Sutherland-Hodgman polygon clipping

From Rosetta Code
Task
Sutherland-Hodgman polygon clipping
You are encouraged to solve this task according to the task description, using any language you may know.

The Sutherland-Hodgman clipping algorithm   finds the polygon that is the intersection between an arbitrary polygon (the “subject polygon”) and a convex polygon (the “clip polygon”).

It is used in computer graphics (especially 2D graphics) to reduce the complexity of a scene being displayed by eliminating parts of a polygon that do not need to be displayed.


Task

Take the closed polygon defined by the points:

and clip it by the rectangle defined by the points:

Print the sequence of points that define the resulting clipped polygon.


Extra credit

Display all three polygons on a graphical surface, using a different color for each polygon and filling the resulting polygon.

(When displaying you may use either a north-west or a south-west origin, whichever is more convenient for your display mechanism.)

Ada[edit]

with Ada.Containers.Doubly_Linked_Lists;
with Ada.Text_IO;
 
procedure Main is
package FIO is new Ada.Text_IO.Float_IO (Float);
 
type Point is record
X, Y : Float;
end record;
 
function "-" (Left, Right : Point) return Point is
begin
return (Left.X - Right.X, Left.Y - Right.Y);
end "-";
 
type Edge is array (1 .. 2) of Point;
 
package Point_Lists is new Ada.Containers.Doubly_Linked_Lists
(Element_Type => Point);
use type Point_Lists.List;
subtype Polygon is Point_Lists.List;
 
function Inside (P : Point; E : Edge) return Boolean is
begin
return (E (2).X - E (1).X) * (P.Y - E (1).Y) >
(E (2).Y - E (1).Y) * (P.X - E (1).X);
end Inside;
 
function Intersecton (P1, P2 : Point; E : Edge) return Point is
DE : Point := E (1) - E (2);
DP : Point := P1 - P2;
N1 : Float := E (1).X * E (2).Y - E (1).Y * E (2).X;
N2 : Float := P1.X * P2.Y - P1.Y * P2.X;
N3 : Float := 1.0 / (DE.X * DP.Y - DE.Y * DP.X);
begin
return ((N1 * DP.X - N2 * DE.X) * N3, (N1 * DP.Y - N2 * DE.Y) * N3);
end Intersecton;
 
function Clip (P, C : Polygon) return Polygon is
use Point_Lists;
A, B, S, E : Cursor;
Inputlist  : List;
Outputlist : List := P;
AB  : Edge;
begin
A := C.First;
B := C.Last;
while A /= No_Element loop
AB  := (Element (B), Element (A));
Inputlist := Outputlist;
Outputlist.Clear;
S := Inputlist.Last;
E := Inputlist.First;
while E /= No_Element loop
if Inside (Element (E), AB) then
if not Inside (Element (S), AB) then
Outputlist.Append
(Intersecton (Element (S), Element (E), AB));
end if;
Outputlist.Append (Element (E));
elsif Inside (Element (S), AB) then
Outputlist.Append
(Intersecton (Element (S), Element (E), AB));
end if;
S := E;
E := Next (E);
end loop;
B := A;
A := Next (A);
end loop;
return Outputlist;
end Clip;
 
procedure Print (P : Polygon) is
use Point_Lists;
C : Cursor := P.First;
begin
Ada.Text_IO.Put_Line ("{");
while C /= No_Element loop
Ada.Text_IO.Put (" (");
FIO.Put (Element (C).X, Exp => 0);
Ada.Text_IO.Put (',');
FIO.Put (Element (C).Y, Exp => 0);
Ada.Text_IO.Put (')');
C := Next (C);
if C /= No_Element then
Ada.Text_IO.Put (',');
end if;
Ada.Text_IO.New_Line;
end loop;
Ada.Text_IO.Put_Line ("}");
end Print;
 
Source  : Polygon;
Clipper : Polygon;
Result  : Polygon;
begin
Source.Append ((50.0, 150.0));
Source.Append ((200.0, 50.0));
Source.Append ((350.0, 150.0));
Source.Append ((350.0, 300.0));
Source.Append ((250.0, 300.0));
Source.Append ((200.0, 250.0));
Source.Append ((150.0, 350.0));
Source.Append ((100.0, 250.0));
Source.Append ((100.0, 200.0));
Clipper.Append ((100.0, 100.0));
Clipper.Append ((300.0, 100.0));
Clipper.Append ((300.0, 300.0));
Clipper.Append ((100.0, 300.0));
Result := Clip (Source, Clipper);
Print (Result);
end Main;
Output:
{
 (100.00000,116.66667),
 (125.00000,100.00000),
 (275.00000,100.00000),
 (300.00000,116.66667),
 (300.00000,300.00000),
 (250.00000,300.00000),
 (200.00000,250.00000),
 (175.00000,300.00000),
 (125.00000,300.00000),
 (100.00000,250.00000)
}

BBC BASIC[edit]

      VDU 23,22,200;200;8,16,16,128
VDU 23,23,2;0;0;0;
 
DIM SubjPoly{(8) x, y}
DIM ClipPoly{(3) x, y}
FOR v% = 0 TO 8 : READ SubjPoly{(v%)}.x, SubjPoly{(v%)}.y : NEXT
DATA 50,150,200,50,350,150,350,300,250,300,200,250,150,350,100,250,100,200
FOR v% = 0 TO 3 : READ ClipPoly{(v%)}.x, ClipPoly{(v%)}.y : NEXT
DATA 100,100, 300,100, 300,300, 100,300
 
GCOL 4 : PROCplotpoly(SubjPoly{()}, 9)
GCOL 1 : PROCplotpoly(ClipPoly{()}, 4)
nvert% = FNsutherland_hodgman(SubjPoly{()}, ClipPoly{()}, Clipped{()})
GCOL 2 : PROCplotpoly(Clipped{()}, nvert%)
END
 
DEF FNsutherland_hodgman(subj{()}, clip{()}, RETURN out{()})
LOCAL i%, j%, n%, o%, p1{}, p2{}, s{}, e{}, p{}, inp{()}
DIM p1{x,y}, p2{x,y}, s{x,y}, e{x,y}, p{x,y}
n% = DIM(subj{()},1) + DIM(clip{()},1)
DIM inp{(n%) x, y}, out{(n%) x,y}
FOR o% = 0 TO DIM(subj{()},1) : out{(o%)} = subj{(o%)} : NEXT
p1{} = clip{(DIM(clip{()},1))}
FOR i% = 0 TO DIM(clip{()},1)
p2{} = clip{(i%)}
FOR n% = 0 TO o% - 1 : inp{(n%)} = out{(n%)} : NEXT : o% = 0
IF n% >= 2 THEN
s{} = inp{(n% - 1)}
FOR j% = 0 TO n% - 1
e{} = inp{(j%)}
IF FNside(e{}, p1{}, p2{}) THEN
IF NOT FNside(s{}, p1{}, p2{}) THEN
PROCintersection(p1{}, p2{}, s{}, e{}, p{})
out{(o%)} = p{}
o% += 1
ENDIF
out{(o%)} = e{}
o% += 1
ELSE
IF FNside(s{}, p1{}, p2{}) THEN
PROCintersection(p1{}, p2{}, s{}, e{}, p{})
out{(o%)} = p{}
o% += 1
ENDIF
ENDIF
s{} = e{}
NEXT
ENDIF
p1{} = p2{}
NEXT i%
= o%
 
REM Which side of the line p1-p2 is the point p?
DEF FNside(p{}, p1{}, p2{})
= (p2.x - p1.x) * (p.y - p1.y) > (p2.y - p1.y) * (p.x - p1.x)
 
REM Find the intersection of two lines p1-p2 and p3-p4
DEF PROCintersection(p1{}, p2{}, p3{}, p4{}, p{})
LOCAL a{}, b{}, k, l, m : DIM a{x,y}, b{x,y}
a.x = p1.x - p2.x : a.y = p1.y - p2.y
b.x = p3.x - p4.x : b.y = p3.y - p4.y
k = p1.x * p2.y - p1.y * p2.x
l = p3.x * p4.y - p3.y * p4.x
m = 1 / (a.x * b.y - a.y * b.x)
p.x = m * (k * b.x - l * a.x)
p.y = m * (k * b.y - l * a.y)
ENDPROC
 
REM plot a polygon
DEF PROCplotpoly(poly{()}, n%)
LOCAL i%
MOVE poly{(0)}.x, poly{(0)}.y
FOR i% = 1 TO n%-1
DRAW poly{(i%)}.x, poly{(i%)}.y
NEXT
DRAW poly{(0)}.x, poly{(0)}.y
ENDPROC

Suthhodg bbc.gif

C[edit]

Most of the code is actually storage util routines, such is C. Prints out nodes, and writes test.eps file in current dir.

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
 
typedef struct { double x, y; } vec_t, *vec;
 
inline double dot(vec a, vec b)
{
return a->x * b->x + a->y * b->y;
}
 
inline double cross(vec a, vec b)
{
return a->x * b->y - a->y * b->x;
}
 
inline vec vsub(vec a, vec b, vec res)
{
res->x = a->x - b->x;
res->y = a->y - b->y;
return res;
}
 
/* tells if vec c lies on the left side of directed edge a->b
* 1 if left, -1 if right, 0 if colinear
*/

int left_of(vec a, vec b, vec c)
{
vec_t tmp1, tmp2;
double x;
vsub(b, a, &tmp1);
vsub(c, b, &tmp2);
x = cross(&tmp1, &tmp2);
return x < 0 ? -1 : x > 0;
}
 
int line_sect(vec x0, vec x1, vec y0, vec y1, vec res)
{
vec_t dx, dy, d;
vsub(x1, x0, &dx);
vsub(y1, y0, &dy);
vsub(x0, y0, &d);
/* x0 + a dx = y0 + b dy ->
x0 X dx = y0 X dx + b dy X dx ->
b = (x0 - y0) X dx / (dy X dx) */

double dyx = cross(&dy, &dx);
if (!dyx) return 0;
dyx = cross(&d, &dx) / dyx;
if (dyx <= 0 || dyx >= 1) return 0;
 
res->x = y0->x + dyx * dy.x;
res->y = y0->y + dyx * dy.y;
return 1;
}
 
/* === polygon stuff === */
typedef struct { int len, alloc; vec v; } poly_t, *poly;
 
poly poly_new()
{
return (poly)calloc(1, sizeof(poly_t));
}
 
void poly_free(poly p)
{
free(p->v);
free(p);
}
 
void poly_append(poly p, vec v)
{
if (p->len >= p->alloc) {
p->alloc *= 2;
if (!p->alloc) p->alloc = 4;
p->v = (vec)realloc(p->v, sizeof(vec_t) * p->alloc);
}
p->v[p->len++] = *v;
}
 
