I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Sum and product of an array

(Redirected from Sum of Array)
Sum and product of an array
You are encouraged to solve this task according to the task description, using any language you may know.

Compute the sum and product of an array of integers.

11l

V arr = [1, 2, 3, 4]
print(sum(arr))
print(product(arr))
Output:
10
24

360 Assembly

*        Sum and product of an array  20/04/2017
SUMPROD CSECT
USING SUMPROD,R15 base register
SR R3,R3 su=0
LA R5,1 pr=1
LA R6,1 i=1
DO WHILE=(CH,R6,LE,=AL2((PG-A)/4)) do i=1 to hbound(a)
LR R1,R6 i
SLA R1,2 *4
A R3,A-4(R1) su=su+a(i)
M R4,A-4(R1) pr=pr*a(i)
LA R6,1(R6) i++
ENDDO , enddo i
XDECO R3,PG su
XDECO R5,PG+12 pr
XPRNT PG,L'PG print
BR R14 exit
A DC F'1',F'2',F'3',F'4',F'5',F'6',F'7',F'8',F'9',F'10'
PG DS CL24 buffer
YREGS
END SUMPROD
Output:
55     3628800

4D

ARRAY INTEGER(\$list;0)
For (\$i;1;5)
APPEND TO ARRAY(\$list;\$i)
End for

\$sum:=0
\$product:=1
For (\$i;1;Size of array(\$list))
\$sum:=\$var+\$list{\$i}
\$product:=\$product*\$list{\$i}
End for

// since 4D v13

\$sum:=sum(\$list)

ACL2

(defun sum (xs)
(if (endp xs)
0
(+ (first xs)
(sum (rest xs)))))

(defun prod (xs)
(if (endp xs)
1
(* (first xs)
(prod (rest xs)))))

Action!

DEFINE LAST="6"

PROC Main()
INT ARRAY data=[1 2 3 4 5 6 7]
BYTE i
INT a,res

res=0
FOR i=0 TO LAST
DO
a=data(i)
PrintI(a)
IF i=LAST THEN
Put('=)
ELSE
Put('+)
FI
res==+a
OD
PrintIE(res)

res=1
FOR i=0 TO LAST
DO
a=data(i)
PrintI(a)
IF i=LAST THEN
Put('=)
ELSE
Put('*)
FI
res=res*a
OD
PrintIE(res)
RETURN
Output:
1+2+3+4+5+6+7=28
1*2*3*4*5*6*7=5040

ActionScript

package {
import flash.display.Sprite;

public class SumAndProduct extends Sprite
{
public function SumAndProduct()
{
var arr:Array = [1, 2, 3, 4, 5];
var sum:int = 0;
var prod:int = 1;

for (var i:int = 0; i < arr.length; i++)
{
sum += arr[i];
prod *= arr[i];
}

trace("Sum: " + sum); // 15
trace("Product: " + prod); // 120
}
}
}

type Int_Array is array(Integer range <>) of Integer;

array : Int_Array := (1,2,3,4,5,6,7,8,9,10);
Sum : Integer := 0;
for I in array'range loop
Sum := Sum + array(I);
end loop;

Define the product function

function Product(Item : Int_Array) return Integer is
Prod : Integer := 1;
begin
for I in Item'range loop
Prod := Prod * Item(I);
end loop;
return Prod;
end Product;

This function will raise the predefined exception Constraint_Error if the product overflows the values represented by type Integer

Aime

void
compute(integer &s, integer &p, list l)
{
integer v;

s = 0;
p = 1;
for (, v in l) {
s += v;
p *= v;
}
}

integer
main(void)
{
integer sum, product;

compute(sum, product, list(2, 3, 5, 7, 11, 13, 17, 19));

o_form("~\n~\n", sum, product);

return 0;
}
Output:
77
9699690

ALGOL 68

main:(
INT default upb := 3;
MODE INTARRAY = [default upb]INT;

INTARRAY array = (1,2,3,4,5,6,7,8,9,10);
INT sum := 0;
FOR i FROM LWB array TO UPB array DO
sum +:= array[i]
OD;

# Define the product function #
PROC int product = (INTARRAY item)INT:
(
INT prod :=1;
FOR i FROM LWB item TO UPB item DO
prod *:= item[i]
OD;
prod
) # int product # ;
printf((\$" Sum: "g(0)\$,sum,\$", Product:"g(0)";"l\$,int product(array)))
)
Output:
Sum: 55, Product:3628800;

ALGOL W

begin

% computes the sum and product of intArray  %
% the results are returned in sum and product  %
% the bounds of the array must be specified in lb and ub  %
procedure sumAndProduct( integer array intArray ( * )
; integer value lb, ub
; integer result sum, product
) ;
begin

sum  := 0;
product := 1;

for i := lb until ub
do begin
sum  := sum + intArray( i );
product := product * intArray( i );
end for_i ;

end sumAndProduct ;

% test the sumAndProduct procedure  %
begin

integer array v ( 1 :: 10 );
integer sum, product;

for i := 1 until 10 do v( i ) := i;

sumAndProduct( v, 1, 10, sum, product );
write( sum, product );
end
end.
Output:
55         3628800

Works with: APL2
sum  ←  +/
prod ← ×/

list ← 1 2 3 4 5

sum list
15

prod list
120

AppleScript

set array to {1, 2, 3, 4, 5}
set sum to 0
set product to 1
repeat with i in array
set sum to sum + i
set product to product * i
end repeat

Condensed version of above, which also prints the results :

set {array, sum, product} to {{1, 2, 3, 4, 5}, 0, 1}
repeat with i in array
set {sum, product} to {sum + i, product * i}
end repeat
return sum & " , " & product as string

Output:
"15 , 120"

Or, using an AppleScript implementation of fold/reduce:

on summed(a, b)
a + b
end summed

on product(a, b)
a * b
end product

-- TEST -----------------------------------------------------------------------
on run

set xs to enumFromTo(1, 10)

{xs, ¬
{sum:foldl(summed, 0, xs)}, ¬
{product:foldl(product, 1, xs)}}

--> {{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {sum:55}, {product:3628800}}

end run

-- GENERIC FUNCTIONS ----------------------------------------------------------

-- enumFromTo :: Int -> Int -> [Int]
on enumFromTo(m, n)
if n < m then
set d to -1
else
set d to 1
end if
set lst to {}
repeat with i from m to n by d
set end of lst to i
end repeat
return lst
end enumFromTo

-- foldl :: (a -> b -> a) -> a -> [b] -> a
on foldl(f, startValue, xs)
tell mReturn(f)
set v to startValue
set lng to length of xs
repeat with i from 1 to lng
set v to |λ|(v, item i of xs, i, xs)
end repeat
return v
end tell
end foldl

-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn
Output:
{{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, {sum:55}, {product:3628800}}

Arturo

arr: 1..10

print ["Sum =" sum arr]
print ["Product =" product arr]
Output:
Sum = 55
Product = 3628800

AutoHotkey

numbers = 1,2,3,4,5
product := 1
loop, parse, numbers, `,
{
sum += A_LoopField
product *= A_LoopField
}
msgbox, sum = %sum%`nproduct = %product%

AWK

For array input, it is easiest to "deserialize" it from a string with the split() function.

