr_array_index(teacup_words, i);
               printf(" %s", teacup_word);
               g_hash_table_add(found, teacup_word);
           }
           printf("\n");
       }
   }
   g_string_free(temp, TRUE);
   g_ptr_array_free(teacup_words, TRUE);
   g_hash_table_destroy(found);

}

int main(int argc, char** argv) {

   if (argc != 2) {
       fprintf(stderr, "usage: %s dictionary\n", argv[0]);
       return EXIT_FAILURE;
   }
   GPtrArray* dictionary = load_dictionary(argv[1]);
   if (dictionary == NULL)
       return EXIT_FAILURE;
   find_teacup_words(dictionary);
   g_ptr_array_free(dictionary, TRUE);
   return EXIT_SUCCESS;

}</lang>

Output:

With unixdict.txt:

apt pta tap
arc rca car
ate tea eat

With wordlist.10000:

aim ima mai
arc rca car
asp spa pas
ate tea eat
ips psi sip

C++

<lang cpp>#include <algorithm>

  1. include <fstream>
  2. include <iostream>
  3. include <set>
  4. include <string>
  5. include <vector>

// filename is expected to contain one lowercase word per line std::set<std::string> load_dictionary(const std::string& filename) {

   std::ifstream in(filename);
   if (!in)
       throw std::runtime_error("Cannot open file " + filename);
   std::set<std::string> words;
   std::string word;
   while (getline(in, word))
       words.insert(word);
   return words;

}

void find_teacup_words(const std::set<std::string>& words) {

   std::vector<std::string> teacup_words;
   std::set<std::string> found;
   for (auto w = words.begin(); w != words.end(); ++w) {
       std::string word = *w;
       size_t len = word.size();
       if (len < 3 || found.find(word) != found.end())
           continue;
       teacup_words.clear();
       teacup_words.push_back(word);
       for (size_t i = 0; i + 1 < len; ++i) {
           std::rotate(word.begin(), word.begin() + 1, word.end());
           if (word == *w || words.find(word) == words.end())
               break;
           teacup_words.push_back(word);
       }
       if (teacup_words.size() == len) {
           found.insert(teacup_words.begin(), teacup_words.end());
           std::cout << teacup_words[0];
           for (size_t i = 1; i < len; ++i)
               std::cout << ' ' << teacup_words[i];
           std::cout << '\n';
       }
   }

}

int main(int argc, char** argv) {

   if (argc != 2) {
       std::cerr << "usage: " << argv[0] << " dictionary\n";
       return EXIT_FAILURE;
   }
   try {
       find_teacup_words(load_dictionary(argv[1]));
   } catch (const std::exception& ex) {
       std::cerr << ex.what() << '\n';
       return EXIT_FAILURE;
   }
   return EXIT_SUCCESS;

}</lang>

Output:

With unixdict.txt:

apt pta tap
arc rca car
ate tea eat

With wordlist.10000:

aim ima mai
arc rca car
asp spa pas
ate tea eat
ips psi sip

F#

<lang fsharp> // Teacup rim text. Nigel Galloway: August 7th., 2019 let N=System.IO.File.ReadAllLines("dict.txt")|>Array.filter(fun n->String.length n=3 && Seq.length(Seq.distinct n)>1)|>Set.ofArray let fG z=Set.map(fun n->System.String(Array.ofSeq (Seq.permute(fun g->(g+z)%3)n))) N Set.intersectMany [N;fG 1;fG 2]|>Seq.distinctBy(Seq.sort>>Array.ofSeq>>System.String)|>Seq.iter(printfn "%s") </lang>

Output:
aim
arc
asp
ate
ips

Factor

<lang factor>USING: combinators.short-circuit fry grouping hash-sets http.client kernel math prettyprint sequences sequences.extras sets sorting splitting ;

"https://www.mit.edu/~ecprice/wordlist.10000" http-get nip "\n" split [ { [ length 3 < ] [ all-equal? ] } 1|| ] reject [ [ all-rotations ] map ] [ >hash-set ] bi '[ [ _ in? ] all? ] filter [ natural-sort ] map members .</lang>

Output:
{
    { "aim" "ima" "mai" }
    { "arc" "car" "rca" }
    { "asp" "pas" "spa" }
    { "ate" "eat" "tea" }
    { "ips" "psi" "sip" }
}

Go

<lang go>package main

import (

   "bufio"
   "fmt"
   "log"
   "os"
   "sort"
   "strings"

)

func check(err error) {

   if err != nil {
       log.Fatal(err)
   }

}

func readWords(fileName string) []string {

   file, err := os.Open(fileName)
   check(err)
   defer file.Close()
   var words []string
   scanner := bufio.NewScanner(file)
   for scanner.Scan() {
       word := strings.ToLower(strings.TrimSpace(scanner.Text()))
       if len(word) >= 3 {
           words = append(words, word)
       }
   }
   check(scanner.Err())
   return words

}

func rotate(runes []rune) {

   first := runes[0]
   copy(runes, runes[1:])
   runes[len(runes)-1] = first

}

func main() {

   dicts := []string{"mit_10000.txt", "unixdict.txt"} // local copies
   for _, dict := range dicts {
       fmt.Printf("Using %s:\n\n", dict)
       words := readWords(dict)
       n := len(words)
       used := make(map[string]bool)
   outer:
       for _, word := range words {
           runes := []rune(word)
           variants := []string{word}
           for i := 0; i < len(runes)-1; i++ {
               rotate(runes)
               word2 := string(runes)
               if word == word2 || used[word2] {
                   continue outer
               }
               ix := sort.SearchStrings(words, word2)
               if ix == n || words[ix] != word2 {
                   continue outer
               }
               variants = append(variants, word2)
           }
           for _, variant := range variants {
               used[variant] = true
           }
           fmt.Println(variants)
       }
       fmt.Println()
   }