/* this works only if all of the following are true:
* 1. poly has no colinear edges;
* 2. poly has no duplicate vertices;
* 3. poly has at least three vertices;
* 4. poly is convex (implying 3).
*/

int poly_winding(poly p)
{
return left_of(p->v, p->v + 1, p->v + 2);
}
 
void poly_edge_clip(poly sub, vec x0, vec x1, int left, poly res)
{
int i, side0, side1;
vec_t tmp;
vec v0 = sub->v + sub->len - 1, v1;
res->len = 0;
 
side0 = left_of(x0, x1, v0);
if (side0 != -left) poly_append(res, v0);
 
for (i = 0; i < sub->len; i++) {
v1 = sub->v + i;
side1 = left_of(x0, x1, v1);
if (side0 + side1 == 0 && side0)
/* last point and current straddle the edge */
if (line_sect(x0, x1, v0, v1, &tmp))
poly_append(res, &tmp);
if (i == sub->len - 1) break;
if (side1 != -left) poly_append(res, v1);
v0 = v1;
side0 = side1;
}
}
 
poly poly_clip(poly sub, poly clip)
{
int i;
poly p1 = poly_new(), p2 = poly_new(), tmp;
 
int dir = poly_winding(clip);
poly_edge_clip(sub, clip->v + clip->len - 1, clip->v, dir, p2);
for (i = 0; i < clip->len - 1; i++) {
tmp = p2; p2 = p1; p1 = tmp;
if(p1->len == 0) {
p2->len = 0;
break;
}
poly_edge_clip(p1, clip->v + i, clip->v + i + 1, dir, p2);
}
 
poly_free(p1);
return p2;
}
 
int main()
{
int i;
vec_t c[] = {{100,100}, {300,100}, {300,300}, {100,300}};
//vec_t c[] = {{100,300}, {300,300}, {300,100}, {100,100}};
vec_t s[] = { {50,150}, {200,50}, {350,150},
{350,300},{250,300},{200,250},
{150,350},{100,250},{100,200}};
#define clen (sizeof(c)/sizeof(vec_t))
#define slen (sizeof(s)/sizeof(vec_t))
poly_t clipper = {clen, 0, c};
poly_t subject = {slen, 0, s};
 
poly res = poly_clip(&subject, &clipper);
 
for (i = 0; i < res->len; i++)
printf("%g %g\n", res->v[i].x, res->v[i].y);
 
/* long and arduous EPS printout */
FILE * eps = fopen("test.eps", "w");
fprintf(eps, "%%!PS-Adobe-3.0\n%%%%BoundingBox: 40 40 360 360\n"
"/l {lineto} def /m{moveto} def /s{setrgbcolor} def"
"/c {closepath} def /gs {fill grestore stroke} def\n");
fprintf(eps, "0 setlinewidth %g %g m ", c[0].x, c[0].y);
for (i = 1; i < clen; i++)
fprintf(eps, "%g %g l ", c[i].x, c[i].y);
fprintf(eps, "c .5 0 0 s gsave 1 .7 .7 s gs\n");
 
fprintf(eps, "%g %g m ", s[0].x, s[0].y);
for (i = 1; i < slen; i++)
fprintf(eps, "%g %g l ", s[i].x, s[i].y);
fprintf(eps, "c 0 .2 .5 s gsave .4 .7 1 s gs\n");
 
fprintf(eps, "2 setlinewidth [10 8] 0 setdash %g %g m ",
res->v[0].x, res->v[0].y);
for (i = 1; i < res->len; i++)
fprintf(eps, "%g %g l ", res->v[i].x, res->v[i].y);
fprintf(eps, "c .5 0 .5 s gsave .7 .3 .8 s gs\n");
 
fprintf(eps, "%%%%EOF");
fclose(eps);
printf("test.eps written\n");
 
return 0;
}
Output:
200 250

175 300 125 300 100 250 100 200 100 116.667 125 100 275 100 300 116.667 300 300 250 300

test.eps written
Poly-clip-C.png

C#[edit]

This was written in .net 4.0 using wpf

Worker class:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
 
namespace Sutherland
{
public static class SutherlandHodgman
{
#region Class: Edge
 
/// <summary>
/// This represents a line segment
/// </summary>
private class Edge
{
public Edge(Point from, Point to)
{
this.From = from;
this.To = to;
}
 
public readonly Point From;
public readonly Point To;
}
 
#endregion
 
/// <summary>
/// This clips the subject polygon against the clip polygon (gets the intersection of the two polygons)
/// </summary>
/// <remarks>
/// Based on the psuedocode from:
/// http://en.wikipedia.org/wiki/Sutherland%E2%80%93Hodgman
/// </remarks>
/// <param name="subjectPoly">Can be concave or convex</param>
/// <param name="clipPoly">Must be convex</param>
/// <returns>The intersection of the two polygons (or null)</returns>
public static Point[] GetIntersectedPolygon(Point[] subjectPoly, Point[] clipPoly)
{
if (subjectPoly.Length < 3 || clipPoly.Length < 3)
{
throw new ArgumentException(string.Format("The polygons passed in must have at least 3 points: subject={0}, clip={1}", subjectPoly.Length.ToString(), clipPoly.Length.ToString()));
}
 
List<Point> outputList = subjectPoly.ToList();
 
// Make sure it's clockwise
if (!IsClockwise(subjectPoly))
{
outputList.Reverse();
}
 
// Walk around the clip polygon clockwise
foreach (Edge clipEdge in IterateEdgesClockwise(clipPoly))
{
List<Point> inputList = outputList.ToList(); // clone it
outputList.Clear();
 
if (inputList.Count == 0)
{
// Sometimes when the polygons don't intersect, this list goes to zero. Jump out to avoid an index out of range exception
break;
}
 
Point S = inputList[inputList.Count - 1];
 
foreach (Point E in inputList)
{
if (IsInside(clipEdge, E))
{
if (!IsInside(clipEdge, S))
{
Point? point = GetIntersect(S, E, clipEdge.From, clipEdge.To);
if (point == null)
{
throw new ApplicationException("Line segments don't intersect"); // may be colinear, or may be a bug
}
else
{
outputList.Add(point.Value);
}
}
 
outputList.Add(E);
}
else if (IsInside(clipEdge, S))
{
Point? point = GetIntersect(S, E, clipEdge.From, clipEdge.To);
if (point == null)
{
throw new ApplicationException("Line segments don't intersect"); // may be colinear, or may be a bug
}
else
{
outputList.Add(point.Value);
}
}
 
S = E;
}
}
 
// Exit Function
return outputList.ToArray();
}
 
#region Private Methods
 
/// <summary>
/// This iterates through the edges of the polygon, always clockwise
/// </summary>
private static IEnumerable<Edge> IterateEdgesClockwise(Point[] polygon)
{
if (IsClockwise(polygon))
{
#region Already clockwise
 
for (int cntr = 0; cntr < polygon.Length - 1; cntr++)
{
yield return new Edge(polygon[cntr], polygon[cntr + 1]);
}
 
yield return new Edge(polygon[polygon.Length - 1], polygon[0]);
 
#endregion
}
else
{
#region Reverse
 
for (int cntr = polygon.Length - 1; cntr > 0; cntr--)
{
yield return new Edge(polygon[cntr], polygon[cntr - 1]);
}
 
yield return new Edge(polygon[0], polygon[polygon.Length - 1]);
 
#endregion
}
}
 
/// <summary>
/// Returns the intersection of the two lines (line segments are passed in, but they are treated like infinite lines)
/// </summary>
/// <remarks>
/// Got this here:
/// http://stackoverflow.com/questions/14480124/how-do-i-detect-triangle-and-rectangle-intersection
/// </remarks>
private static Point? GetIntersect(Point line1From, Point line1To, Point line2From, Point line2To)
{
Vector direction1 = line1To - line1From;
Vector direction2 = line2To - line2From;
double dotPerp = (direction1.X * direction2.Y) - (direction1.Y * direction2.X);
 
// If it's 0, it means the lines are parallel so have infinite intersection points
if (IsNearZero(dotPerp))
{
return null;
}
 
Vector c = line2From - line1From;
double t = (c.X * direction2.Y - c.Y * direction2.X) / dotPerp;
//if (t < 0 || t > 1)
//{
// return null; // lies outside the line segment
//}
 
//double u = (c.X * direction1.Y - c.Y * direction1.X) / dotPerp;
//if (u < 0 || u > 1)
//{
// return null; // lies outside the line segment
//}
 
// Return the intersection point
return line1From + (t * direction1);
}
 
private static bool IsInside(Edge edge, Point test)
{
bool? isLeft = IsLeftOf(edge, test);
if (isLeft == null)
{
// Colinear points should be considered inside
return true;
}
 
return !isLeft.Value;
}
private static bool IsClockwise(Point[] polygon)
{
for (int cntr = 2; cntr < polygon.Length; cntr++)
{
bool? isLeft = IsLeftOf(new Edge(polygon[0], polygon[1]), polygon[cntr]);
if (isLeft != null) // some of the points may be colinear. That's ok as long as the overall is a polygon
{
return !isLeft.Value;
}
}
 
throw new ArgumentException("All the points in the polygon are colinear");
}
 
/// <summary>
/// Tells if the test point lies on the left side of the edge line
/// </summary>
private static bool? IsLeftOf(Edge edge, Point test)
{
Vector tmp1 = edge.To - edge.From;
Vector tmp2 = test - edge.To;
 
double x = (tmp1.X * tmp2.Y) - (tmp1.Y * tmp2.X); // dot product of perpendicular?
 
if (x < 0)
{
return false;
}
else if (x > 0)
{
return true;
}
else
{
// Colinear points;
return null;
}
}
 
private static bool IsNearZero(double testValue)
{
return Math.Abs(testValue) <= .000000001d;
}
 
#endregion
}
}

Window code:

 
<Window x:Class="Sutherland.MainWindow"
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"
Title="Sutherland Hodgman" Background="#B0B0B0" ResizeMode="CanResizeWithGrip" Width="525" Height="450">
<Grid Margin="4">
<Grid.RowDefinitions>
<RowDefinition Height="1*"/>
<RowDefinition Height="auto"/>
</Grid.RowDefinitions>
 
<Border Grid.Row="0" CornerRadius="4" BorderBrush="#707070" Background="#FFFFFF" BorderThickness="2">
<Canvas Name="canvas"/>
</Border>
 
<UniformGrid Grid.Row="1" Rows="1" Margin="0,4,0,0">
<Button Name="btnTriRect" Content="Triangle - Rectangle" Margin="4,0" Click="btnTriRect_Click"/>
<Button Name="btnConvex" Content="Concave - Convex" Click="btnConvex_Click"/>
</UniformGrid>
</Grid>
</Window>
 