\$ awk 'func sum(s){split(s,a);r=0;for(i in a)r+=a[i];return r}{print sum(\$0)}'
1 2 3 4 5 6 7 8 9 10
55

\$ awk 'func prod(s){split(s,a);r=1;for(i in a)r*=a[i];return r}{print prod(\$0)}'
1 2 3 4 5 6 7 8 9 10
3628800

Babel

main: { [2 3 5 7 11 13] sp }

sum!  : { <- 0 -> { + } eachar }
product!: { <- 1 -> { * } eachar }

sp!:
{ dup
sum %d cr <<
product %d cr << }

Result:
41
30030

Perhaps better Babel:

main:
{ [2 3 5 7 11 13]
ar2ls dup cp
<- sum_stack ->
prod_stack
%d cr <<
%d cr << }

sum_stack:
{ { give
{ + }
{ depth 1 > }
do_while } nest }

prod_stack:
{ { give
{ * }
{ depth 1 > }
do_while } nest }

The nest operator creates a kind of argument-passing context - it saves whatever is on Top-of-Stack (TOS), saves the old stack, clears the stack and places the saved TOS on the new, cleared stack. This permits a section to monopolize the stack. At the end of the nest context, whatever is on TOS will be "passed back" to the original stack which will be restored.

The depth operator returns the current depth of the stack.

BASIC

Works with: FreeBASIC
dim array(5) as integer = { 1, 2, 3, 4, 5 }

dim sum as integer = 0
dim prod as integer = 1
for index as integer = lbound(array) to ubound(array)
sum += array(index)
prod *= array(index)
next

Applesoft BASIC

10 N = 5
20 S = 0:P = 1: DATA 1,2,3,4,5
30 N = N - 1: DIM A(N)
40 FOR I = 0 TO N
60 FOR I = 0 TO N
70 S = S + A(I):P = P * A(I)
80 NEXT
90 PRINT "SUM="S,"PRODUCT="P

BaCon

'--- set some values into the array
DECLARE a = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10 } TYPE int

sum = 0
product = 1
i = 1

WHILE a[i] <= 10
sum = sum + a[i]
product = product * a[i]
INCR i
WEND

PRINT "The sum is ",sum
PRINT "The product is ",product

BBC BASIC

DIM array%(5)
array%() = 1, 2, 3, 4, 5, 6

PRINT "Sum of array elements = " ; SUM(array%())

product% = 1
FOR I% = 0 TO DIM(array%(),1)
product% *= array%(I%)
NEXT
PRINT "Product of array elements = " ; product%

IS-BASIC

100 RANDOMIZE
110 LET N=5
120 NUMERIC A(1 TO N)
130 LET SUM=0:LET PROD=1
140 FOR I=1 TO N
150 LET A(I)=RND(9)+1
160 PRINT A(I);
170 NEXT
180 PRINT
190 FOR I=1 TO N
200 LET SUM=SUM+A(I):LET PROD=PROD*A(I)
210 NEXT
220 PRINT "Sum =";SUM,"Product =";PROD

BASIC256

Translation of: Yabasic
arraybase 1
dim array(5)
array = 1
array = 2
array = 3
array = 4
array = 5

sum = 0
prod = 1
for index = 1 to array[?]
sum += array[index]
prod *= array[index]
next index
print "The sum is "; sum #15
print "and the product is "; prod #120
end

bc

a = 3.0
a = 1
a = 4.0
a = 1.0
a = 5
a = 9.00
n = 6
p = 1
for (i = 0; i < n; i++) {
s += a[i]
p *= a[i]
}
"Sum: "; s
"Product: "; p

Befunge

Works with: befungee

The program first reads the number of elements in the array, then the elements themselves (each number on a separate line) and calculates their sum.

0 &>: #v_ \$. @
>1- \ & + \v
^ <

Bracmat

( ( sumprod
= sum prod num
. 0:?sum
& 1:?prod
& (  !arg
:  ?
( #%?num ?
& !num+!sum:?sum
& !num*!prod:?prod
& ~
)
| (!sum.!prod)
)
)
& out\$sumprod\$(2 3 5 7 11 13 17 19)
);
Output:
77.9699690

C

/* using pointer arithmetic (because we can, I guess) */
int arg[] = { 1,2,3,4,5 };
int arg_length = sizeof(arg)/sizeof(arg);
int *end = arg+arg_length;
int sum = 0, prod = 1;
int *p;

for (p = arg; p!=end; ++p) {
sum += *p;
prod *= *p;
}

C#

int sum = 0, prod = 1;
int[] arg = { 1, 2, 3, 4, 5 };
foreach (int value in arg) {
sum += value;
prod *= value;
}

Alternative using Linq (C# 3)

Works with: C# version 3
int[] arg = { 1, 2, 3, 4, 5 };
int sum = arg.Sum();
int prod = arg.Aggregate((runningProduct, nextFactor) => runningProduct * nextFactor);

C++

Library: STL
#include <numeric>
#include <functional>

int arg[] = { 1, 2, 3, 4, 5 };
int sum = std::accumulate(arg, arg+5, 0, std::plus<int>());
// or just
// std::accumulate(arg, arg + 5, 0);
// since plus() is the default functor for accumulate
int prod = std::accumulate(arg, arg+5, 1, std::multiplies<int>());

Template alternative:

// this would be more elegant using STL collections
template <typename T> T sum (const T *array, const unsigned n)
{
T accum = 0;
for (unsigned i=0; i<n; i++)
accum += array[i];
return accum;
}
template <typename T> T prod (const T *array, const unsigned n)
{
T accum = 1;
for (unsigned i=0; i<n; i++)
accum *= array[i];
return accum;
}

#include <iostream>
using std::cout;
using std::endl;

int main ()
{
int aint[] = {1, 2, 3};
cout << sum(aint,3) << " " << prod(aint, 3) << endl;
float aflo[] = {1.1, 2.02, 3.003, 4.0004};
cout << sum(aflo,4) << " " << prod(aflo,4) << endl;
return 0;
}

Chef

Sum and Product of Numbers as a Piece of Cake.