}</lang>

Output:
Using mit_10000.txt:

[aim ima mai]
[arc rca car]
[asp spa pas]
[ate tea eat]
[ips psi sip]

Using unixdict.txt:

[apt pta tap]
[arc rca car]
[ate tea eat]

Haskell

Using Data.Set

Circular words of more than 2 characters in a local copy of a word list. <lang haskell>import Data.List (groupBy, intercalate, sort, sortBy) import qualified Data.Set as S import Data.Ord (comparing) import Data.Function (on)

main :: IO () main =

 readFile "mitWords.txt" >>= (putStrLn . showGroups . circularWords . lines)

circularWords :: [String] -> [String] circularWords ws =

 let lexicon = S.fromList ws
 in filter (isCircular lexicon) ws

isCircular :: S.Set String -> String -> Bool isCircular lex w = 2 < length w && all (`S.member` lex) (rotations w)

rotations :: [a] -> a rotations = fmap <$> rotated <*> (enumFromTo 0 . pred . length)

rotated :: [a] -> Int -> [a] rotated [] _ = [] rotated xs n = zipWith const (drop n (cycle xs)) xs

showGroups :: [String] -> String showGroups xs =

 unlines $
 intercalate " -> " . fmap snd <$>
 filter
   ((1 <) . length)
   (groupBy (on (==) fst) (sortBy (comparing fst) (((,) =<< sort) <$> xs)))</lang>
Output:
arc -> car -> rca
ate -> eat -> tea
aim -> ima -> mai
asp -> pas -> spa
ips -> psi -> sip

Filtering anagrams

Or taking a different approach, we can avoid the use of Data.Set by obtaining the groups of anagrams (of more than two characters) in the lexicon, and filtering out a circular subset of these: <lang haskell>import Data.List (groupBy, intercalate, sort, sortOn) import Data.Ord (comparing) import Data.Function (on) import Data.Bool (bool)

main :: IO () main =

 readFile "mitWords.txt" >>=
 (putStrLn .
  unlines . fmap (intercalate " -> ") . (circularOnly =<<) . anagrams . lines)

anagrams :: [String] -> String anagrams ws =

 groupBy (on (==) fst) (sortOn fst (((,) =<< sort) <$> ws)) >>=
 (bool [] . return . fmap snd) <*> ((> 2) . length)

circularOnly :: [String] -> String circularOnly ws =

 let h = head ws
     rs = filter (isRotation h) (tail ws)
 in bool [h : rs] [] ((length h - 1) > length rs)

isRotation :: String -> String -> Bool isRotation xs ys = xs /= until ((||) . (ys ==) <*> (xs ==)) rotated (rotated xs)

rotated :: [a] -> [a] rotated [] = [] rotated (x:xs) = xs ++ [x]</lang>

Output:
arc -> rca -> car
ate -> tea -> eat
aim -> ima -> mai
asp -> spa -> pas
ips -> psi -> sip

J

Definitions, which are developed following the solution <lang J> read=: CR -.~ 1!:1@boxopen NB. dang that line end! Filter=:(#~`)(`:6)

prep=: (;~ /:~);._2

gba=: <@:([: ,/ (>@}."1))/.~ 0&{"1 ew=: (>:&# {.)S:_1 Filter le=: (2 < #@{.)S:_1 Filter ra=: a: -.~ rotations&>

NB. prep was separated for fun, not necessity teacup=: ra@:le@:ew@:gba

rotations=: 3 :0

subset=: 0 = #@:-.
assert. 0 1 -: 'ab'(subset~ , subset)'cabag'
N=. # {. y
for_word. y do.
 a=. N ]\ (, (<: N)&{.) word
 if. a subset y do. word return. end.
end.

) </lang> Solution finds "apt", "arc", and "ate". <lang J>

  NB. D includes the ordered anagram
  D=: prep read'd:\tmp\dict'
  NB. transposed samples of the input to teacup
  |: ({~ (7 ?@$ #)) D

┌──────────┬────────────┬───────┬──────────┬──────┬────────┬────────┐ │ aaegnprty│ aadeiloprtz│ gmpsuy│ eimnnptuu│ aipst│ agggint│ effoprr│ ├──────────┼────────────┼───────┼──────────┼──────┼────────┼────────┤ │pageantry │trapezoidal │gypsum │neptunium │tapis │tagging │proffer │ └──────────┴────────────┴───────┴──────────┴──────┴────────┴────────┘

  teacup D

┌───┬───┬───┐ │apt│arc│ate│ └───┴───┴───┘ </lang> The action of the individual verbs shown here along with intermediate pronouns having such descriptive names as to describe the proverbial names demonstrates the construction of teacup. <lang J>

  TEST_DICTIONARY=: 'abc ah ate bac bca blort cab eat ha rat tar tea tra '
  TEST=: prep TEST_DICTIONARY
  ] GROUPS_BY_ANAGRAM=: gba TEST

┌───┬──┬───┬─────┬───┐ │abc│ah│ate│blort│rat│ │bac│ha│eat│ │tar│ │bca│ │tea│ │tra│ │cab│ │ │ │ │ └───┴──┴───┴─────┴───┘