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Windows;
using System.Windows.Controls;
using System.Windows.Data;
using System.Windows.Documents;
using System.Windows.Input;
using System.Windows.Media;
using System.Windows.Media.Imaging;
using System.Windows.Navigation;
using System.Windows.Shapes;
 
namespace Sutherland
{
public partial class MainWindow : Window
{
#region Declaration Section
 
private Random _rand = new Random();
 
private Brush _subjectBack = new SolidColorBrush(ColorFromHex("30427FCF"));
private Brush _subjectBorder = new SolidColorBrush(ColorFromHex("427FCF"));
private Brush _clipBack = new SolidColorBrush(ColorFromHex("30D65151"));
private Brush _clipBorder = new SolidColorBrush(ColorFromHex("D65151"));
private Brush _intersectBack = new SolidColorBrush(ColorFromHex("609F18CC"));
private Brush _intersectBorder = new SolidColorBrush(ColorFromHex("9F18CC"));
 
#endregion
 
#region Constructor
 
public MainWindow()
{
InitializeComponent();
}
 
#endregion
 
#region Event Listeners
 
private void btnTriRect_Click(object sender, RoutedEventArgs e)
{
try
{
double width = canvas.ActualWidth;
double height = canvas.ActualHeight;
 
Point[] poly1 = new Point[] {
new Point(_rand.NextDouble() * width, _rand.NextDouble() * height),
new Point(_rand.NextDouble() * width, _rand.NextDouble() * height),
new Point(_rand.NextDouble() * width, _rand.NextDouble() * height) };
 
Point rectPoint = new Point(_rand.NextDouble() * (width * .75d), _rand.NextDouble() * (height * .75d)); // don't let it start all the way at the bottom right
Rect rect = new Rect(
rectPoint,
new Size(_rand.NextDouble() * (width - rectPoint.X), _rand.NextDouble() * (height - rectPoint.Y)));
 
Point[] poly2 = new Point[] { rect.TopLeft, rect.TopRight, rect.BottomRight, rect.BottomLeft };
 
Point[] intersect = SutherlandHodgman.GetIntersectedPolygon(poly1, poly2);
 
canvas.Children.Clear();
ShowPolygon(poly1, _subjectBack, _subjectBorder, 1d);
ShowPolygon(poly2, _clipBack, _clipBorder, 1d);
ShowPolygon(intersect, _intersectBack, _intersectBorder, 3d);
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString(), this.Title, MessageBoxButton.OK, MessageBoxImage.Error);
}
}
private void btnConvex_Click(object sender, RoutedEventArgs e)
{
try
{
Point[] poly1 = new Point[] { new Point(50, 150), new Point(200, 50), new Point(350, 150), new Point(350, 300), new Point(250, 300), new Point(200, 250), new Point(150, 350), new Point(100, 250), new Point(100, 200) };
Point[] poly2 = new Point[] { new Point(100, 100), new Point(300, 100), new Point(300, 300), new Point(100, 300) };
 
Point[] intersect = SutherlandHodgman.GetIntersectedPolygon(poly1, poly2);
 
canvas.Children.Clear();
ShowPolygon(poly1, _subjectBack, _subjectBorder, 1d);
ShowPolygon(poly2, _clipBack, _clipBorder, 1d);
ShowPolygon(intersect, _intersectBack, _intersectBorder, 3d);
}
catch (Exception ex)
{
MessageBox.Show(ex.ToString(), this.Title, MessageBoxButton.OK, MessageBoxImage.Error);
}
}
 
#endregion
 
#region Private Methods
 
private void ShowPolygon(Point[] points, Brush background, Brush border, double thickness)
{
if (points == null || points.Length == 0)
{
return;
}
 
Polygon polygon = new Polygon();
polygon.Fill = background;
polygon.Stroke = border;
polygon.StrokeThickness = thickness;
 
foreach (Point point in points)
{
polygon.Points.Add(point);
}
 
canvas.Children.Add(polygon);
}
 
/// <summary>
/// This is just a wrapper to the color converter (why can't they have a method off the color class with all
/// the others?)
/// </summary>
private static Color ColorFromHex(string hexValue)
{
if (hexValue.StartsWith("#"))
{
return (Color)ColorConverter.ConvertFromString(hexValue);
}
else
{
return (Color)ColorConverter.ConvertFromString("#" + hexValue);
}
}
 
#endregion
}
}

PolyIntersect.png

D[edit]

import std.stdio, std.array, std.range, std.typecons, std.algorithm;
 
struct Vec2 { // To be replaced with Phobos code.
double x, y;
 
Vec2 opBinary(string op="-")(in Vec2 other)
const pure nothrow @safe @nogc {
return Vec2(this.x - other.x, this.y - other.y);
}
 
typeof(x) cross(in Vec2 other) const pure nothrow @safe @nogc {
return this.x * other.y - this.y * other.x;
}
}
 
immutable(Vec2)[] clip(in Vec2[] subjectPolygon, in Vec2[] clipPolygon)
pure /*nothrow*/ @safe in {
assert(subjectPolygon.length > 1);
assert(clipPolygon.length > 1);
// Probably clipPolygon needs to be convex and probably
// its vertices need to be listed in a direction.
} out(result) {
assert(result.length > 1);
} body {
alias Edge = Tuple!(Vec2,"p", Vec2,"q");
 
static enum isInside = (in Vec2 p, in Edge cle)
pure nothrow @safe @nogc =>
(cle.q.x - cle.p.x) * (p.y - cle.p.y) >
(cle.q.y - cle.p.y) * (p.x - cle.p.x);
 
static Vec2 intersection(in Edge se, in Edge cle)
pure nothrow @safe @nogc {
immutable dc = cle.p - cle.q;
immutable dp = se.p - se.q;
immutable n1 = cle.p.cross(cle.q);
immutable n2 = se.p.cross(se.q);
immutable n3 = 1.0 / dc.cross(dp);
return Vec2((n1 * dp.x - n2 * dc.x) * n3,
(n1 * dp.y - n2 * dc.y) * n3);
}
 
// How much slower is this compared to lower-level code?
static enum edges = (in Vec2[] poly) pure nothrow @safe @nogc =>
// poly[$ - 1 .. $].chain(poly).zip!Edge(poly);
poly[$ - 1 .. $].chain(poly).zip(poly).map!Edge;
 
immutable(Vec2)[] result = subjectPolygon.idup; // Not nothrow.
 
foreach (immutable clipEdge; edges(clipPolygon)) {
immutable inputList = result;
result.destroy;
foreach (immutable inEdge; edges(inputList)) {
if (isInside(inEdge.q, clipEdge)) {
if (!isInside(inEdge.p, clipEdge))
result ~= intersection(inEdge, clipEdge);
result ~= inEdge.q;
} else if (isInside(inEdge.p, clipEdge))
result ~= intersection(inEdge, clipEdge);
}
}
 
return result;
}
 
// Code adapted from the C version.
void saveEPSImage(in string fileName, in Vec2[] subjPoly,
in Vec2[] clipPoly, in Vec2[] clipped)
in {
assert(!fileName.empty);
assert(subjPoly.length > 1);
assert(clipPoly.length > 1);
assert(clipped.length > 1);
} body {
auto eps = File(fileName, "w");
 
// The image bounding box is hard-coded, not computed.
eps.writeln(
"%%!PS-Adobe-3.0
%%%%BoundingBox: 40 40 360 360
/l {lineto} def
/m {moveto} def
/s {setrgbcolor} def
/c {closepath} def
/gs {fill grestore stroke} def
"
);
 
eps.writef("0 setlinewidth %g %g m ", clipPoly[0].tupleof);
foreach (immutable cl; clipPoly[1 .. $])
eps.writef("%g %g l ", cl.tupleof);
eps.writefln("c 0.5 0 0 s gsave 1 0.7 0.7 s gs");
 
eps.writef("%g %g m ", subjPoly[0].tupleof);
foreach (immutable s; subjPoly[1 .. $])
eps.writef("%g %g l ", s.tupleof);
eps.writefln("c 0 0.2 0.5 s gsave 0.4 0.7 1 s gs");
 
eps.writef("2 setlinewidth [10 8] 0 setdash %g %g m ",
clipped[0].tupleof);
foreach (immutable c; clipped[1 .. $])
eps.writef("%g %g l ", c.tupleof);
eps.writefln("c 0.5 0 0.5 s gsave 0.7 0.3 0.8 s gs");
 
eps.writefln("%%%%EOF");
eps.close;
writeln(fileName, " written.");
}
 
void main() {
alias V = Vec2;
immutable subjectPolygon = [V(50, 150), V(200, 50), V(350, 150),
V(350, 300), V(250, 300), V(200, 250),
V(150, 350), V(100, 250), V(100, 200)];
immutable clippingPolygon = [V(100, 100), V(300, 100),
V(300, 300), V(100, 300)];
immutable clipped = subjectPolygon.clip(clippingPolygon);
writefln("%(%s\n%)", clipped);
saveEPSImage("sutherland_hodgman_clipping_out.eps",
subjectPolygon, clippingPolygon, clipped);
}
Output:
immutable(Vec2)(100, 116.667)
immutable(Vec2)(125, 100)
immutable(Vec2)(275, 100)
immutable(Vec2)(300, 116.667)
immutable(Vec2)(300, 300)
immutable(Vec2)(250, 300)
immutable(Vec2)(200, 250)
immutable(Vec2)(175, 300)
immutable(Vec2)(125, 300)
immutable(Vec2)(100, 250)
sutherland_hodgman_clipping_out.eps written.

It also outputs an EPS file, the same as the C entry.

Elixir[edit]

Translation of: Ruby
defmodule SutherlandHodgman do
defp inside(cp1, cp2, p), do: (cp2.x-cp1.x)*(p.y-cp1.y) > (cp2.y-cp1.y)*(p.x-cp1.x)
 
defp intersection(cp1, cp2, s, e) do
{dcx, dcy} = {cp1.x-cp2.x, cp1.y-cp2.y}
{dpx, dpy} = {s.x-e.x, s.y-e.y}
n1 = cp1.x*cp2.y - cp1.y*cp2.x
n2 = s.x*e.y - s.y*e.x
n3 = 1.0 / (dcx*dpy - dcy*dpx)
 %{x: (n1*dpx - n2*dcx) * n3, y: (n1*dpy - n2*dcy) * n3}
end
 
def polygon_clipping(subjectPolygon, clipPolygon) do
Enum.chunk([List.last(clipPolygon) | clipPolygon], 2, 1)
|> Enum.reduce(subjectPolygon, fn [cp1,cp2],acc ->
Enum.chunk([List.last(acc) | acc], 2, 1)
|> Enum.reduce([], fn [s,e],outputList ->
case {inside(cp1, cp2, e), inside(cp1, cp2, s)} do
{true, true} -> [e | outputList]
{true, false} -> [e, intersection(cp1,cp2,s,e) | outputList]
{false, true} -> [intersection(cp1,cp2,s,e) | outputList]
_ -> outputList
end
end)
|> Enum.reverse
end)
end
end
 
subjectPolygon = [[50, 150], [200, 50], [350, 150], [350, 300], [250, 300],
[200, 250], [150, 350], [100, 250], [100, 200]]
|> Enum.map(fn [x,y] -> %{x: x, y: y} end)
 
clipPolygon = [[100, 100], [300, 100], [300, 300], [100, 300]]
|> Enum.map(fn [x,y] -> %{x: x, y: y} end)
 
SutherlandHodgman.polygon_clipping(subjectPolygon, clipPolygon)
|> Enum.each(&IO.inspect/1)
Output:
%{x: 100.0, y: 116.66666666666667}
%{x: 125.00000000000001, y: 100.0}
%{x: 275.0, y: 100.0}
%{x: 300.0, y: 116.66666666666667}
%{x: 300.0, y: 299.99999999999994}
%{x: 250.0, y: 300.0}
%{x: 200, y: 250}
%{x: 175.0, y: 300.0}
%{x: 125.0, y: 300.0}
%{x: 100.0, y: 250.0}

Fortran[edit]

Infos: The polygons are fortran type with an allocatable array "vertex" that contains the vertices and an integer n that is the size of the polygon. For any polygon, the first vertex and the last vertex have to be the same. As you will see, in the main function, we allocate the vertex array of the result polygon with its maximal size.