This recipe sums N given numbers.

Ingredients.
1 N
0 sum
1 product
1 number

Method.
Put sum into 1st mixing bowl.
Put product into 2nd mixing bowl.
Take N from refrigerator.
Chop N.
Take number from refrigerator.
Add number into 1st mixing bowl.
Combine number into 2nd mixing bowl.
Chop N until choped.
Pour contents of 2nd mixing bowl into the baking dish.
Pour contents of 1st mixing bowl into the baking dish.

Serves 1.

Clean

array = {1, 2, 3, 4, 5}
Sum = sum [x \\ x <-: array]
Prod = foldl (*) 1 [x \\ x <-: array]

Clojure

(defn sum [vals] (reduce + vals))

(defn product [vals] (reduce * vals))

CLU

sum_and_product = proc (a: array[int]) returns (int,int) signals (overflow)
sum: int := 0
prod: int := 1
for i: int in array[int]\$elements(a) do
sum := sum + i
prod := prod * i
end resignal overflow
return(sum, prod)
end sum_and_product

start_up = proc ()
arr: array[int] := array[int]\$[1,2,3,4,5,6,7,8,9,10]
sum, prod: int := sum_and_product(arr)

po: stream := stream\$primary_output()
stream\$putl(po, "Sum = " || int\$unparse(sum))
stream\$putl(po, "Product = " || int\$unparse(prod))
end start_up
Output:
Sum = 55
Product = 3628800

COBOL

IDENTIFICATION DIVISION.
PROGRAM-ID. array-sum-and-product.

DATA DIVISION.
WORKING-STORAGE SECTION.
78 Array-Size VALUE 10.
01 array-area VALUE "01020304050607080910".
03 array PIC 99 OCCURS Array-Size TIMES.

01 array-sum PIC 9(8).
01 array-product PIC 9(10) VALUE 1.

01 i PIC 99.

PROCEDURE DIVISION.
PERFORM VARYING i FROM 1 BY 1 UNTIL Array-Size < i
MULTIPLY array (i) BY array-product
END-PERFORM

DISPLAY "Sum: " array-sum
DISPLAY "Product: " array-product

GOBACK
.

CoffeeScript

sum = (array) ->
array.reduce (x, y) -> x + y

product = (array) ->
array.reduce (x, y) -> x * y

ColdFusion

Sum of an Array,

<cfset Variables.myArray = [1,2,3,4,5,6,7,8,9,10]>
<cfoutput>#ArraySum(Variables.myArray)#</cfoutput>

Product of an Array,

<cfset Variables.myArray = [1,2,3,4,5,6,7,8,9,10]>
<cfset Variables.Product = 1>
<cfloop array="#Variables.myArray#" index="i">
<cfset Variables.Product *= i>
</cfloop>
<cfoutput>#Variables.Product#</cfoutput>

Common Lisp

(let ((data #(1 2 3 4 5)))     ; the array
(values (reduce #'+ data) ; sum
(reduce #'* data))) ; product

The loop macro also has support for sums.

(loop for i in '(1 2 3 4 5) sum i)

Crystal

Declarative

def sum_product(a)
{ a.sum(), a.product() }
end

Imperative

def sum_product_imperative(a)
sum, product = 0, 1
a.each do |e|
sum += e
product *= e
end

{sum, product}
end

require "benchmark"
Benchmark.ips do |x|
x.report("declarative") { sum_product [1, 2, 3, 4, 5] }
x.report("imperative") { sum_product_imperative [1, 2, 3, 4, 5] }
end

declarative    8.1M (123.45ns) (± 2.99%)  65 B/op   1.30× slower
imperative  10.57M ( 94.61ns) (± 2.96%)  65 B/op        fastest

D

import std.stdio;

void main() {
immutable array = [1, 2, 3, 4, 5];

int sum = 0;
int prod = 1;

foreach (x; array) {
sum += x;
prod *= x;
}

writeln("Sum: ", sum);
writeln("Product: ", prod);
}
Output:
Sum: 15
Product: 120

Compute sum and product of array in one pass (same output):

import std.stdio, std.algorithm, std.typecons;

void main() {
immutable array = [1, 2, 3, 4, 5];

// Results are stored in a 2-tuple
immutable r = reduce!(q{a + b}, q{a * b})(tuple(0, 1), array);

writeln("Sum: ", r);
writeln("Product: ", r);
}

dc

1 3 5 7 9 11 13 0ss1sp[dls+sslp*spz0!=a]dsax[Sum: ]Plsp[Product: ]Plpp
Sum: 49
Product: 135135

Delphi

program SumAndProductOfArray;

{\$APPTYPE CONSOLE}

var
i: integer;
lIntArray: array [1 .. 5] of integer = (1, 2, 3, 4, 5);
lSum: integer = 0;
lProduct: integer = 1;
begin
for i := 1 to length(lIntArray) do
begin
Inc(lSum, lIntArray[i]);
lProduct := lProduct * lIntArray[i]
end;

Write('Sum: ');
Writeln(lSum);
Write('Product: ');
Writeln(lProduct);
end.

E

pragma.enable("accumulator")
accum 0 for x in [1,2,3,4,5] { _ + x }
accum 1 for x in [1,2,3,4,5] { _ * x }

Eiffel

class
APPLICATION

create
make

feature {NONE}

make
local
test: ARRAY [INTEGER]
do
create test.make_empty
test := <<5, 1, 9, 7>>
io.put_string ("Sum: " + sum (test).out)
io.new_line
io.put_string ("Product: " + product (test).out)
end

sum (ar: ARRAY [INTEGER]): INTEGER
-- Sum of the items of the array 'ar'.
do
across
ar.lower |..| ar.upper as c
loop
Result := Result + ar [c.item]
end
end

product (ar: ARRAY [INTEGER]): INTEGER
-- Product of the items of the array 'ar'.
do
Result := 1
across
ar.lower |..| ar.upper as c
loop
Result := Result * ar [c.item]
end
end

end

Output:
Sum of the elements of the array: 30
Product of the elements of the array: 3840

