Talk:Geometric algebra: Difference between revisions

Line 86:
:::::::i, j and k are not vectors in geometric algebra. They are bivectors. Orthogonality does not apply to them. The formula I gave for the scalar product only stands for vectors (thus the boldface notation which often means "vectors"). Also I've never written they should be orthogonal. It's the e basis that is, not the i, j, k.--[[User:Grondilu|Grondilu]] ([[User talk:Grondilu|talk]]) 22:24, 17 October 2015 (UTC)
::::::::We might still have an issue here. I think I can agree that I, j, and k are not vectors from the orthogonal basis e. But claiming that they are "not vectors" without qualification seems both sloppy and misleading. Needs more exposition, I guess... --[[User:Rdm|Rdm]] ([[User talk:Rdm|talk]]) 18:02, 19 October 2015 (UTC)
:::::::::Strictly speaking, all elements of a geometric algebra are vectors, since the whole geometric algebra has a natural vector space structure. However, the word ''vector'' is usually reserved to the elements of <math>\mathcal{V}</math>. Other elements are ''multivectors''.--[[User:Grondilu|Grondilu]] ([[User talk:Grondilu|talk]]) 19:38, 19 October 2015 (UTC)
 
== "Orthonormal basis" ==
1,934

edits