 
 
module SutherlandHodgmanUtil
! functions and type needed for Sutherland-Hodgman algorithm
 
! -------------------------------------------------------- !
type polygon
!type for polygons
! when you define a polygon, the first and the last vertices have to be the same
integer :: n
double precision, dimension(:,:), allocatable :: vertex
end type polygon
 
contains
 
! -------------------------------------------------------- !
subroutine sutherlandHodgman( ref, clip, outputPolygon )
! Sutherland Hodgman algorithm for 2d polygons
 
! -- parameters of the subroutine --
type(polygon) :: ref, clip, outputPolygon
 
! -- variables used is the subroutine
type(polygon) :: workPolygon ! polygon clipped step by step
double precision, dimension(2) :: y1,y2 ! vertices of edge to clip workPolygon
integer :: i
 
! allocate workPolygon with the maximal possible size
! the sum of the size of polygon ref and clip
allocate(workPolygon%vertex( ref%n+clip%n , 2 ))
 
! initialise the work polygon with clip
workPolygon%n = clip%n
workPolygon%vertex(1:workPolygon%n,:) = clip%vertex(1:workPolygon%n,:)
 
do i=1,ref%n-1 ! for each edge i of the polygon ref
y1(:) = ref%vertex(i,:) ! vertex 1 of edge i
y2(:) = ref%vertex(i+1,:) ! vertex 2 of edge i
 
! clip the work polygon by edge i
call edgeClipping( workPolygon, y1, y2, outputPolygon)
! workPolygon <= outputPolygon
workPolygon%n = outputPolygon%n
workPolygon%vertex(1:workPolygon%n,:) = outputPolygon%vertex(1:workPolygon%n,:)
 
end do
deallocate(workPolygon%vertex)
end subroutine sutherlandHodgman
 
! -------------------------------------------------------- !
subroutine edgeClipping( poly, y1, y2, outputPoly )
! make the clipping of the polygon by the line (x1x2)
 
type(polygon) :: poly, outputPoly
double precision, dimension(2) :: y1, y2, x1, x2, intersecPoint
integer :: i, c
 
c = 0 ! counter for the output polygon
 
do i=1,poly%n-1 ! for each edge i of poly
x1(:) = poly%vertex(i,:) ! vertex 1 of edge i
x2(:) = poly%vertex(i+1,:) ! vertex 2 of edge i
 
if ( inside(x1, y1, y2) ) then ! if vertex 1 in inside clipping region
if ( inside(x2, y1, y2) ) then ! if vertex 2 in inside clipping region
! add the vertex 2 to the output polygon
c = c+1
outputPoly%vertex(c,:) = x2(:)
 
else ! vertex i+1 is outside
intersecPoint = intersection(x1, x2, y1,y2)
c = c+1
outputPoly%vertex(c,:) = intersecPoint(:)
end if
else ! vertex i is outside
if ( inside(x2, y1, y2) ) then
intersecPoint = intersection(x1, x2, y1,y2)
c = c+1
outputPoly%vertex(c,:) = intersecPoint(:)
 
c = c+1
outputPoly%vertex(c,:) = x2(:)
end if
end if
end do
 
if (c .gt. 0) then
! if the last vertice is not equal to the first one
if ( (outputPoly%vertex(1,1) .ne. outputPoly%vertex(c,1)) .or. &
(outputPoly%vertex(1,2) .ne. outputPoly%vertex(c,2))) then
c=c+1
outputPoly%vertex(c,:) = outputPoly%vertex(1,:)
end if
end if
! set the size of the outputPolygon
outputPoly%n = c
end subroutine edgeClipping
 
! -------------------------------------------------------- !
function intersection( x1, x2, y1, y2)
! computes the intersection between segment [x1x2]
! and line the line (y1y2)
 
! -- parameters of the function --
double precision, dimension(2) :: x1, x2, & ! points of the segment
y1, y2 ! points of the line
 
double precision, dimension(2) :: intersection, vx, vy, x1y1
double precision :: a
 
vx(:) = x2(:) - x1(:)
vy(:) = y2(:) - y1(:)
 
! if the vectors are colinear
if ( crossProduct(vx,vy) .eq. 0.d0) then
x1y1(:) = y1(:) - x1(:)
! if the the segment [x1x2] is included in the line (y1y2)
if ( crossProduct(x1y1,vx) .eq. 0.d0) then
! the intersection is the last point of the segment
intersection(:) = x2(:)
end if
else ! the vectors are not colinear
! we want to find the inersection between [x1x2]
! and (y1,y2).
! mathematically, we want to find a in [0;1] such
! that :
! x1 + a vx = y1 + b vy
! <=> a vx = x1y1 + b vy
! <=> a vx^vy = x1y1^vy , ^ is cross product
! <=> a = x1y1^vy / vx^vy
 
x1y1(:) = y1(:) - x1(:)
! we compute a
a = crossProduct(x1y1,vy)/crossProduct(vx,vy)
! if a is not in [0;1]
if ( (a .gt. 1.d0) .or. (a .lt. 0)) then
! no intersection
else
intersection(:) = x1(:) + a*vx(:)
end if
end if
 
end function intersection
 
 
! -------------------------------------------------------- !
function inside( p, y1, y2)
! function that tells is the point p is at left of the line (y1y2)
 
double precision, dimension(2) :: p, y1, y2, v1, v2
logical :: inside
v1(:) = y2(:) - y1(:)
v2(:) = p(:) - y1(:)
if ( crossProduct(v1,v2) .ge. 0.d0) then
inside = .true.
else
inside = .false.
end if
 
contains
end function inside
 
! -------------------------------------------------------- !
function dotProduct( v1, v2)
! compute the dot product of vectors v1 and v2
double precision, dimension(2) :: v1
double precision, dimension(2) :: v2
double precision :: dotProduct
dotProduct = v1(1)*v2(1) + v1(2)*v2(2)
end function dotProduct
 
! -------------------------------------------------------- !
function crossProduct( v1, v2)
! compute the crossproduct of vectors v1 and v2
double precision, dimension(2) :: v1
double precision, dimension(2) :: v2
double precision :: crossProduct
crossProduct = v1(1)*v2(2) - v1(2)*v2(1)
end function crossProduct
 
end module SutherlandHodgmanUtil
 
program main
 
! load the module for S-H algorithm
use SutherlandHodgmanUtil, only : polygon, &
sutherlandHodgman, &
edgeClipping
 
type(polygon) :: p1, p2, res
integer :: c, n
double precision, dimension(2) :: y1, y2
 
! when you define a polygon, the first and the last vertices have to be the same
 
! first polygon
p1%n = 10
allocate(p1%vertex(p1%n,2))
p1%vertex(1,1)=50.d0
p1%vertex(1,2)=150.d0
 
p1%vertex(2,1)=200.d0
p1%vertex(2,2)=50.d0
 
p1%vertex(3,1)= 350.d0
p1%vertex(3,2)= 150.d0
 
p1%vertex(4,1)= 350.d0
p1%vertex(4,2)= 300.d0
 
p1%vertex(5,1)= 250.d0
p1%vertex(5,2)= 300.d0
 
p1%vertex(6,1)= 200.d0
p1%vertex(6,2)= 250.d0
 
p1%vertex(7,1)= 150.d0
p1%vertex(7,2)= 350.d0
 
p1%vertex(8,1)= 100.d0
p1%vertex(8,2)= 250.d0
 
p1%vertex(9,1)= 100.d0
p1%vertex(9,2)= 200.d0
 
p1%vertex(10,1)= 50.d0
p1%vertex(10,2)= 150.d0
 
y1 = (/ 100.d0, 300.d0 /)
y2 = (/ 300.d0, 300.d0 /)
 
! second polygon
p2%n = 5
allocate(p2%vertex(p2%n,2))
 
p2%vertex(1,1)= 100.d0
p2%vertex(1,2)= 100.d0
 
p2%vertex(2,1)= 300.d0
p2%vertex(2,2)= 100.d0
 
p2%vertex(3,1)= 300.d0
p2%vertex(3,2)= 300.d0
 
p2%vertex(4,1)= 100.d0
p2%vertex(4,2)= 300.d0
 
p2%vertex(5,1)= 100.d0
p2%vertex(5,2)= 100.d0
 
allocate(res%vertex(p1%n+p2%n,2))
call sutherlandHodgman( p2, p1, res)
write(*,*) "Suterland-Hodgman"
do c=1, res%n
write(*,*) res%vertex(c,1), res%vertex(c,2)
end do
deallocate(res%vertex)
 
end program main
 
 

Output:

  Suterland-Hodgman
  300.00000000000000        300.00000000000000     
  250.00000000000000        300.00000000000000     
  200.00000000000000        250.00000000000000     
  175.00000000000000        300.00000000000000     
  125.00000000000000        300.00000000000000     
  100.00000000000000        250.00000000000000     
  100.00000000000000        200.00000000000000     
  100.00000000000000        200.00000000000000     
  100.00000000000000        116.66666666666667     
  125.00000000000000        100.00000000000000     
  275.00000000000000        100.00000000000000     
  300.00000000000000        116.66666666666666     
  300.00000000000000        300.00000000000000     

Go[edit]

No extra credit today.