Elena

ELENA 5.0:

import system'routines;
import extensions;

public program()
{
var list := new int[]{1, 2, 3, 4, 5 };

var sum := list.summarize(new Integer());
var product := list.accumulate(new Integer(1), (var,val => var * val));
}

Elixir

When an accumulator is omitted, the first element of the collection is used as the initial value of acc.

iex(26)> Enum.reduce([1,2,3,4,5], 0, fn x,acc -> x+acc end)
15
iex(27)> Enum.reduce([1,2,3,4,5], 1, fn x,acc -> x*acc end)
120
iex(28)> Enum.reduce([1,2,3,4,5], fn x,acc -> x+acc end)
15
iex(29)> Enum.reduce([1,2,3,4,5], fn x,acc -> x*acc end)
120
iex(30)> Enum.reduce([], 0, fn x,acc -> x+acc end)
0
iex(31)> Enum.reduce([], 1, fn x,acc -> x*acc end)
1
iex(32)> Enum.reduce([], fn x,acc -> x+acc end)
** (Enum.EmptyError) empty error
(elixir) lib/enum.ex:1287: Enum.reduce/2
iex(32)> Enum.reduce([], fn x,acc -> x*acc end)
** (Enum.EmptyError) empty error
(elixir) lib/enum.ex:1287: Enum.reduce/2

The function with sum

Enum.sum([1,2,3,4,5])           #=> 15

Emacs Lisp

Works with: XEmacs version version 21.5.21
(setq array [1 2 3 4 5])
(eval (concatenate 'list '(+) array))
(eval (concatenate 'list '(*) array))

With a list

(setq array '(1 2 3 4 5))
(apply '+ array)
(apply '* array)

With explicit conversion

(setq array [1 2 3 4 5])
(apply '+ (append array nil))
(apply '* (append array nil))

Erlang

Using the standard libraries:

% create the list:
L = lists:seq(1, 10).

% and compute its sum:
S = lists:sum(L).
P = lists:foldl(fun (X, P) -> X * P end, 1, L).

To compute sum and products in one pass:

{Prod,Sum} = lists:foldl(fun (X, {P,S}) -> {P*X,S+X} end, {1,0}, lists:seq(1,10)).

Or defining our own versions:

-module(list_sum).
-export([sum_rec/1, sum_tail/1]).

% recursive definition:
sum_rec([]) ->
0;

% tail-recursive definition:
sum_tail(L) ->
sum_tail(L, 0).
sum_tail([], Acc) ->
Acc;

Euphoria

sequence array
integer sum,prod

array = { 1, 2, 3, 4, 5 }

sum = 0
prod = 1
for i = 1 to length(array) do
sum += array[i]
prod *= array[i]
end for

printf(1,"sum is %d\n",sum)
printf(1,"prod is %d\n",prod)
Output:
sum is 15
prod is 120

F#

let numbers = [| 1..10 |]
let sum = numbers |> Array.sum
let product = numbers |> Array.reduce (*)

Factor

1 5 1 <range> [ sum . ] [ product . ] bi
15 120
{ 1 2 3 4 } [ sum ] [ product ] bi
10 24

sum and product are defined in the sequences vocabulary:

: sum ( seq -- n ) 0 [ + ] reduce ;
: product ( seq -- n ) 1 [ * ] reduce ;

FALSE

Strictly speaking, there are no arrays in FALSE. However, a number of elements on the stack could be considered an array. The implementation below assumes the length of the array on top of the stack, and the actual items below it. Note that this implementation does remove the "array" from the stack, so in case the original values need to be retained, a copy should be provided before executing this logic.

1 2 3 4 5 {input "array"}
5 {length of input}
0s: {sum}
1p: {product}

[\$0=~][1-\\$s;+s:p;*p:]#%

"Sum: "s;."
Product: "p;.
Output:
Sum: 15
Product: 120

Fantom

class Main
{
public static Void main ()
{
Int[] array := (1..20).toList

// you can use a loop
Int sum := 0
array.each |Int n| { sum += n }
echo ("Sum of array is : \$sum")

Int product := 1
array.each |Int n| { product *= n }
echo ("Product of array is : \$product")

// or use 'reduce'
// 'reduce' takes a function,
// the first argument is the accumulated value
// and the second is the next item in the list
sum = array.reduce(0) |Obj r, Int v -> Obj|
{
return (Int)r + v
}
echo ("Sum of array : \$sum")

product = array.reduce(1) |Obj r, Int v -> Obj|
{
return (Int)r * v
}
echo ("Product of array : \$product")
}
}

Fermat

[a]:=[(1,1,2,3,5,8,13)];
!!Sigma<i=1,7>[a[i]];
!!Prod<i=1,7>[a[i]];

Output:
33
3120

Forth

: third ( a b c -- a b c a ) 2 pick ;
: reduce ( xt n addr cnt -- n' ) \ where xt ( a b -- n )
cells bounds do i @ third execute cell +loop nip ;

create a 1 , 2 , 3 , 4 , 5 ,

' + 0 a 5 reduce . \ 15
' * 1 a 5 reduce . \ 120

Fortran

In ISO Fortran 90 and later, use SUM and PRODUCT intrinsics:

integer, dimension(10) :: a = (/ (i, i=1, 10) /)
integer :: sresult, presult

sresult = sum(a)
presult = product(a)

FreeBASIC

' FB 1.05.0 Win64

Dim a(1 To 4) As Integer = {1, 4, 6, 3}
Dim As Integer i, sum = 0, prod = 1
For i = 1 To 4
sum += a(i)
prod *= a(i)
Next
Print "Sum ="; sum
Print "Product ="; prod
Print
Print "Press any key to quit"
Sleep
Output:
Sum     = 14
Product = 72

a = [1,2,3,5,7]
sum[a]
product[a]

Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

Gambas

Public Sub Main()
Dim iList As Integer[] = [1, 2, 3, 4, 5]
Dim iSum, iCount As Integer
Dim iPrd As Integer = 1

For iCount = 0 To iList.Max
iSum += iList[iCount]
iPrd *= iList[iCount]
Next

Print "The Sum =\t" & iSum
Print "The Product =\t" & iPrd

End

Output:

The Sum =       15
The Product =   120

GAP

v := [1 .. 8];