  ] ENOUGH_WORDS=: ew GROUPS_BY_ANAGRAM

┌───┬──┬───┬───┐ │abc│ah│ate│rat│ │bac│ha│eat│tar│ │bca│ │tea│tra│ │cab│ │ │ │ └───┴──┴───┴───┘

  ] LONG_ENOUGH=: le ENOUGH_WORDS

┌───┬───┬───┐ │abc│ate│rat│ │bac│eat│tar│ │bca│tea│tra│ │cab│ │ │ └───┴───┴───┘

  ] SOLUTION=: ROTATIONS_ACCEPTABLE=: ra LONG_ENOUGH

┌───┬───┐ │abc│ate│ └───┴───┘ </lang>

Java

Translation of: C++

<lang java>import java.io.*; import java.util.*;

public class Teacup {

   public static void main(String[] args) {
       if (args.length != 1) {
           System.err.println("usage: java Teacup dictionary");
           System.exit(1);
       }
       try {
           findTeacupWords(loadDictionary(args[0]));
       } catch (Exception ex) {
           System.err.println(ex.getMessage());
       }
   }
   // The file is expected to contain one lowercase word per line
   private static Set<String> loadDictionary(String fileName) throws IOException {
       Set<String> words = new TreeSet<>();
       try (BufferedReader reader = new BufferedReader(new FileReader(fileName))) {
           String word;
           while ((word = reader.readLine()) != null)
               words.add(word);
           return words;
       }
   }
   private static void findTeacupWords(Set<String> words) {
       List<String> teacupWords = new ArrayList<>();
       Set<String> found = new HashSet<>();
       for (String word : words) {
           int len = word.length();
           if (len < 3 || found.contains(word))
               continue;
           teacupWords.clear();
           teacupWords.add(word);
           char[] chars = word.toCharArray();
           for (int i = 0; i < len - 1; ++i) {
               String rotated = new String(rotate(chars));
               if (rotated.equals(word) || !words.contains(rotated))
                   break;
               teacupWords.add(rotated);
           }
           if (teacupWords.size() == len) {
               found.addAll(teacupWords);
               System.out.print(word);
               for (int i = 1; i < len; ++i)
                   System.out.print(" " + teacupWords.get(i));
               System.out.println();
           }
       }
   }
   private static char[] rotate(char[] ch) {
       char c = ch[0];
       System.arraycopy(ch, 1, ch, 0, ch.length - 1);
       ch[ch.length - 1] = c;
       return ch;
   }

}</lang>

Output:

With unixdict.txt:

apt pta tap
arc rca car
ate tea eat

With wordlist.10000:

aim ima mai
arc rca car
asp spa pas
ate tea eat
ips psi sip

JavaScript

Set() objects

Reading a local dictionary with the macOS JS for Automation library:

Works with: JXA

<lang javascript>(() => {

   'use strict';
   // main :: IO ()
   const main = () =>
       showGroups(
           circularWords(
               // Local copy of:
               // https://www.mit.edu/~ecprice/wordlist.10000
               lines(readFile('~/mitWords.txt'))
           )
       );
   // circularWords :: [String] -> [String]
   const circularWords = ws =>
       ws.filter(isCircular(new Set(ws)), ws);
   // isCircular :: Set String -> String -> Bool
   const isCircular = lexicon => w => {
       const iLast = w.length - 1;
       return 1 < iLast && until(
           ([i, bln, s]) => iLast < i || !bln,
           ([i, bln, s]) => [1 + i, lexicon.has(s), rotated(s)],
           [0, true, rotated(w)]
       )[1];
   };
   // DISPLAY --------------------------------------------
   // showGroups :: [String] -> String
   const showGroups = xs =>
       unlines(map(
           gp => map(snd, gp).join(' -> '),
           groupBy(
               (a, b) => fst(a) === fst(b),
               sortBy(
                   comparing(fst),
                   map(x => Tuple(concat(sort(chars(x))), x),
                       xs
                   )
               )
           ).filter(gp => 1 < gp.length)
       ));


   // MAC OS JS FOR AUTOMATION ---------------------------
   // readFile :: FilePath -> IO String
   const readFile = fp => {
       const
           e = $(),
           uw = ObjC.unwrap,
           s = uw(
               $.NSString.stringWithContentsOfFileEncodingError(
                   $(fp)
                   .stringByStandardizingPath,
                   $.NSUTF8StringEncoding,
                   e
               )
           );
       return undefined !== s ? (
           s
       ) : uw(e.localizedDescription);
   };
   // GENERIC FUNCTIONS ----------------------------------
   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = (a, b) => ({
       type: 'Tuple',
       '0': a,
       '1': b,
       length: 2
   });
   // chars :: String -> [Char]
   const chars = s => s.split();
   // comparing :: (a -> b) -> (a -> a -> Ordering)
   const comparing = f =>
       (x, y) => {
           const
               a = f(x),
               b = f(y);
           return a < b ? -1 : (a > b ? 1 : 0);
       };
   // concat :: a -> [a]
   // concat :: [String] -> String
   const concat = xs =>
       0 < xs.length ? (() => {
           const unit = 'string' !== typeof xs[0] ? (
               []
           ) : ;
           return unit.concat.apply(unit, xs);
       })() : [];
   // fst :: (a, b) -> a
   const fst = tpl => tpl[0];
   // groupBy :: (a -> a -> Bool) -> [a] -> a
   const groupBy = (f, xs) => {
       const tpl = xs.slice(1)
           .reduce((a, x) => {
               const h = a[1].length > 0 ? a[1][0] : undefined;
               return (undefined !== h) && f(h, x) ? (
                   Tuple(a[0], a[1].concat([x]))
               ) : Tuple(a[0].concat([a[1]]), [x]);
           }, Tuple([], 0 < xs.length ? [xs[0]] : []));
       return tpl[0].concat([tpl[1]]);
   };
   // lines :: String -> [String]
   const lines = s => s.split(/[\r\n]/);
   // map :: (a -> b) -> [a] -> [b]
   const map = (f, xs) =>
       (Array.isArray(xs) ? (
           xs
       ) : xs.split()).map(f);
   // rotated :: String -> String
   const rotated = xs =>
       xs.slice(1) + xs[0];
   // showLog :: a -> IO ()
   const showLog = (...args) =>
       console.log(
           args
           .map(JSON.stringify)
           .join(' -> ')
       );
   // snd :: (a, b) -> b
   const snd = tpl => tpl[1];
   // sort :: Ord a => [a] -> [a]
   const sort = xs => xs.slice()
       .sort((a, b) => a < b ? -1 : (a > b ? 1 : 0));
   // sortBy :: (a -> a -> Ordering) -> [a] -> [a]
   const sortBy = (f, xs) =>
       xs.slice()
       .sort(f);
   // unlines :: [String] -> String
   const unlines = xs => xs.join('\n');
   // until :: (a -> Bool) -> (a -> a) -> a -> a
   const until = (p, f, x) => {
       let v = x;
       while (!p(v)) v = f(v);
       return v;
   };
   // MAIN ---
   return main();