package main
 
import "fmt"
 
type point struct {
x, y float32
}
 
var subjectPolygon = []point{{50, 150}, {200, 50}, {350, 150}, {350, 300},
{250, 300}, {200, 250}, {150, 350}, {100, 250}, {100, 200}}
 
var clipPolygon = []point{{100, 100}, {300, 100}, {300, 300}, {100, 300}}
 
func main() {
var cp1, cp2, s, e point
inside := func(p point) bool {
return (cp2.x-cp1.x)*(p.y-cp1.y) > (cp2.y-cp1.y)*(p.x-cp1.x)
}
intersection := func() (p point) {
dcx, dcy := cp1.x-cp2.x, cp1.y-cp2.y
dpx, dpy := s.x-e.x, s.y-e.y
n1 := cp1.x*cp2.y - cp1.y*cp2.x
n2 := s.x*e.y - s.y*e.x
n3 := 1 / (dcx*dpy - dcy*dpx)
p.x = (n1*dpx - n2*dcx) * n3
p.y = (n1*dpy - n2*dcy) * n3
return
}
outputList := subjectPolygon
cp1 = clipPolygon[len(clipPolygon)-1]
for _, cp2 = range clipPolygon { // WP clipEdge is cp1,cp2 here
inputList := outputList
outputList = nil
s = inputList[len(inputList)-1]
for _, e = range inputList {
if inside(e) {
if !inside(s) {
outputList = append(outputList, intersection())
}
outputList = append(outputList, e)
} else if inside(s) {
outputList = append(outputList, intersection())
}
s = e
}
cp1 = cp2
}
fmt.Println(outputList)
}
Output:
[{100 116.66667} {125 100} {275 100} {300 116.66667} {300 300} {250 300} {200 250} {175 300} {125 300} {100 250}]

(You can try it online)

Haskell[edit]

module SuthHodgClip (clipTo) where
 
import Data.List
 
type Pt a = (a, a)
type Ln a = (Pt a, Pt a)
type Poly a = [Pt a]
 
-- Return a polygon from a list of points.
polyFrom ps = last ps : ps
 
-- Return a list of lines from a list of points.
linesFrom pps@(_:ps) = zip pps ps
 
-- Return true if the point (x,y) is on or to the left of the oriented line
-- defined by (px,py) and (qx,qy).
(.|) :: (Num a, Ord a) => Pt a -> Ln a -> Bool
(x,y) .| ((px,py),(qx,qy)) = (qx-px)*(y-py) >= (qy-py)*(x-px)
 
-- Return the intersection of two lines.
(><) :: Fractional a => Ln a -> Ln a -> Pt a
((x1,y1),(x2,y2)) >< ((x3,y3),(x4,y4)) =
let (r,s) = (x1*y2-y1*x2, x3*y4-y3*x4)
(t,u,v,w) = (x1-x2, y3-y4, y1-y2, x3-x4)
d = t*u-v*w
in ((r*w-t*s)/d, (r*u-v*s)/d)
 
-- Intersect the line segment (p0,p1) with the clipping line's left halfspace,
-- returning the point closest to p1. In the special case where p0 lies outside
-- the halfspace and p1 lies inside we return both the intersection point and
-- p1. This ensures we will have the necessary segment along the clipping line.
(-|) :: (Fractional a, Ord a) => Ln a -> Ln a -> [Pt a]
ln@(p0, p1) -| clipLn =
case (p0 .| clipLn, p1 .| clipLn) of
(False, False) -> []
(False, True) -> [isect, p1]
(True, False) -> [isect]
(True, True) -> [p1]
where isect = ln >< clipLn
 
-- Intersect the polygon with the clipping line's left halfspace.
(<|) :: (Fractional a, Ord a) => Poly a -> Ln a -> Poly a
poly <| clipLn = polyFrom $ concatMap (-| clipLn) (linesFrom poly)
 
-- Intersect a target polygon with a clipping polygon. The latter is assumed to
-- be convex.
clipTo :: (Fractional a, Ord a) => [Pt a] -> [Pt a] -> [Pt a]
targPts `clipTo` clipPts =
let targPoly = polyFrom targPts
clipLines = linesFrom (polyFrom clipPts)
in foldl' (<|) targPoly clipLines

Print the resulting list of points and display the polygons in a window.

import Graphics.HGL
import SuthHodgClip
 
targPts = [( 50,150), (200, 50), (350,150), (350,300), (250,300),
(200,250), (150,350), (100,250), (100,200)] :: [(Float,Float)]
clipPts = [(100,100), (300,100), (300,300), (100,300)] :: [(Float,Float)]
 
toInts = map (\(a,b) -> (round a, round b))
complete xs = last xs : xs
 
drawSolid w c = drawInWindow w . withRGB c . polygon
drawLines w p = drawInWindow w . withPen p . polyline . toInts . complete
 
blue = RGB 0x99 0x99 0xff
green = RGB 0x99 0xff 0x99
pink = RGB 0xff 0x99 0x99
white = RGB 0xff 0xff 0xff
 
main = do
let resPts = targPts `clipTo` clipPts
sz = 400
win = [(0,0), (sz,0), (sz,sz), (0,sz)]
runWindow "Sutherland-Hodgman Polygon Clipping" (sz,sz) $ \w -> do
print $ toInts resPts
penB <- createPen Solid 3 blue
penP <- createPen Solid 5 pink
drawSolid w white win
drawLines w penB targPts
drawLines w penP clipPts
drawSolid w green $ toInts resPts
getKey w
Output:
[(100,200),(100,200),(100,117),(125,100),(275,100),(300,117),(300,300),(250,300),(200,250),(175,300),(125,300),(100,250),(100,200)]

Sutherland-Hodgman haskell.png

J[edit]

Solution:

NB. assumes counterclockwise orientation.
NB. determine whether point y is inside edge x.
isinside=:0< [:-/ .* {.@[ -~"1 {:@[,:]
 
NB. (p0,:p1) intersection (p2,:p3)
intersection=:|:@[ (+/ .* (,-.)) [:{. ,.&(-~/) %.~ -&{:
 
SutherlandHodgman=:4 :0 NB. clip S-H subject
clip=.2 ]\ (,{.) x
subject=.y
for_edge. clip do.
S=.{:input=.subject
subject=.0 2$0
for_E. input do.
if. edge isinside E do.
if. -.edge isinside S do.
subject=.subject,edge intersection S,:E end.
subject=.subject,E
elseif. edge isinside S do.
subject=.subject,edge intersection S,:E end.
S=.E
end.
end.
subject
)
Example use:
   subject=: 50 150,200 50,350 150,350 300,250 300,200 250,150 350,100 250,:100 200
clip=: 100 100,300 100,300 300,:100 300
clip SutherlandHodgman subject
100 116.667
125 100
275 100
300 116.667
300 300
250 300
200 250
175 300
125 300
100 250

Java[edit]

Works with: Java version 7
import java.awt.*;
import java.awt.geom.Line2D;
import java.util.*;
import java.util.List;
import javax.swing.*;
 
public class SutherlandHodgman extends JFrame {
 
SutherlandHodgmanPanel panel;
 
public static void main(String[] args) {
JFrame f = new SutherlandHodgman();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.setVisible(true);
}
 
public SutherlandHodgman() {
Container content = getContentPane();
content.setLayout(new BorderLayout());
panel = new SutherlandHodgmanPanel();
content.add(panel, BorderLayout.CENTER);
setTitle("SutherlandHodgman");
pack();
setLocationRelativeTo(null);
}
}
 
class SutherlandHodgmanPanel extends JPanel {
List<double[]> subject, clipper, result;
 
public SutherlandHodgmanPanel() {
setPreferredSize(new Dimension(600, 500));
 
// these subject and clip points are assumed to be valid
double[][] subjPoints = {{50, 150}, {200, 50}, {350, 150}, {350, 300},
{250, 300}, {200, 250}, {150, 350}, {100, 250}, {100, 200}};
 
double[][] clipPoints = {{100, 100}, {300, 100}, {300, 300}, {100, 300}};
 
subject = new ArrayList<>(Arrays.asList(subjPoints));
result = new ArrayList<>(subject);
clipper = new ArrayList<>(Arrays.asList(clipPoints));
 
clipPolygon();
}
 
private void clipPolygon() {
int len = clipper.size();
for (int i = 0; i < len; i++) {
 
int len2 = result.size();
List<double[]> input = result;
result = new ArrayList<>(len2);
 
double[] A = clipper.get((i + len - 1) % len);
double[] B = clipper.get(i);
 
for (int j = 0; j < len2; j++) {
 
double[] P = input.get((j + len2 - 1) % len2);
double[] Q = input.get(j);
 
if (isInside(A, B, Q)) {
if (!isInside(A, B, P))
result.add(intersection(A, B, P, Q));
result.add(Q);
} else if (isInside(A, B, P))
result.add(intersection(A, B, P, Q));
}
}
}
 
private boolean isInside(double[] a, double[] b, double[] c) {
return (a[0] - c[0]) * (b[1] - c[1]) > (a[1] - c[1]) * (b[0] - c[0]);
}
 
private double[] intersection(double[] a, double[] b, double[] p, double[] q) {
double A1 = b[1] - a[1];
double B1 = a[0] - b[0];
double C1 = A1 * a[0] + B1 * a[1];
 
double A2 = q[1] - p[1];
double B2 = p[0] - q[0];
double C2 = A2 * p[0] + B2 * p[1];
 
double det = A1 * B2 - A2 * B1;
double x = (B2 * C1 - B1 * C2) / det;
double y = (A1 * C2 - A2 * C1) / det;
 
return new double[]{x, y};
}
 
@Override
public void paintComponent(Graphics g) {
super.paintComponent(g);
Graphics2D g2 = (Graphics2D) g;
g2.translate(80, 60);
g2.setStroke(new BasicStroke(3));
g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON);
 
drawPolygon(g2, subject, Color.blue);
drawPolygon(g2, clipper, Color.red);
drawPolygon(g2, result, Color.green);
}
 
private void drawPolygon(Graphics2D g2, List<double[]> points, Color color) {
g2.setColor(color);
int len = points.size();
Line2D line = new Line2D.Double();
for (int i = 0; i < len; i++) {
double[] p1 = points.get(i);
double[] p2 = points.get((i + 1) % len);
line.setLine(p1[0], p1[1], p2[0], p2[1]);
g2.draw(line);
}
}
}

JavaScript[edit]

Solution:

 
<html>
<head>
<script>
function clip (subjectPolygon, clipPolygon) {
 
var cp1, cp2, s, e;
var inside = function (p) {
return (cp2[0]-cp1[0])*(p[1]-cp1[1]) > (cp2[1]-cp1[1])*(p[0]-cp1[0]);
};
var intersection = function () {
var dc = [ cp1[0] - cp2[0], cp1[1] - cp2[1] ],
dp = [ s[0] - e[0], s[1] - e[1] ],
n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0],
n2 = s[0] * e[1] - s[1] * e[0],
n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0]);
return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3];
};
var outputList = subjectPolygon;
cp1 = clipPolygon[clipPolygon.length-1];
for (j in clipPolygon) {
var cp2 = clipPolygon[j];
var inputList = outputList;
outputList = [];
s = inputList[inputList.length - 1]; //last on the input list
for (i in inputList) {
var e = inputList[i];
if (inside(e)) {
if (!inside(s)) {
outputList.push(intersection());
}
outputList.push(e);
}
else if (inside(s)) {
outputList.push(intersection());
}
s = e;
}
cp1 = cp2;
}
return outputList
}
 
function drawPolygon(context, polygon, strokeStyle, fillStyle) {
context.strokeStyle = strokeStyle;
context.fillStyle = fillStyle;
context.beginPath();
context.moveTo(polygon[0][0],polygon[0][1]); //first vertex
for (var i = 1; i < polygon.length ; i++)
context.lineTo(polygon[i][0],polygon[i][1]);
context.lineTo(polygon[0][0],polygon[0][1]); //back to start
context.fill();
context.stroke();
context.closePath();
}
 
window.onload = function () {
var context = document.getElementById('canvas').getContext('2d');
var subjectPolygon = [[50, 150], [200, 50], [350, 150], [350, 300], [250, 300], [200, 250], [150, 350], [100, 250], [100, 200]],
clipPolygon = [[100, 100], [300, 100], [300, 300], [100, 300]];
var clippedPolygon = clip(subjectPolygon, clipPolygon);
drawPolygon(context, clipPolygon, '#888','#88f');
drawPolygon(context, subjectPolygon, '#888','#8f8');
drawPolygon(context, clippedPolygon, '#000','#0ff');
}
</script>
<body>
<canvas id='canvas' width='400' height='400'></canvas>
</body>
</html>
 

You can see it running here

Lua[edit]

No extra credit.