Sum(v);
# 36

Product(v);
# 40320

# You can sum or multiply the result of a function

Sum(v, n -> n^2);
# 204

Product(v, n -> 1/n);
# 1/40320

GFA Basic

DIM a%(10)
' put some values into the array
FOR i%=1 TO 10
a%(i%)=i%
NEXT i%
'
sum%=0
product%=1
FOR i%=1 TO 10
sum%=sum%+a%(i%)
product%=product%*a%(i%)
NEXT i%
'
PRINT "Sum is ";sum%
PRINT "Product is ";product%

Go

Implementation
package main

import "fmt"

func main() {
sum, prod := 0, 1
for _, x := range []int{1,2,5} {
sum += x
prod *= x
}
fmt.Println(sum, prod)
}
Output:
8 10
Library
package main

import (
"fmt"

"github.com/gonum/floats"
)

var a = []float64{1, 2, 5}

func main() {
fmt.Println("Sum: ", floats.Sum(a))
fmt.Println("Product:", floats.Prod(a))
}
Output:
Sum:     8
Product: 10

Groovy

Groovy adds a "sum()" method for collections, but not a "product()" method:

[1,2,3,4,5].sum()

However, for general purpose "reduction" or "folding" operations, Groovy does provide an "inject()" method for collections similar to "inject" in Ruby.

[1,2,3,4,5].inject(0) { sum, val -> sum + val }
[1,2,3,4,5].inject(1) { prod, val -> prod * val }

You can also combine these operations:

println ([1,2,3,4,5].inject([sum: 0, product: 1]) { result, value ->
[sum: result.sum + value, product: result.product * value]})

GW-BASIC

Works with: GW-BASIC
Works with: QBasic
10 REM Create an array with some test DATA in it
20 DIM A(5)
30 FOR I = 1 TO 5: READ A(I): NEXT I
40 DATA 1, 2, 3, 4, 5
50 REM Find the sum of elements in the array
60 S = 0
65 P = 1
70 FOR I = 1 TO 5
72 S = SUM + A(I)
75 P = P * A(I)
77 NEXT I
80 PRINT "The sum is "; S;
90 PRINT " and the product is "; P

For lists, sum and product are already defined in the Prelude:

values = [1..10]

s = sum values -- the easy way
p = product values

s1 = foldl (+) 0 values -- the hard way
p1 = foldl (*) 1 values

To do the same for an array, just convert it lazily to a list:

import Data.Array

values = listArray (1,10) [1..10]

s = sum . elems \$ values
p = product . elems \$ values

Or perhaps:

import Data.Array (listArray, elems)

main :: IO ()
main = mapM_ print \$ [sum, product] <*> [elems \$ listArray (1, 10) [11 .. 20]]
Output:
155
670442572800

HicEst

array = \$ ! 1, 2, ..., LEN(array)

sum = SUM(array)

product = 1 ! no built-in product function in HicEst
DO i = 1, LEN(array)
product = product * array(i)
ENDDO

WRITE(ClipBoard, Name) n, sum, product ! n=100; sum=5050; product=9.33262154E157;

Icon and Unicon

The program below prints the sum and product of the arguments to the program.

procedure main(arglist)
every ( sum := 0 ) +:= !arglist
every ( prod := 1 ) *:= !arglist
write("sum := ", sum,", prod := ",prod)
end

IDL

array = [3,6,8]
print,total(array)
print,product(array)

Inform 7

Sum And Product is a room.

To decide which number is the sum of (N - number) and (M - number) (this is summing):
decide on N + M.

To decide which number is the product of (N - number) and (M - number) (this is production):
decide on N * M.

When play begins:
let L be {1, 2, 3, 4, 5};
say "List: [L in brace notation], sum = [summing reduction of L], product = [production reduction of L].";
end the story.

J

sum     =: +/
product =: */

For example:

sum 1 3 5 7 9 11 13
49
product 1 3 5 7 9 11 13
135135

a=: 3 10 [email protected]\$ 100 NB. random array
a
90 47 58 29 22 32 55 5 55 73
58 50 40 5 69 46 34 40 46 84
29 8 75 97 24 40 21 82 77 9

NB. on a table, each row is an item to be summed:
sum a
177 105 173 131 115 118 110 127 178 166
product a
151380 18800 174000 14065 36432 58880 39270 16400 194810 55188

NB. but we can tell J to sum everything within each row, instead:
sum"1 a
466 472 462
product"1 a
5.53041e15 9.67411e15 1.93356e15

Java

Works with: Java version 1.5+
public class SumProd
{
public static void main(final String[] args)
{
int sum = 0;
int prod = 1;
int[] arg = {1,2,3,4,5};
for (int i : arg)
{
sum += i;
prod *= i;
}
}
}
Works with: Java version 1.8+
import java.util.Arrays;

public class SumProd
{
public static void main(final String[] args)
{
int[] arg = {1,2,3,4,5};
System.out.printf("sum = %d\n", Arrays.stream(arg).sum());
System.out.printf("sum = %d\n", Arrays.stream(arg).reduce(0, (a, b) -> a + b));
System.out.printf("product = %d\n", Arrays.stream(arg).reduce(1, (a, b) -> a * b));
}
}
Output:
sum = 15
sum = 15
product = 120

JavaScript

ES5

var array = [1, 2, 3, 4, 5],
sum = 0,
prod = 1,
i;
for (i = 0; i < array.length; i += 1) {
sum += array[i];
prod *= array[i];
}
alert(sum + ' ' + prod);

Works with: Javascript version 1.8

Where supported, the reduce method can also be used:

var array = [1, 2, 3, 4, 5],
sum = array.reduce(function (a, b) {
return a + b;
}, 0),
prod = array.reduce(function (a, b) {
return a * b;
}, 1);
alert(sum + ' ' + prod);

ES6

(() => {
'use strict';

// sum :: (Num a) => [a] -> a
const sum = xs => xs.reduce((a, x) => a + x, 0);

// product :: (Num a) => [a] -> a
const product = xs => xs.reduce((a, x) => a * x, 1);

// TEST
// show :: a -> String
const show = x => JSON.stringify(x, null, 2);

return show(
[sum, product]
.map(f => f([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]))
);
})();
Output:
[
55,
3628800
]

jq

The builtin filter, add/0, computes the sum of an array:

# => 18
# => 18

An efficient companion filter for computing the product of the items in an array can be defined as follows:

def prod: reduce .[] as \$i (1; . * \$i);

Examples:

[4,6,8] | prod
# => 192

10!