})();</lang>

Output:
arc -> car -> rca
ate -> eat -> tea
aim -> ima -> mai
asp -> pas -> spa
ips -> psi -> sip

Anagram filtering

Reading a local dictionary with the macOS JS for Automation library:

Works with: JXA

<lang javascript>(() => {

   'use strict';
   // main :: IO ()
   const main = () =>
       anagrams(lines(readFile('~/mitWords.txt')))
       .flatMap(circularOnly)
       .map(xs => xs.join(' -> '))
       .join('\n')
   // anagrams :: [String] -> String
   const anagrams = ws =>
       groupBy(
           on(eq, fst),
           sortBy(
               comparing(fst),
               ws.map(w => Tuple(sort(chars(w)).join(), w))
           )
       ).flatMap(
           gp => 2 < gp.length ? [
               gp.map(snd)
           ] : []
       )
   // circularOnly :: [String] -> String
   const circularOnly = ws => {
       const h = ws[0];
       return ws.length < h.length ? (
           []
       ) : (() => {
           const rs = rotations(h);
           return rs.every(r => ws.includes(r)) ? (
               [rs]
           ) : [];
       })();
   };
   // rotations :: String -> [String]
   const rotations = s =>
       takeIterate(s.length, rotated, s)
   // rotated :: [a] -> [a]
   const rotated = xs => xs.slice(1).concat(xs[0]);


   // GENERIC FUNCTIONS ----------------------------
   // Tuple (,) :: a -> b -> (a, b)
   const Tuple = (a, b) => ({
       type: 'Tuple',
       '0': a,
       '1': b,
       length: 2
   });
   // chars :: String -> [Char]
   const chars = s => s.split();
   // comparing :: (a -> b) -> (a -> a -> Ordering)
   const comparing = f =>
       (x, y) => {
           const
               a = f(x),
               b = f(y);
           return a < b ? -1 : (a > b ? 1 : 0);
       };
   // eq (==) :: Eq a => a -> a -> Bool
   const eq = (a, b) => a === b
   // fst :: (a, b) -> a
   const fst = tpl => tpl[0];
   // groupBy :: (a -> a -> Bool) -> [a] -> a
   const groupBy = (f, xs) => {
       const tpl = xs.slice(1)
           .reduce((a, x) => {
               const h = a[1].length > 0 ? a[1][0] : undefined;
               return (undefined !== h) && f(h, x) ? (
                   Tuple(a[0], a[1].concat([x]))
               ) : Tuple(a[0].concat([a[1]]), [x]);
           }, Tuple([], 0 < xs.length ? [xs[0]] : []));
       return tpl[0].concat([tpl[1]]);
   };
   // lines :: String -> [String]
   const lines = s => s.split(/[\r\n]/);
   // mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])
   const mapAccumL = (f, acc, xs) =>
       xs.reduce((a, x, i) => {
           const pair = f(a[0], x, i);
           return Tuple(pair[0], a[1].concat(pair[1]));
       }, Tuple(acc, []));
   // on :: (b -> b -> c) -> (a -> b) -> a -> a -> c
   const on = (f, g) => (a, b) => f(g(a), g(b));
   // readFile :: FilePath -> IO String
   const readFile = fp => {
       const
           e = $(),
           uw = ObjC.unwrap,
           s = uw(
               $.NSString.stringWithContentsOfFileEncodingError(
                   $(fp)
                   .stringByStandardizingPath,
                   $.NSUTF8StringEncoding,
                   e
               )
           );
       return undefined !== s ? (
           s
       ) : uw(e.localizedDescription);
   };
   // snd :: (a, b) -> b
   const snd = tpl => tpl[1];
   // sort :: Ord a => [a] -> [a]
   const sort = xs => xs.slice()
       .sort((a, b) => a < b ? -1 : (a > b ? 1 : 0));
   // sortBy :: (a -> a -> Ordering) -> [a] -> [a]
   const sortBy = (f, xs) =>
       xs.slice()
       .sort(f);
   // takeIterate :: Int -> (a -> a) -> a -> [a]
   const takeIterate = (n, f, x) =>
       snd(mapAccumL((a, _, i) => {
           const v = 0 !== i ? f(a) : x;
           return [v, v];
       }, x, Array.from({
           length: n
       })));
   // MAIN ---
   return main();