Translation of: Go
subjectPolygon = {
{50, 150}, {200, 50}, {350, 150}, {350, 300},
{250, 300}, {200, 250}, {150, 350}, {100, 250}, {100, 200}
}
 
clipPolygon = {{100, 100}, {300, 100}, {300, 300}, {100, 300}}
 
function inside(p, cp1, cp2)
return (cp2.x-cp1.x)*(p.y-cp1.y) > (cp2.y-cp1.y)*(p.x-cp1.x)
end
 
function intersection(cp1, cp2, s, e)
local dcx, dcy = cp1.x-cp2.x, cp1.y-cp2.y
local dpx, dpy = s.x-e.x, s.y-e.y
local n1 = cp1.x*cp2.y - cp1.y*cp2.x
local n2 = s.x*e.y - s.y*e.x
local n3 = 1 / (dcx*dpy - dcy*dpx)
local x = (n1*dpx - n2*dcx) * n3
local y = (n1*dpy - n2*dcy) * n3
return {x=x, y=y}
end
 
function clip(subjectPolygon, clipPolygon)
local outputList = subjectPolygon
local cp1 = clipPolygon[#clipPolygon]
for _, cp2 in ipairs(clipPolygon) do -- WP clipEdge is cp1,cp2 here
local inputList = outputList
outputList = {}
local s = inputList[#inputList]
for _, e in ipairs(inputList) do
if inside(e, cp1, cp2) then
if not inside(s, cp1, cp2) then
outputList[#outputList+1] = intersection(cp1, cp2, s, e)
end
outputList[#outputList+1] = e
elseif inside(s, cp1, cp2) then
outputList[#outputList+1] = intersection(cp1, cp2, s, e)
end
s = e
end
cp1 = cp2
end
return outputList
end
 
function main()
local function mkpoints(t)
for i, p in ipairs(t) do
p.x, p.y = p[1], p[2]
end
end
mkpoints(subjectPolygon)
mkpoints(clipPolygon)
 
local outputList = clip(subjectPolygon, clipPolygon)
 
for _, p in ipairs(outputList) do
print(('{%f, %f},'):format(p.x, p.y))
end
end
 
main()
Output:
{100.000000, 116.666667},
{125.000000, 100.000000},
{275.000000, 100.000000},
{300.000000, 116.666667},
{300.000000, 300.000000},
{250.000000, 300.000000},
{200.000000, 250.000000},
{175.000000, 300.000000},
{125.000000, 300.000000},
{100.000000, 250.000000},

(You can also see it live)

MATLAB / Octave[edit]

%The inputs are a table of x-y pairs for the verticies of the subject
%polygon and boundary polygon. (x values in column 1 and y values in column
%2) The output is a table of x-y pairs for the clipped version of the
%subject polygon.
 
function clippedPolygon = sutherlandHodgman(subjectPolygon,clipPolygon)
 
%% Helper Functions
 
%computerIntersection() assumes the two lines intersect
function intersection = computeIntersection(line1,line2)
 
%this is an implementation of
%http://en.wikipedia.org/wiki/Line-line_intersection
 
intersection = zeros(1,2);
 
detL1 = det(line1);
detL2 = det(line2);
 
detL1x = det([line1(:,1),[1;1]]);
detL1y = det([line1(:,2),[1;1]]);
 
detL2x = det([line2(:,1),[1;1]]);
detL2y = det([line2(:,2),[1;1]]);
 
denominator = det([detL1x detL1y;detL2x detL2y]);
 
intersection(1) = det([detL1 detL1x;detL2 detL2x]) / denominator;
intersection(2) = det([detL1 detL1y;detL2 detL2y]) / denominator;
 
end %computeIntersection
 
%inside() assumes the boundary is oriented counter-clockwise
function in = inside(point,boundary)
 
pointPositionVector = [diff([point;boundary(1,:)]) 0];
boundaryVector = [diff(boundary) 0];
crossVector = cross(pointPositionVector,boundaryVector);
 
if ( crossVector(3) <= 0 )
in = true;
else
in = false;
end
 
end %inside
 
%% Sutherland-Hodgman Algorithm
 
clippedPolygon = subjectPolygon;
numVerticies = size(clipPolygon,1);
clipVertexPrevious = clipPolygon(end,:);
 
for clipVertex = (1:numVerticies)
 
clipBoundary = [clipPolygon(clipVertex,:) ; clipVertexPrevious];
 
inputList = clippedPolygon;
 
clippedPolygon = [];
if ~isempty(inputList),
previousVertex = inputList(end,:);
end
 
for subjectVertex = (1:size(inputList,1))
 
if ( inside(inputList(subjectVertex,:),clipBoundary) )
 
if( not(inside(previousVertex,clipBoundary)) )
subjectLineSegment = [previousVertex;inputList(subjectVertex,:)];
clippedPolygon(end+1,1:2) = computeIntersection(clipBoundary,subjectLineSegment);
end
 
clippedPolygon(end+1,1:2) = inputList(subjectVertex,:);
 
elseif( inside(previousVertex,clipBoundary) )
subjectLineSegment = [previousVertex;inputList(subjectVertex,:)];
clippedPolygon(end+1,1:2) = computeIntersection(clipBoundary,subjectLineSegment);
end
 
previousVertex = inputList(subjectVertex,:);
clipVertexPrevious = clipPolygon(clipVertex,:);
 
end %for subject verticies
end %for boundary verticies
end %sutherlandHodgman
Output:
>> subject = [[50;200;350;350;250;200;150;100;100],[150;50;150;300;300;250;350;250;200]];
>> clipPolygon = [[100;300;300;100],[100;100;300;300]];
>> clippedSubject = sutherlandHodgman(subject,clipPolygon);
>> plot([subject(:,1);subject(1,1)],[subject(:,2);subject(1,2)],[0,0,1])
>> hold on
>> plot([clipPolygon(:,1);clipPolygon(1,1)],[clipPolygon(:,2);clipPolygon(1,2)],'r')
>> patch(clippedSubject(:,1),clippedSubject(:,2),0);
>> axis square

Sutherland-Hodgman MATLAB.png

OCaml[edit]

let is_inside (x,y) ((ax,ay), (bx,by)) =
(bx -. ax) *. (y -. ay) > (by -. ay) *. (x -. ax)
 
let intersection (sx,sy) (ex,ey) ((ax,ay), (bx,by)) =
let dc_x, dc_y = (ax -. bx, ay -. by) in
let dp_x, dp_y = (sx -. ex, sy -. ey) in
let n1 = ax *. by -. ay *. bx in
let n2 = sx *. ey -. sy *. ex in
let n3 = 1.0 /. (dc_x *. dp_y -. dc_y *. dp_x) in
((n1 *. dp_x -. n2 *. dc_x) *. n3,
(n1 *. dp_y -. n2 *. dc_y) *. n3)
 
let last lst = List.hd (List.rev lst)
 
let polygon_iter_edges poly f init =
if poly = [] then init else
let p0 = List.hd poly in
let rec aux acc = function
| p1 :: p2 :: tl -> aux (f (p1, p2) acc) (p2 :: tl)
| p :: [] -> f (p, p0) acc
| [] -> acc
in
aux init poly
 
let poly_clip subject_polygon clip_polygon =
polygon_iter_edges clip_polygon (fun clip_edge input_list ->
fst (
List.fold_left (fun (out, s) e ->
 
match (is_inside e clip_edge), (is_inside s clip_edge) with
| true, false -> (e :: (intersection s e clip_edge) :: out), e
| true, true -> (e :: out), e
| false, true -> ((intersection s e clip_edge) :: out), e
| false, false -> (out, e)
 
) ([], last input_list) input_list)
 
) subject_polygon
 
let () =
let subject_polygon =
[ ( 50.0, 150.0); (200.0, 50.0); (350.0, 150.0);
(350.0, 300.0); (250.0, 300.0); (200.0, 250.0);
(150.0, 350.0); (100.0, 250.0); (100.0, 200.0); ] in
 
let clip_polygon =
[ (100.0, 100.0); (300.0, 100.0); (300.0, 300.0); (100.0, 300.0) ] in
 
List.iter (fun (x,y) ->
Printf.printf " (%g, %g)\n" x y;
) (poly_clip subject_polygon clip_polygon)
Output:
 (100, 116.667)
 (125, 100)
 (275, 100)
 (300, 116.667)
 (300, 300)
 (250, 300)
 (200, 250)
 (175, 300)
 (125, 300)
 (100, 250)

We can display the result in a window using the Graphics module:

let subject_polygon =
[ ( 50.0, 150.0); (200.0, 50.0); (350.0, 150.0);
(350.0, 300.0); (250.0, 300.0); (200.0, 250.0);
(150.0, 350.0); (100.0, 250.0); (100.0, 200.0); ]
 
let clip_polygon =
[ (100.0, 100.0); (300.0, 100.0); (300.0, 300.0); (100.0, 300.0) ]
 
let () =
Graphics.open_graph " 400x400";
let to_grid poly =
let round x = int_of_float (floor (x +. 0.5)) in
Array.map
(fun (x, y) -> (round x, round y))
(Array.of_list poly)
in
let draw_poly fill stroke poly =
let p = to_grid poly in
Graphics.set_color fill;
Graphics.fill_poly p;
Graphics.set_color stroke;
Graphics.draw_poly p;
in
draw_poly Graphics.red Graphics.blue subject_polygon;
draw_poly Graphics.cyan Graphics.blue clip_polygon;
draw_poly Graphics.magenta Graphics.blue (poly_clip subject_polygon clip_polygon);
let _ = Graphics.wait_next_event [Graphics.Button_down; Graphics.Key_pressed] in
Graphics.close_graph ()