[range(1;11)] | prod
# =>3628800

Julia

julia> sum([4,6,8])
18

julia> +((1:10)...)
55

julia +([1,2,3]...)
6

julia> prod([4,6,8])
192

K

sum: {+/}x
product: {*/}x
a: 1 3 5 7 9 11 13
sum a
49
product a
135135

It is easy to see the relationship of K to J here.

Kotlin

// version 1.1.2

fun main(args: Array<String>) {
val a = intArrayOf(1, 5, 8, 11, 15)
println("Array contains : \${a.contentToString()}")
val sum = a.sum()
println("Sum is \$sum")
val product = a.fold(1) { acc, i -> acc * i }
println("Product is \$product")
}
Output:
Array contains : [1, 5, 8, 11, 15]
Sum is 40
Product is 6600

Lambdatalk

{A.serie start end [step]} creates a sequence from start to end with optional step
{A.new words} creates an array from a sequence of words
{A.toS array} creates a sequence from the items of an array
{long_add x y} returns the sum of two integers of any size
{long_mult x y} returns the product of two integers of any size

{def A {A.new {S.serie 1 10}}} -> [1,2,3,4,5,6,7,8,9,10]
{+ {A.toS {A}}} -> 55
{* {A.toS {A}}} -> 3628800

{def B {A.new {S.serie 1 100}}} -> [1,2,3,4,5,6,7,8,9,10,...,95,96,97,98,99,100]
{S.reduce long_add {A.toS {B}}} -> 5050
{S.reduce long_mult {A.toS {B}}} ->
9332621544394415268169923885626670049071596826438162146859296389521759999322991
5608941463976156518286253697920827223758251185210916864000000000000000000000000

4 iota 1 + dup

'+ reduce
'* reduce

langur

val .arr = series 19
writeln " array: ", .arr
writeln " sum: ", fold f .x + .y, .arr
writeln "product: ", fold f .x x .y, .arr
Works with: langur version 0.6.6
val .arr = series 19
writeln " array: ", .arr
writeln " sum: ", fold f{+}, .arr
writeln "product: ", fold f{x}, .arr
Output:
array: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
sum: 190
product: 121645100408832000

Lasso

local(x = array(1,2,3,4,5,6,7,8,9,10))
// sum of array elements
'Sum: '
with n in #x
sum #n
'\r'
// product of arrray elements
'Product: '
local(product = 1)
with n in #x do => { #product *= #n }
#product
Output:
Sum: 55
Product: 3628800

Liberty BASIC

Dim array(19)

For i = 0 To 19
array(i) = Int(Rnd(1) * 20)
Next i

'product must first equal one or you will get 0 as the product
product = 1
For i = 0 To 19
sum = (sum + array(i))
product = (product * array(i))
next i

Print "Sum is " + str\$(sum)
Print "Product is " + str\$(product)

Lingo

on sum (intList)
res = 0
repeat with v in intList
res = res + v
end repeat
return res
end

on product (intList)
res = 1
repeat with v in intList
res = res * v
end repeat
return res
end

LiveCode

//sum
put "1,2,3,4" into nums
split nums using comma

// product
local prodNums
repeat for each element n in nums
if prodNums is empty then
put n into prodNums
else
multiply prodnums by n
end if
end repeat

Logo

print apply "sum arraytolist {1 2 3 4 5}
print apply "product arraytolist {1 2 3 4 5}

Lua

function sumf(a, ...) return a and a + sumf(...) or 0 end
function sumt(t) return sumf(unpack(t)) end
function prodf(a, ...) return a and a * prodf(...) or 1 end
function prodt(t) return prodf(unpack(t)) end

print(sumt{1, 2, 3, 4, 5})
print(prodt{1, 2, 3, 4, 5})

function table.sum(arr, length)
--same as if <> then <> else <>
return length == 1 and arr or arr[length] + table.sum(arr, length -1)
end

function table.product(arr, length)
return length == 1 and arr or arr[length] * table.product(arr, length -1)
end

t = {1,2,3}
print(table.sum(t,#t))
print(table.product(t,3))

Lucid

prints a running sum and product of sequence 1,2,3...

[%sum,product%]
where
x = 1 fby x + 1;
sum = 0 fby sum + x;
product = 1 fby product * x
end

M2000 Interpreter

Module Checkit {
a = (1,2,3,4,5,6,7,8,9,10)
print a#sum() = 55
sum = lambda->{push number+number}
product = lambda->{Push number*number}
print a#fold(lambda->{Push number*number}, 1), a#fold(lambda->{push number+number},0)
dim a(2,2) = 5
Print a()#sum() = 20
}
checkit

Maple

a := Array([1, 2, 3, 4, 5, 6]);
mul(a);

Mathematica/Wolfram Language

Mathematica provides many ways of doing the sum of an array (any kind of numbers or symbols):

a = {1, 2, 3, 4, 5}
Plus @@ a
Apply[Plus, a]
Total[a]
[email protected]
a // Total
Sum[a[[i]], {i, 1, Length[a]}]
Sum[i, {i, a}]

all give 15. For product we also have a couple of choices:

a = {1, 2, 3, 4, 5}
Times @@ a
Apply[Times, a]
Product[a[[i]], {i, 1, Length[a]}]
Product[i, {i, a}]

all give 120.

MATLAB

These two function are built into MATLAB as the "sum(array)" and "prod(array)" functions.

Sample Usage:

>> array = [1 2 3;4 5 6;7 8 9]

array =

1 2 3
4 5 6
7 8 9

>> sum(array,1)

ans =

12 15 18

>> sum(array,2)

ans =

6
15
24

>> prod(array,1)

ans =

28 80 162

>> prod(array,2)

ans =

6
120
504

Maxima

lreduce("+", [1, 2, 3, 4, 5, 6, 7, 8]);
36

lreduce("*", [1, 2, 3, 4, 5, 6, 7, 8]);
40320

MAXScript

arr = #(1, 2, 3, 4, 5)
sum = 0
for i in arr do sum += i
product = 1
for i in arr do product *= i

min

Works with: min version 0.19.3
(1 2 3 4 5) ((sum) (1 '* reduce)) cleave
"Sum: \$1\nProduct: \$2" get-stack % puts
Output:
Sum: 15
Product: 120

МК-61/52

^	1	ПE	+	П0	КИП0	x#0	18	^	ИПD
+ ПD <-> ИПE * ПE БП 05 С/П

Instruction: РX - array length, Р1:РC - array, РD and РE - sum and product of an array.