})();</lang>

Output:
arc -> rca -> car
ate -> tea -> eat
aim -> ima -> mai
asp -> spa -> pas
ips -> psi -> sip

Julia

Using the MIT 10000 word list, and excluding words of less than three letters, to reduce output length. <lang julia>using HTTP

rotate(s, n) = String(circshift(Vector{UInt8}(s), n))

isliketea(w, d) = (n = length(w); n > 2 && any(c -> c != w[1], w) &&

   all(i -> haskey(d, rotate(w, i)), 1:n-1))

function getteawords(listuri)

   req = HTTP.request("GET", listuri)
   wdict = Dict{String, Int}((lowercase(string(x)), 1) for x in split(String(req.body), r"\s+"))
   sort(unique([sort([rotate(word, i) for i in 1:length(word)]) 
       for word in collect(keys(wdict)) if isliketea(word, wdict)]))

end

foreach(println, getteawords("https://www.mit.edu/~ecprice/wordlist.10000"))

</lang>

Output:
["aim", "ima", "mai"]
["arc", "car", "rca"]
["asp", "pas", "spa"]
["ate", "eat", "tea"]
["ips", "psi", "sip"]

Lychen

Lychen is V8 JavaScript wrapped in C#, exposing C# into JavaScript.

Using https://www.mit.edu/~ecprice/wordlist.10000 as per the Julia example.

<lang javascript> const wc = new CS.System.Net.WebClient(); const lines = wc.DownloadString("http://wiki.puzzlers.org/pub/wordlists/unixdict.txt"); const words = lines.split(/\n/g); const collection = {}; words.filter(word => word.length > 2).forEach(word => {

 let allok = true;
 let newword = word;
 for (let i = 0; i < word.length - 1; i++) {
   newword = newword.substr(1) + newword.substr(0, 1);
   if (!words.includes(newword)) {
     allok = false;
     break;
   }
 }
 if (allok) {
   const key = word.split("").sort().join("");
   if (!collection[key]) {
     collection[key] = [word];
   } else {
     if (!collection[key].includes(word)) {
       collection[key].push(word);
     }
   }
 }

}); Object.keys(collection) .filter(key => collection[key].length > 1) .forEach(key => console.log("%s", collection[key].join(", "))); </lang>

apt, pta, tap
arc, car, rca
ate, eat, tea

Perl

Translation of: Raku

<lang perl>use strict; use warnings; use feature 'say'; use List::Util qw(uniqstr any);

my(%words,@teacups,%seen);

open my $fh, '<', 'ref/wordlist.10000'; while (<$fh>) {

   chomp(my $w = uc $_);
   next if length $w < 3;
   push @{$words{join , sort split //, $w}}, $w;}

for my $these (values %words) {

   next if @$these < 3;
   MAYBE: for (@$these) {
       my $maybe = $_;
       next if $seen{$_};
       my @print;
       for my $i (0 .. length $maybe) {
           if (any { $maybe eq $_ } @$these) {
               push @print, $maybe;
               $maybe = substr($maybe,1) . substr($maybe,0,1)
           } else {
               @print = () and next MAYBE
           }
       }
       if (@print) {
           push @teacups, [@print];
           $seen{$_}++ for @print;
       }
   }

}

say join ', ', uniqstr @$_ for sort @teacups;</lang>

Output:
ARC, RCA, CAR
ATE, TEA, EAT
AIM, IMA, MAI
ASP, SPA, PAS
IPS, PSI, SIP

Phix

Filters anagram lists <lang Phix>procedure filter(sequence anagrams)

   sequence used = repeat(false,length(anagrams))
   for i=1 to length(anagrams) do
       if not used[i] then
           used[i] = true
           string word = anagrams[i]
           sequence res = {word}
           for r=2 to length(word) do
               word = word[2..$]&word[1]
               integer k = find(word,anagrams)
               if k=0 then res = {} exit end if
               if not find(word,res) then
                   res = append(res,word)
               end if
               used[k] = true
           end for
           if length(res) then ?res end if
       end if
   end for

end procedure

procedure teacup(string filename, integer minlen=3, bool allow_mono=false) sequence words = {}, anagrams = {}, last="", letters object word

   printf(1,"using %s",filename)
   integer fn = open(filename,"r")
   if fn=-1 then crash(filename&" not found") end if
   while 1 do
       word = lower(trim(gets(fn)))
       if atom(word) then exit end if
       if length(word)>=minlen then
           letters = sort(word)
           words = append(words, {letters, word})
       end if
   end while
   close(fn)
   printf(1,", %d words read\n",length(words))
   if length(words)!=0 then
       words = sort(words)
       for i=1 to length(words) do
           {letters,word} = words[i]
           if letters=last then
               anagrams = append(anagrams,word)
           else
               if allow_mono or length(anagrams)>=length(last) then
                   filter(anagrams) 
               end if
               last = letters
               anagrams = {word}
           end if
       end for
       if allow_mono or length(anagrams)>=length(last) then
           filter(anagrams) 
       end if
   end if

end procedure

teacup(join_path({"demo","unixdict.txt"})) -- These match output from other entries: --teacup(join_path({"demo","unixdict.txt"}),allow_mono:=true) --teacup(join_path({"demo","rosetta","mit.wordlist.10000.txt"})) --teacup(join_path({"demo","rosetta","words.txt"}),4,true) -- Note that allow_mono is needed to display eg {"agag","gaga"}</lang>