SuthHodgClip OCaml.png

PHP[edit]

 
<?php
function clip ($subjectPolygon, $clipPolygon) {
 
function inside ($p, $cp1, $cp2) {
return ($cp2[0]-$cp1[0])*($p[1]-$cp1[1]) > ($cp2[1]-$cp1[1])*($p[0]-$cp1[0]);
}
 
function intersection ($cp1, $cp2, $e, $s) {
$dc = [ $cp1[0] - $cp2[0], $cp1[1] - $cp2[1] ];
$dp = [ $s[0] - $e[0], $s[1] - $e[1] ];
$n1 = $cp1[0] * $cp2[1] - $cp1[1] * $cp2[0];
$n2 = $s[0] * $e[1] - $s[1] * $e[0];
$n3 = 1.0 / ($dc[0] * $dp[1] - $dc[1] * $dp[0]);
 
return [($n1*$dp[0] - $n2*$dc[0]) * $n3, ($n1*$dp[1] - $n2*$dc[1]) * $n3];
}
 
$outputList = $subjectPolygon;
$cp1 = end($clipPolygon);
foreach ($clipPolygon as $cp2) {
$inputList = $outputList;
$outputList = [];
$s = end($inputList);
foreach ($inputList as $e) {
if (inside($e, $cp1, $cp2)) {
if (!inside($s, $cp1, $cp2)) {
$outputList[] = intersection($cp1, $cp2, $e, $s);
}
$outputList[] = $e;
}
else if (inside($s, $cp1, $cp2)) {
$outputList[] = intersection($cp1, $cp2, $e, $s);
}
$s = $e;
}
$cp1 = $cp2;
}
return $outputList;
}
 
$subjectPolygon = [[50, 150], [200, 50], [350, 150], [350, 300], [250, 300], [200, 250], [150, 350], [100, 250], [100, 200]];
$clipPolygon = [[100, 100], [300, 100], [300, 300], [100, 300]];
$clippedPolygon = clip($subjectPolygon, $clipPolygon);
 
echo json_encode($clippedPolygon);
echo "\n";
?>
 

PureBasic[edit]

Translation of: Go
Structure point_f
x.f
y.f
EndStructure
 
Procedure isInside(*p.point_f, *cp1.point_f, *cp2.point_f)
If (*cp2\x - *cp1\x) * (*p\y - *cp1\y) > (*cp2\y - *cp1\y) * (*p\x - *cp1\x)
ProcedureReturn 1
EndIf
EndProcedure
 
Procedure intersection(*cp1.point_f, *cp2.point_f, *s.point_f, *e.point_f, *newPoint.point_f)
Protected.point_f dc, dp
Protected.f n1, n2, n3
dc\x = *cp1\x - *cp2\x: dc\y = *cp1\y - *cp2\y
dp\x = *s\x - *e\x: dp\y = *s\y - *e\y
n1 = *cp1\x * *cp2\y - *cp1\y * *cp2\x
n2 = *s\x * *e\y - *s\y * *e\x
n3 = 1 / (dc\x * dp\y - dc\y * dp\x)
*newPoint\x = (n1 * dp\x - n2 * dc\x) * n3: *newPoint\y = (n1 * dp\y - n2 * dc\y) * n3
EndProcedure
 
Procedure clip(List vPolygon.point_f(), List vClippedBy.point_f(), List vClippedPolygon.point_f())
Protected.point_f cp1, cp2, s, e, newPoint
CopyList(vPolygon(), vClippedPolygon())
If LastElement(vClippedBy())
cp1 = vClippedBy()
 
NewList vPreClipped.point_f()
ForEach vClippedBy()
cp2 = vClippedBy()
CopyList(vClippedPolygon(), vPreClipped())
ClearList(vClippedPolygon())
If LastElement(vPreClipped())
s = vPreClipped()
ForEach vPreClipped()
e = vPreClipped()
If isInside(e, cp1, cp2)
If Not isInside(s, cp1, cp2)
intersection(cp1, cp2, s, e, newPoint)
AddElement(vClippedPolygon()): vClippedPolygon() = newPoint
EndIf
AddElement(vClippedPolygon()): vClippedPolygon() = e
ElseIf isInside(s, cp1, cp2)
intersection(cp1, cp2, s, e, newPoint)
AddElement(vClippedPolygon()): vClippedPolygon() = newPoint
EndIf
s = e
Next
EndIf
cp1 = cp2
Next
EndIf
EndProcedure
 
DataSection
Data.f 50,150, 200,50, 350,150, 350,300, 250,300, 200,250, 150,350, 100,250, 100,200 ;subjectPolygon's vertices (x,y)
Data.f 100,100, 300,100, 300,300, 100,300 ;clipPolygon's vertices (x,y)
EndDataSection
 
NewList subjectPolygon.point_f()
For i = 1 To 9
AddElement(subjectPolygon())
Read.f subjectPolygon()\x
Read.f subjectPolygon()\y
Next
 
NewList clipPolygon.point_f()
For i = 1 To 4
AddElement(clipPolygon())
Read.f clipPolygon()\x
Read.f clipPolygon()\y
Next
 
NewList newPolygon.point_f()
clip(subjectPolygon(), clipPolygon(), newPolygon())
If OpenConsole()
ForEach newPolygon()
PrintN("(" + StrF(newPolygon()\x, 2) + ", " + StrF(newPolygon()\y, 2) + ")")
Next
 
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit"): Input()
CloseConsole()
EndIf
Output:
(100.00, 116.67)
(125.00, 100.00)
(275.00, 100.00)
(300.00, 116.67)
(300.00, 300.00)
(250.00, 300.00)
(200.00, 250.00)
(175.00, 300.00)
(125.00, 300.00)
(100.00, 250.00)

Python[edit]

 
def clip(subjectPolygon, clipPolygon):
def inside(p):
return(cp2[0]-cp1[0])*(p[1]-cp1[1]) > (cp2[1]-cp1[1])*(p[0]-cp1[0])
 
def computeIntersection():
dc = [ cp1[0] - cp2[0], cp1[1] - cp2[1] ]
dp = [ s[0] - e[0], s[1] - e[1] ]
n1 = cp1[0] * cp2[1] - cp1[1] * cp2[0]
n2 = s[0] * e[1] - s[1] * e[0]
n3 = 1.0 / (dc[0] * dp[1] - dc[1] * dp[0])
return [(n1*dp[0] - n2*dc[0]) * n3, (n1*dp[1] - n2*dc[1]) * n3]
 
outputList = subjectPolygon
cp1 = clipPolygon[-1]
 
for clipVertex in clipPolygon:
cp2 = clipVertex
inputList = outputList
outputList = []
s = inputList[-1]
 
for subjectVertex in inputList:
e = subjectVertex
if inside(e):
if not inside(s):
outputList.append(computeIntersection())
outputList.append(e)
elif inside(s):
outputList.append(computeIntersection())
s = e
cp1 = cp2
return(outputList)
 

Racket[edit]

Shameless rewrite of haskell version.

#lang racket
 
(module sutherland-hodgman racket
(provide clip-to)
(provide make-edges)
(provide (struct-out point))
 
(struct point (x y) #:transparent)
(struct edge (p1 p2) #:transparent)
(struct polygon (points edges) #:transparent)
 
(define (make-edges points)
(let ([points-shifted
(match points
[(list a b ...) (append b (list a))])])
(map edge points points-shifted)))
 
(define (is-point-left? pt ln)
(match-let ([(point x y) pt]
[(edge (point px py) (point qx qy)) ln])
(>= (* (- qx px) (- y py))
(* (- qy py) (- x px)))))
 
;; Return the intersection of two lines
(define (isect-lines l1 l2)
(match-let ([(edge (point x1 y1) (point x2 y2)) l1]
[(edge (point x3 y3) (point x4 y4)) l2])
(let* ([r (- (* x1 y2) (* y1 x2))] [s (- (* x3 y4) (* y3 x4))]
[t (- x1 x2)] [u (- y3 y4)] [v (- y1 y2)] [w (- x3 x4)]
[d (- (* t u) (* v w))])
(point (/ (- (* r w) (* t s)) d)
(/ (- (* r u) (* v s)) d)))))
 
;; Intersect the line segment (p0,p1) with the clipping line's left halfspace,
;; returning the point closest to p1. In the special case where p0 lies outside
;; the halfspace and p1 lies inside we return both the intersection point and p1.
;; This ensures we will have the necessary segment along the clipping line.
 
(define (intersect segment clip-line)
(define (isect) (isect-lines segment clip-line))
 
(match-let ([(edge p0 p1) segment])
(match/values (values (is-point-left? p0 clip-line) (is-point-left? p1 clip-line))
[(#f #f) '()]
[(#f #t) (list (isect) p1)]
[(#t #f) (list (isect))]
[(#t #t) (list p1)])))
 
;; Intersect the polygon with the clipping line's left halfspace
(define (isect-polygon poly-edges clip-line)
(for/fold ([p '()]) ([e poly-edges])
(append p (intersect e clip-line))))
 
;; Intersect a subject polygon with a clipping polygon. The latter is assumed to be convex.
(define (clip-to sp-pts cp-edges)
(for/fold ([out-poly sp-pts]) ([clip-line cp-edges])
(isect-polygon (make-edges out-poly) clip-line))))

Testing code (Couldn't find a way to attach image with polygons)

(require racket/gui)  
(require 'sutherland-hodgman)
 
(define (make-points pt-list)
(for/list ([p pt-list])
(make-object point% (point-x p) (point-y p))))
 
(define subject-poly-points
(list (point 50 150) (point 200 50) (point 350 150)
(point 350 300) (point 250 300) (point 200 250)
(point 150 350) (point 100 250) (point 100 200)))
 
(define clip-poly-points
(list (point 100 100)
(point 300 100)
(point 300 300)
(point 100 300)))
 
(define clip-poly-edges
(make-edges clip-poly-points))
 
(define (run)
(let* ([frame (new frame% [label "Sutherland-Hodgman racket demo"]
[width 320]
[height 320])]
[canvas (new canvas% [parent frame])]
[dc (send canvas get-dc)]
[clipped-poly (clip-to subject-poly-points clip-poly-edges)])
 
(send frame show #t)
(sleep/yield 1)
 
(send dc set-pen (make-pen
#:color (send the-color-database find-color "Blue")
#:width 3))
(send dc draw-polygon (make-points subject-poly-points))
(send dc set-pen (make-pen
#:color (send the-color-database find-color "Red")
#:width 4
#:style 'long-dash))
(send dc draw-polygon (make-points clip-poly-points))
(send dc set-pen (make-pen
#:color (send the-color-database find-color "Green")))
(send dc set-brush (make-brush
#:color (send the-color-database find-color "Green")
#:style 'solid))
(send dc draw-polygon (make-points clipped-poly))
clipped-poly))
 