Modula-3

MODULE Sumprod EXPORTS Main;

FROM IO IMPORT Put;
FROM Fmt IMPORT Int;

VAR a := ARRAY [1..5] OF INTEGER {1, 2, 3, 4, 5};
VAR sum: INTEGER := 0;
VAR prod: INTEGER := 1;

BEGIN
FOR i := FIRST(a) TO LAST(a) DO
INC(sum, a[i]);
prod := prod * a[i];
END;
Put("Sum of array: " & Int(sum) & "\n");
Put("Product of array: " & Int(prod) & "\n");
END Sumprod.
Output:
Sum of array: 15
Product of array: 120

MUMPS

SUMPROD(A)
;Compute the sum and product of the numbers in the array A
NEW SUM,PROD,POS
;SUM is the running sum,
;PROD is the running product,
;POS is the position within the array A
SET SUM=0,PROD=1,POS=""
FOR SET POS=\$ORDER(A(POS)) Q:POS="" SET SUM=SUM+A(POS),PROD=PROD*A(POS)
WRITE !,"The sum of the array is "_SUM
WRITE !,"The product of the array is "_PROD
KILL SUM,PROD,POS
QUIT
Example:
USER>SET C(-1)=2,C("A")=3,C(42)=1,C(0)=7

USER>D SUMPROD^ROSETTA(.C)

The sum of the array is 13
The product of the array is 42

Note - the string "A" converts to 0 when doing mathematical operations.

USER>SET C(-1)=2,C("A")="3H",C(42)=.1,C(0)=7.0,C("B")="A"

USER>D SUMPROD^ROSETTA(.C)

The sum of the array is 12.1
The product of the array is 0

Nemerle

As mentioned for some of the other functional languages, it seems more natural to work with lists in Nemerle, but as the task specifies working on an array, this solution will work on either.

using System;
using System.Console;
using System.Collections.Generic;
using Nemerle.Collections;

module SumProd
{
Sum[T] (nums : T) : int
where T : IEnumerable[int]
{
nums.FoldLeft(0, _+_)
}

Product[T] (nums : T) : int
where T : IEnumerable[int]
{
nums.FoldLeft(1, _*_)
}

Main() : void
{
def arr = array[1, 2, 3, 4, 5];
def lis = [1, 2, 3, 4, 5];

def suml = Sum(lis);
def proda = Product(arr);

WriteLine("Sum is: {0}\tProduct is: {1}", suml, proda);
}
}

NetRexx

/* NetRexx */

options replace format comments java crossref savelog symbols binary

harry = [long 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

sum = long 0
product = long 1
entries = Rexx ''

loop n_ = int 0 to harry.length - 1
nxt = harry[n_]
entries = entries nxt
sum = sum + nxt
product = product * nxt
end n_

entries = entries.strip

say 'Sum and product of' entries.changestr(' ', ',')':'
say ' Sum:' sum
say ' Product:' product

return

Output:
Sum and product of 1,2,3,4,5,6,7,8,9,10:
Sum: 55
Product: 3628800

NewLISP

(setq a '(1 2 3 4 5))
(apply + a)
(apply * a)

Nial

Nial being an array language, what applies to individual elements are extended to cover array operations by default strand notation

+ 1 2 3
= 6
* 1 2 3
= 6

array notation

+ [1,2,3]

grouped notation

(* 1 2 3)
= 6
* (1 2 3)
= 6

(All these notations are equivalent)

Nim

var xs = [1, 2, 3, 4, 5, 6]

var sum, product: int

product = 1

for x in xs:
sum += x
product *= x

Or functionally:

import sequtils

let
xs = [1, 2, 3, 4, 5, 6]
sum = xs.foldl(a + b)
product = xs.foldl(a * b)

Or using a math function:

import math

let numbers = [1, 5, 4]
let total = sum(numbers)

var product = 1
for n in numbers:
product *= n

Objeck

sum := 0;
prod := 1;
arg := [1, 2, 3, 4, 5];
each(i : arg) {
sum += arg[i];
prod *= arg[i];
};

Objective-C

Works with: GCC version 4.0.1 (apple)

Sum:

- (float) sum:(NSMutableArray *)array
{
int i, sum, value;
sum = 0;
value = 0;

for (i = 0; i < [array count]; i++) {
value = [[array objectAtIndex: i] intValue];
sum += value;
}

return suml;
}

Product:

- (float) prod:(NSMutableArray *)array
{
int i, prod, value;
prod = 0;
value = 0;

for (i = 0; i < [array count]; i++) {
value = [[array objectAtIndex: i] intValue];
prod *= value;
}

return suml;
}

OCaml

Arrays

(* ints *)
let a = [| 1; 2; 3; 4; 5 |];;
Array.fold_left (+) 0 a;;
Array.fold_left ( * ) 1 a;;
(* floats *)
let a = [| 1.0; 2.0; 3.0; 4.0; 5.0 |];;
Array.fold_left (+.) 0.0 a;;
Array.fold_left ( *.) 1.0 a;;

Lists

(* ints *)
let x = [1; 2; 3; 4; 5];;
List.fold_left (+) 0 x;;
List.fold_left ( * ) 1 x;;
(* floats *)
let x = [1.0; 2.0; 3.0; 4.0; 5.0];;
List.fold_left (+.) 0.0 x;;
List.fold_left ( *.) 1.0 x;;

Octave

a = [ 1, 2, 3, 4, 5, 6 ];
b = [ 10, 20, 30, 40, 50, 60 ];
vsum = a + b;
vprod = a .* b;

Oforth

[1, 2, 3, 4, 5 ] sum println
[1, 3, 5, 7, 9 ] prod println
Output:
15
945

Ol

(print (fold + 0 '(1 2 3 4 5)))
(print (fold * 1 '(1 2 3 4 5)))

ooRexx

Translation of: REXX
a=.my_array~new(20)
do i=1 To 20
a[i]=i
End
s=a~makestring((LINE),',')
Say s
Say ' sum='a~sum
Say 'product='a~prod
::class my_array subclass array
::method sum
sum=0
Do i=1 To self~dimension(1)
sum+=self[i]
End
Return sum
::method prod
Numeric Digits 30
prod=1
Do i=1 To self~dimension(1)
prod*=self[i]
End
Return prod
Output:
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
sum=210
product=2432902008176640000

Oz

Calculations like this are typically done on lists, not on arrays:

declare
Xs = [1 2 3 4 5]
Sum = {FoldL Xs Number.'+' 0}
Product = {FoldL Xs Number.'*' 1}
in
{Show Sum}
{Show Product}

If you are actually working with arrays, a more imperative approach seems natural:

declare
Arr = {Array.new 1 3 0}
Sum = {NewCell 0}
in
Arr.1 := 1
Arr.2 := 2
Arr.3 := 3

for I in {Array.low Arr}..{Array.high Arr} do
Sum := @Sum + Arr.I
end
{Show @Sum}

PARI/GP

These are built in to GP: vecsum and factorback (the latter can also take factorization matrices, thus the name). They could be coded like so:

vecsum1(v)={
sum(i=1,#v,v[i])
};
vecprod(v)={
prod(i=1,#v,v[i])
};
Works with: PARI/GP version 2.10.0+

In 2.10.0 the function vecprod was introduced as well. Like factorback it gives the product of the elements of an array but unlike factorback it doesn't handle factorization matrices.