Output:
using demo\unixdict.txt, 24948 words read
{"arc","rca","car"}
{"ate","tea","eat"}
{"apt","pta","tap"}

PicoLisp

<lang PicoLisp>(de rotw (W)

  (let W (chop W)
     (unless (or (apply = W) (not (cddr W)))
        (make
           (do (length W)
              (link (pack (copy W)))
              (rot W) ) ) ) ) )

(off D) (put 'D 'v (cons)) (mapc

  '((W)
     (idx 'D (cons (hash W) W) T) )
  (setq Words
     (make (in "wordlist.10000" (while (line T) (link @)))) ) )

(mapc

  println
  (extract
     '((W)
        (let? Lst (rotw W)
           (when
              (and
                 (fully
                    '((L) (idx 'D (cons (hash L) L)))
                    Lst )
                 (not
                    (member (car Lst) (car (get 'D 'v))) ) )
              (mapc
                 '((L) (push (get 'D 'v) L))
                 Lst )
              Lst ) ) )
     Words ) )</lang>
Output:
("aim" "mai" "ima")
("arc" "car" "rca")
("asp" "pas" "spa")
("ate" "eat" "tea")
("ips" "sip" "psi")

Python

Functional

Composing generic functions, and considering only anagram groups. <lang python>Teacup rim text

from itertools import chain, groupby from os.path import expanduser from functools import reduce


  1. main :: IO ()

def main():

   Circular anagram groups, of more than one word,
      and containing words of length > 2, found in:
      https://www.mit.edu/~ecprice/wordlist.10000
   
   print('\n'.join(
       concatMap(circularGroup)(
           anagrams(3)(
               # Reading from a local copy.
               lines(readFile('~/mitWords.txt'))
           )
       )
   ))


  1. anagrams :: Int -> [String] -> String

def anagrams(n):

   Groups of anagrams, of minimum group size n,
      found in the given word list.
   
   def go(ws):
       def f(xs):
           return [
               [snd(x) for x in xs]
           ] if n <= len(xs) >= len(xs[0][0]) else []
       return concatMap(f)(groupBy(fst)(sorted(
           [(.join(sorted(w)), w) for w in ws],
           key=fst
       )))
   return go


  1. circularGroup :: [String] -> [String]

def circularGroup(ws):

   Either an empty list, or a list containing
      a string showing any circular subset found in ws.
   
   lex = set(ws)
   iLast = len(ws) - 1
   # If the set contains one word that is circular,
   # then it must contain all of them.
   (i, blnCircular) = until(
       lambda tpl: tpl[1] or (tpl[0] > iLast)
   )(
       lambda tpl: (1 + tpl[0], isCircular(lex)(ws[tpl[0]]))
   )(
       (0, False)
   )
   return [' -> '.join(allRotations(ws[i]))] if blnCircular else []


  1. isCircular :: Set String -> String -> Bool

def isCircular(lexicon):

   True if all of a word's rotations
      are found in the given lexicon.
   
   def go(w):
       def f(tpl):
           (i, _, x) = tpl
           return (1 + i, x in lexicon, rotated(x))
       iLast = len(w) - 1
       return until(
           lambda tpl: iLast < tpl[0] or (not tpl[1])
       )(f)(
           (0, True, rotated(w))
       )[1]
   return go


  1. allRotations :: String -> [String]

def allRotations(w):

   All rotations of the string w.
   return takeIterate(len(w) - 1)(
       rotated
   )(w)


  1. GENERIC -------------------------------------------------
  1. concatMap :: (a -> [b]) -> [a] -> [b]

def concatMap(f):

   A concatenated list over which a function has been mapped.
      The list monad can be derived by using a function f which
      wraps its output in a list,
      (using an empty list to represent computational failure).
   
   def go(xs):
       return chain.from_iterable(map(f, xs))
   return go


  1. fst :: (a, b) -> a

def fst(tpl):

   First member of a pair.
   return tpl[0]


  1. groupBy :: (a -> b) -> [a] -> a

def groupBy(f):

   The elements of xs grouped,
      preserving order, by equality
      in terms of the key function f.
   
   def go(xs):
       return [
           list(x[1]) for x in groupby(xs, key=f)
       ]
   return go


  1. lines :: String -> [String]

def lines(s):

   A list of strings,
      (containing no newline characters)
      derived from a single new-line delimited string.
   
   return s.splitlines()


  1. mapAccumL :: (acc -> x -> (acc, y)) -> acc -> [x] -> (acc, [y])

def mapAccumL(f):

   A tuple of an accumulation and a list derived by a
      combined map and fold,
      with accumulation from left to right.
   
   def go(a, x):
       tpl = f(a[0], x)
       return (tpl[0], a[1] + [tpl[1]])
   return lambda acc: lambda xs: (
       reduce(go, xs, (acc, []))
   )


  1. readFile :: FilePath -> IO String

def readFile(fp):

   The contents of any file at the path
      derived by expanding any ~ in fp.
   
   with open(expanduser(fp), 'r', encoding='utf-8') as f:
       return f.read()


  1. rotated :: String -> String

def rotated(s):

   A string rotated 1 character to the right.
   return s[1:] + s[0]


  1. snd :: (a, b) -> b

def snd(tpl):

   Second member of a pair.
   return tpl[1]


  1. takeIterate :: Int -> (a -> a) -> a -> [a]

def takeIterate(n):

   Each value of n iterations of f
      over a start value of x.
   