(run)

Output:

(list
(point 300 300)
(point 250 300)
(point 200 250)
(point 175 300)
(point 125 300)
(point 100 250)
(point 100 200)
(point 100 200)
(point 100 350/3)
(point 125 100)
(point 275 100)
(point 300 350/3))

Ruby[edit]

Translation of: Go
Point = Struct.new(:x,:y) do
def to_s; "(#{x}, #{y})" end
end
 
def sutherland_hodgman(subjectPolygon, clipPolygon)
# These inner functions reduce the argument passing to
# "inside" and "intersection".
cp1, cp2, s, e = nil
inside = proc do |p|
(cp2.x-cp1.x)*(p.y-cp1.y) > (cp2.y-cp1.y)*(p.x-cp1.x)
end
intersection = proc do
dcx, dcy = cp1.x-cp2.x, cp1.y-cp2.y
dpx, dpy = s.x-e.x, s.y-e.y
n1 = cp1.x*cp2.y - cp1.y*cp2.x
n2 = s.x*e.y - s.y*e.x
n3 = 1.0 / (dcx*dpy - dcy*dpx)
Point[(n1*dpx - n2*dcx) * n3, (n1*dpy - n2*dcy) * n3]
end
 
outputList = subjectPolygon
cp1 = clipPolygon.last
for cp2 in clipPolygon
inputList = outputList
outputList = []
s = inputList.last
for e in inputList
if inside[e]
outputList << intersection[] unless inside[s]
outputList << e
elsif inside[s]
outputList << intersection[]
end
s = e
end
cp1 = cp2
end
outputList
end
 
subjectPolygon = [[50, 150], [200, 50], [350, 150], [350, 300],
[250, 300], [200, 250], [150, 350], [100, 250],
[100, 200]].collect{|pnt| Point[*pnt]}
 
clipPolygon = [[100, 100], [300, 100], [300, 300], [100, 300]].collect{|pnt| Point[*pnt]}
 
puts sutherland_hodgman(subjectPolygon, clipPolygon)
Output:
(100.0, 116.66666666666667)
(125.00000000000001, 100.0)
(275.0, 100.0)
(300.0, 116.66666666666667)
(300.0, 299.99999999999994)
(250.0, 300.0)
(200, 250)
(175.0, 300.0)
(125.0, 300.0)
(100.0, 250.0)

Scala[edit]

From Java snippet.

import javax.swing.{ JFrame, JPanel }
 
object SutherlandHodgman extends JFrame with App {
import java.awt.BorderLayout
 
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE)
setVisible(true)
val content = getContentPane()
content.setLayout(new BorderLayout())
content.add(SutherlandHodgmanPanel, BorderLayout.CENTER)
setTitle("SutherlandHodgman")
pack()
setLocationRelativeTo(null)
}
 
object SutherlandHodgmanPanel extends JPanel {
import java.awt.{ Color, Graphics, Graphics2D }
 
setPreferredSize(new java.awt.Dimension(600, 500))
 
// subject and clip points are assumed to be valid
val subject = Seq((50D, 150D), (200D, 50D), (350D, 150D), (350D, 300D), (250D, 300D), (200D, 250D), (150D, 350D), (100D, 250D), (100D, 200D))
val clipper = Seq((100D, 100D), (300D, 100D), (300D, 300D), (100D, 300D))
var result = subject
 
val len = clipper.size
for (i <- 0 until len) {
val len2 = result.size
val input = result
result = Seq()
 
val A = clipper((i + len - 1) % len)
val B = clipper(i)
 
for (j <- 0 until len2) {
val P = input((j + len2 - 1) % len2)
val Q = input(j)
 
if (inside(A, B, Q)) {
if (!inside(A, B, P))
result = result :+ intersection(A, B, P, Q)
result = result :+ Q
}
else if (inside(A, B, P))
result = result :+ intersection(A, B, P, Q)
}
}
 
override def paintComponent(g: Graphics) {
import java.awt.RenderingHints._
 
super.paintComponent(g)
val g2 = g.asInstanceOf[Graphics2D]
g2.translate(80, 60)
g2.setStroke(new java.awt.BasicStroke(3))
g2.setRenderingHint(KEY_ANTIALIASING, VALUE_ANTIALIAS_ON)
g2.draw_polygon(subject, Color.blue)
g2.draw_polygon(clipper, Color.red)
g2.draw_polygon(result, Color.green)
}
 
private def inside(a: (Double, Double), b: (Double, Double), c: (Double, Double)) =
(a._1 - c._1) * (b._2 - c._2) > (a._2 - c._2) * (b._1 - c._1)
 
private def intersection(a: (Double, Double), b: (Double, Double), p: (Double, Double), q: (Double, Double)) = {
val A1 = b._2 - a._2
val B1 = a._1 - b._1
val C1 = A1 * a._1 + B1 * a._2
val A2 = q._2 - p._2
val B2 = p._1 - q._1
val C2 = A2 * p._1 + B2 * p._2
 
val det = A1 * B2 - A2 * B1
((B2 * C1 - B1 * C2) / det, (A1 * C2 - A2 * C1) / det)
}
 
private implicit final class Polygon_drawing(g: Graphics2D) {
def draw_polygon(points: Seq[(Double, Double)], color: Color) {
g.setColor(color)
val len = points.length
val line = new java.awt.geom.Line2D.Double()
for (i <- 0 until len) {
val p1 = points(i)
val p2 = points((i + 1) % len)
line.setLine(p1._1, p1._2, p2._1, p2._2)
g.draw(line)
}
}
}
}

Tcl[edit]

# Find intersection of an arbitrary polygon with a convex one.
package require Tcl 8.6
 
# Does the path (x0,y0)->(x1,y1)->(x2,y2) turn clockwise
# or counterclockwise?
proc cw {x0 y0 x1 y1 x2 y2} {
set dx1 [expr {$x1 - $x0}]; set dy1 [expr {$y1 - $y0}]
set dx2 [expr {$x2 - $x0}]; set dy2 [expr {$y2 - $y0}]
# (0,0,$dx1*$dy2 - $dx2*$dy1) is the crossproduct of
# ($x1-$x0,$y1-$y0,0) and ($x2-$x0,$y2-$y0,0).
# Its z-component is positive if the turn
# is clockwise, negative if the turn is counterclockwise.
set pr1 [expr {$dx1 * $dy2}]
set pr2 [expr {$dx2 * $dy1}]
if {$pr1 > $pr2} {
# Clockwise
return 1
} elseif {$pr1 < $pr2} {
# Counter-clockwise
return -1
} elseif {$dx1*$dx2 < 0 || $dy1*$dy2 < 0} {
# point 0 is the middle point
return 0
} elseif {($dx1*$dx1 + $dy1*$dy1) < ($dx2*$dx2 + $dy2+$dy2)} {
# point 1 is the middle point
return 0
} else {
# point 2 lies on the segment joining points 0 and 1
return 1
}
}
 
# Calculate the point of intersection of two lines
# containing the line segments (x1,y1)-(x2,y2) and (x3,y3)-(x4,y4)
proc intersect {x1 y1 x2 y2 x3 y3 x4 y4} {
set d [expr {($y4 - $y3) * ($x2 - $x1) - ($x4 - $x3) * ($y2 - $y1)}]
set na [expr {($x4 - $x3) * ($y1 - $y3) - ($y4 - $y3) * ($x1 - $x3)}]
if {$d == 0} {
return {}
}
set r [list \
[expr {$x1 + $na * ($x2 - $x1) / $d}] \
[expr {$y1 + $na * ($y2 - $y1) / $d}]]
return $r
}
 
# Coroutine that yields the elements of a list in pairs
proc pairs {list} {
yield [info coroutine]
foreach {x y} $list {
yield [list $x $y]
}
return {}
}
 
# Coroutine to clip one segment of a polygon against a line.
proc clipsegment {inside0 cx0 cy0 cx1 cy1 sx0 sy0 sx1 sy1} {
set inside1 [expr {[cw $cx0 $cy0 $cx1 $cy1 $sx1 $sy1] > 0}]
if {$inside1} {
if {!$inside0} {
set int [intersect $cx0 $cy0 $cx1 $cy1 \
$sx0 $sy0 $sx1 $sy1]
if {[llength $int] >= 0} {
yield $int
}
}
yield [list $sx1 $sy1]
} else {
if {$inside0} {
set int [intersect $cx0 $cy0 $cx1 $cy1 \
$sx0 $sy0 $sx1 $sy1]
if {[llength $int] >= 0} {
yield $int
}
}
}
return $inside1
}
 
# Coroutine to perform one step of Sutherland-Hodgman polygon clipping
proc clipstep {source cx0 cy0 cx1 cy1} {
yield [info coroutine]
set pt0 [{*}$source]
if {[llength $pt0] == 0} {
return
}
lassign $pt0 sx0 sy0
set inside0 [expr {[cw $cx0 $cy0 $cx1 $cy1 $sx0 $sy0] > 0}]
set finished 0
while {!$finished} {
set thispt [{*}$source]
if {[llength $thispt] == 0} {
set thispt $pt0
set finished 1
}
lassign $thispt sx1 sy1
set inside0 [clipsegment $inside0 \
$cx0 $cy0 $cx1 $cy1 $sx0 $sy0 $sx1 $sy1]
set sx0 $sx1
set sy0 $sy1
}
return {}
}
 
# Perform Sutherland-Hodgman polygon clipping
proc clippoly {cpoly spoly} {
variable clipindx
set source [coroutine clipper[incr clipindx] pairs $spoly]
set cx0 [lindex $cpoly end-1]
set cy0 [lindex $cpoly end]
foreach {cx1 cy1} $cpoly {
set source [coroutine clipper[incr clipindx] \
clipstep $source $cx0 $cy0 $cx1 $cy1]
set cx0 $cx1; set cy0 $cy1
}
set result {}
while {[llength [set pt [{*}$source]]] > 0} {
lappend result {*}$pt
}
return $result
}

The specifics of the task:

Library: Tk
package require Tk
 
grid [canvas .c -width 400 -height 400 -background \#ffffff]
proc demonstrate {cpoly spoly} {
set rpoly [clippoly $cpoly $spoly]
puts $rpoly
.c create polygon $cpoly -outline \#ff9999 -fill {} -width 5
.c create polygon $spoly -outline \#9999ff -fill {} -width 3
.c create polygon $rpoly -fill \#99ff99 -outline black -width 1
}
 
demonstrate {100 100 300 100 300 300 100 300} \
{50 150 200 50 350 150 350 300 250 300 200 250 150 350 100 250 100 200}
Output:
300 116 300 300 250 300 200 250 175 300 125 300 100 250 100 200 100 200 100 116 124 100 275 100

Sutherland-Hodgman.gif