   def go(f):
       def g(x):
           def h(a, i):
               v = f(a) if i else x
               return (v, v)
           return mapAccumL(h)(x)(
               range(0, 1 + n)
           )[1]
       return g
   return go


  1. until :: (a -> Bool) -> (a -> a) -> a -> a

def until(p):

   The result of repeatedly applying f until p holds.
      The initial seed value is x.
   
   def go(f):
       def g(x):
           v = x
           while not p(v):
               v = f(v)
           return v
       return g
   return go


  1. MAIN ---

if __name__ == '__main__':

   main()</lang>
Output:
arc -> rca -> car
ate -> tea -> eat
aim -> ima -> mai
asp -> spa -> pas
ips -> psi -> sip

Raku

(formerly Perl 6)

Works with: Rakudo version 2019.07.1

There doesn't seem to be any restriction that the word needs to consist only of lowercase letters, so words of any case are included. Since the example code specifically shows the example words (TEA, EAT, ATE) in uppercase, I elected to uppercase the found words.

As the specs keep changing, this version will accept ANY text file as its dictionary and accepts parameters to configure the minimum number of characters in a word to consider and whether to allow mono-character words.

Defaults to unixdict.txt, minimum 3 characters and mono-character 'words' disallowed. Feed a file name to use a different word list, an integer to --min-chars and/or a truthy value to --mono to allow mono-chars.

<lang perl6>my %*SUB-MAIN-OPTS = :named-anywhere;

unit sub MAIN ( $dict = 'unixdict.txt', :$min-chars = 3, :$mono = False );

my %words; $dict.IO.slurp.words.map: { .chars < $min-chars ?? (next) !! %words{.uc.comb.sort.join}.push: .uc };

my @teacups; my %seen;

for %words.values -> @these {

   next if !$mono && @these < 2;
   MAYBE: for @these {
       my $maybe = $_;
       next if %seen{$_};
       my @print;
       for ^$maybe.chars {
           if $maybe ∈ @these {
               @print.push: $maybe;
               $maybe = $maybe.comb.list.rotate.join;
           } else {
               @print = ();
               next MAYBE
           }
       }
       if @print.elems {
           @teacups.push: @print;
           %seen{$_}++ for @print;
       }
   }

}

say .unique.join(", ") for sort @teacups;</lang>

Defaults:

Command line: raku teacup.p6

APT, PTA, TAP
ARC, RCA, CAR
ATE, TEA, EAT
Allow mono-chars:

Command line: raku teacup.p6 --mono=1

AAA
APT, PTA, TAP
ARC, RCA, CAR
ATE, TEA, EAT
III
Using a larger dictionary:

words.txt file from https://github.com/dwyl/english-words

Command line: raku teacup.p6 words.txt --min-chars=4 --mono=Allow

AAAA
AAAAAA
ADAD, DADA
ADAR, DARA, ARAD, RADA
AGAG, GAGA
ALIT, LITA, ITAL, TALI
AMAN, MANA, ANAM, NAMA
AMAR, MARA, ARAM, RAMA
AMEL, MELA, ELAM, LAME
AMEN, MENA, ENAM, NAME
AMOR, MORA, ORAM, RAMO
ANAN, NANA
ANIL, NILA, ILAN, LANI
ARAR, RARA
ARAS, RASA, ASAR, SARA
ARIS, RISA, ISAR, SARI
ASEL, SELA, ELAS, LASE
ASER, SERA, ERAS, RASE
DENI, ENID, NIDE, IDEN
DOLI, OLID, LIDO, IDOL
EGOR, GORE, OREG, REGO
ENOL, NOLE, OLEN, LENO
ESOP, SOPE, OPES, PESO
ISIS, SISI
MMMM
MORO, OROM, ROMO, OMOR
OOOO

REXX

All words that contained non─letter (Latin) characters   (periods, decimal digits, minus signs, underbars, or embedded blanks)   weren't considered as candidates for circular words.

Duplicated words (such as   sop   and   SOP)   are ignored   (just the 2nd and subsequent duplicated words).

All words in the dictionary are treated as caseless.

The dictionary wasn't assumed to be sorted in any way. <lang rexx>/*REXX pgm finds circular words (length>2), using a dictionary, suppress permutations.*/ parse arg iFID L . /*obtain optional arguments from the CL*/ if iFID==|iFID=="," then iFID= 'wordlist.10k' /*Not specified? Then use the default.*/ if L==| L=="," then L= 3 /* " " " " " " */

  1. = 0 /*number of words in dictionary, Len>L.*/

@.= /*stemmed array of non─duplicated words*/

      do r=0  while lines(iFID) \== 0           /*read all lines (words) in dictionary.*/
      parse upper value  linein(iFID)  with z . /*obtain a word from the dictionary.   */
      if length(z)<L | @.z\==  then iterate   /*length must be  L  or more,  no dups.*/
      if \datatype(z, 'U')       then iterate   /*Word contains non-letters?  Then skip*/
      @.z = z                                   /*assign a word from the dictionary.   */
      #= # + 1;     $.#= z                      /*bump word count; append word to list.*/
      end   /*r*/                               /* [↑]  dictionary need not be sorted. */

cw= 0 /*the number of circular words (so far)*/ say "There're " r ' entries in the dictionary (of all types): ' iFID say "There're " # ' words in the dictionary of at least length ' L say

      do j=1  for #;      x= $.j;      y= x     /*obtain the  Jth  word in the list.   */
      if x==  then iterate                    /*if a null, don't show variants.      */
      yy= y                                     /*the start of a list of the variants. */
                    do k=1  for length(x)-1     /*"circulate" the litters in the word. */
                    y= substr(y, 2)left(y, 1)   /*add the left letter to the right end.*/
                    if @.y==  then iterate j  /*if not a word,  then skip this word. */
                    yy= yy','   y               /*append to the list of the variants.  */
                    @.y=                        /*nullify word to suppress permutations*/
                    end   /*k*/                 
      cw= cw + 1                                /*bump counter of circular words found.*/
      say 'circular word: '     yy              /*display a circular word and variants.*/
      end   /*j*/

say say cw ' circular words were found.' /*stick a fork in it, we're all done. */</lang>

output   when using the default inputs:
There're  10000  entries in the dictionary (of all types):   wordlist.10k
There're  9578  words in the dictionary of at least length  3

circular word:  AIM, IMA, MAI
circular word:  ARC, RCA, CAR
circular word:  ASP, SPA, PAS
circular word:  ATE, TEA, EAT
circular word:  IPS, PSI, SIP

5  circular words were found.

Rust

<lang rust>use std::collections::BTreeSet; use std::collections::HashSet; use std::fs::File; use std::io::{self, BufRead}; use std::iter::FromIterator;

fn load_dictionary(filename : &str) -> std::io::Result<BTreeSet<String>> {

   let file = File::open(filename)?;
   let mut dict = BTreeSet::new();
   for line in io::BufReader::new(file).lines() {
       if let Ok(word) = line {
           dict.insert(word);
       }
   }
   Ok(dict)

}

fn find_teacup_words(dict : &BTreeSet<String>) {

   let mut teacup_words : Vec<String> = Vec::new();
   let mut found : HashSet<String> = HashSet::new();
   for word in dict {
       let len = word.len();
       if len < 3 || found.contains(word) {
           continue;
       }
       teacup_words.clear();
       let mut is_teacup_word = true;
       let mut chars : Vec<char> = word.chars().collect();
       for _ in 1..len {
           chars.rotate_left(1);
           let w = String::from_iter(&chars);
           if !dict.contains(&w) {
               is_teacup_word = false;
               break;
           }
           if !w.eq(word) && !teacup_words.contains(&w) {
               teacup_words.push(w);
           }
       }
       if !is_teacup_word || teacup_words.is_empty() {
           continue;
       }
       print!("{}", word);
       found.insert(word.to_string());
       for w in &teacup_words {
           found.insert(w.to_string());
           print!(" {}", w);
       }
       println!();
   }

}

fn main() {

   let args : Vec<String> = std::env::args().collect();
   if args.len() != 2 {
       eprintln!("Usage: teacup dictionary");
       std::process::exit(1);
   }
   let dict = load_dictionary(&args[1]);
   match dict {
       Ok(dict) => find_teacup_words(&dict),
       Err(error) => eprintln!("Cannot open file {}: {}", &args[1], error)
   }

}</lang>

Output:

With unixdict.txt:

apt pta tap
arc rca car
ate tea eat

With wordlist.10000:

aim ima mai
arc rca car
asp spa pas
ate tea eat
ips psi sip

Wren

Translation of: Go
Library: Wren-str
Library: Wren-sort

<lang ecmascript>import "io" for File import "/str" for Str import "/sort" for Find

var readWords = Fn.new { |fileName|

   var dict = File.read(fileName).split("\n")
   return dict.where { |w| w.count >= 3 }.toList

}

var dicts = ["mit10000.txt", "unixdict.txt"] for (dict in dicts) {

   System.print("Using %(dict):\n")
   var words = readWords.call(dict)
   var n = words.count
   var used = {}
   for (word in words) {
       var outer = false
       var variants = [word]
       var word2 = word
       for (i in 0...word.count-1) {
           word2 = Str.lshift(word2)
           if (word == word2 || used[word2]) {
               outer = true
               break
           }
           var ix = Find.first(words, word2)
           if (ix == n || words[ix] != word2) {
               outer = true
               break
           }
           variants.add(word2)
       }
       if (!outer) {
           for (variant in variants) used[variant] = true
           System.print(variants)
       }
   }
   System.print()

}</lang>

Output:
Using mit10000.txt:

[aim, ima, mai]
[arc, rca, car]
[asp, spa, pas]
[ate, tea, eat]
[ips, psi, sip]

Using unixdict.txt:

[apt, pta, tap]
[arc, rca, car]
[ate, tea, eat]

zkl

<lang zkl>// Limited to ASCII // This is limited to the max items a Dictionary can hold fcn teacut(wordFile){

  words:=File(wordFile).pump(Dictionary().add.fp1(True),"strip");
  seen :=Dictionary();
  foreach word in (words.keys){
     rots,w,sz := List(), word, word.len();
     if(sz>2 and word.unique().len()>2 and not seen.holds(word)){

do(sz-1){ w=String(w[-1],w[0,-1]); // rotate one character if(not words.holds(w)) continue(2); // not a word, skip these rots.append(w); // I'd like to see all the rotations } println(rots.append(word).sort().concat(" ")); rots.pump(seen.add.fp1(True)); // we've seen these rotations

     }
  }

}</lang> <lang zkl>println("\nunixdict:"); teacut("unixdict.txt"); println("\nmit_wordlist_10000:"); teacut("mit_wordlist_10000.txt");</lang>

Output:
unixdict:
apt pta tap
ate eat tea
arc car rca

mit_wordlist_10000:
asp pas spa
ips psi sip
ate eat tea
aim ima mai
arc car rca