See Delphi

Perl

my @list = ( 1, 2, 3 );

my ( \$sum, \$prod ) = ( 0, 1 );
\$sum += \$_ foreach @list;
\$prod *= \$_ foreach @list;

Or using the List::Util module:

use List::Util qw/sum0 product/;
my @list = (1..9);

say "Sum: ", sum0(@list); # sum0 returns 0 for an empty list
say "Product: ", product(@list);
Output:
Sum: 45
Product: 362880

Phix

Library: Phix/basics
sequence s = {1,2,3,4,5}
printf(1,"sum is %d\n",sum(s))
printf(1,"prod is %d\n",product(s))
Output:
sum is 15
prod is 120

Phixmonti

include ..\Utilitys.pmt

( 1 2 3 4 5 )

dup sum "sum is " print print nl

1 swap
len for
get rot * swap
endfor
drop

"mult is " print print nl

PHP

\$array = array(1,2,3,4,5,6,7,8,9);
echo array_sum(\$array);
echo array_product(\$array);

PicoLisp

(let Data (1 2 3 4 5)
(cons
(apply + Data)
(apply * Data) ) )
Output:
(15 . 120)

PL/I

declare A(10) fixed binary static initial
(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

put skip list (sum(A));
put skip list (prod(A));

Plain English

An element is a thing with a number.

To find a sum and a product of some elements:
Put 0 into the sum.
Put 1 into the product.
Get an element from the elements.
Loop.
If the element is nil, exit.
Add the element's number to the sum.
Multiply the product by the element's number.
Put the element's next into the element.
Repeat.

To make some example elements:
If a counter is past 10, exit.
Allocate memory for an element.
Put the counter into the element's number.
Append the element to the example.
Repeat.

A product is a number.

To run:
Start up.
Make some example elements.
Find a sum and a product of the example elements.
Destroy the example elements.
Write "Sum: " then the sum on the console.
Write "Product: " then the product on the console.
Wait for the escape key.
Shut down.

A sum is a number.
Output:
Sum: 55
Product: 3628800

Pop11

Simple loop:

lvars i, sum = 0, prod = 1, ar = {1 2 3 4 5 6 7 8 9};
for i from 1 to length(ar) do
ar(i) + sum -> sum;
ar(i) * prod -> prod;
endfor;

One can alternatively use second order iterator:

lvars sum = 0, prod = 1, ar = {1 2 3 4 5 6 7 8 9};
appdata(ar, procedure(x); x + sum -> sum; endprocedure);
appdata(ar, procedure(x); x * prod -> prod; endprocedure);

PostScript

/sumandproduct
{
/x exch def
/sum 0 def
/prod 0 def
/i 0 def
x length 0 eq
{
}
{
x length{
/sum sum x i get add def
/prod prod x i get mul def
}repeat
}ifelse
sum ==
prod ==
}def

Library: initlib

% sum
[1 1 1 1 1] 0 {add} fold
% product
[1 1 1 1 1] 1 {mul} fold

PowerShell

The Measure-Object cmdlet already knows how to compute a sum:

function Get-Sum (\$a) {
return (\$a | Measure-Object -Sum).Sum
}

But not how to compute a product:

function Get-Product (\$a) {
if (\$a.Length -eq 0) {
return 0
} else {
\$p = 1
foreach (\$x in \$a) {
\$p *= \$x
}
return \$p
}
}

One could also let PowerShell do all the work by simply creating an expression to evaluate:

Works with: PowerShell version 2
function Get-Product (\$a) {
if (\$a.Length -eq 0) {
return 0
}
\$s = \$a -join '*'
return (Invoke-Expression \$s)
}

Even nicer, however, is a function which computes both at once and returns a custom object with appropriate properties:

function Get-SumAndProduct (\$a) {
\$sum = 0
if (\$a.Length -eq 0) {
\$prod = 0
} else {
\$prod = 1
foreach (\$x in \$a) {
\$sum += \$x
\$prod *= \$x
}
}
\$ret = New-Object PSObject
\$ret | Add-Member NoteProperty Sum \$sum
\$ret | Add-Member NoteProperty Product \$prod
return \$ret
}
Output:
PS> Get-SumAndProduct 5,9,7,2,3,8,4

Sum Product
--- -------
38   60480

Prolog

sum([],0).
sum([H|T],X) :- sum(T,Y), X is H + Y.
product([],1).
product([H|T],X) :- product(T,Y), X is H * X.

test

:- sum([1,2,3,4,5,6,7,8,9],X).
X =45;
:- product([1,2,3,4,5],X).
X = 120;

Using fold

R is A + B.

mul(A,B,R):-
R is A * B.

% define fold now.
fold([], Act, Init, Init).

fold(Lst, Act, Init, Res):-
tail(Lst,Tl),
apply(Act,[Init, Hd, Ra]),
fold(Tl, Act, Ra, Res).

sumproduct(Lst, Sum, Prod):-
fold(Lst,mul,1, Prod),

?- sumproduct([1,2,3,4],Sum,Prod).
Sum = 10,
Prod = 24 .

PureBasic

Dim MyArray(9)
Define a, sum=0, prod=1

For a = 0 To ArraySize(MyArray()) ; Create a list of some random numbers
MyArray(a) = 1 + Random(9) ; Insert a number [1...10] in current element
Next

For a = 0 To ArraySize(MyArray()) ; Calculate Sum and Product of this Array
sum + MyArray(a)
prod * MyArray(a)
Next

Debug "The sum is " + Str(sum) ; Present the results
Debug "Product is " + Str(prod)

Python

Works with: Python version 2.5
numbers = [1, 2, 3]
total = sum(numbers)

product = 1
for i in numbers:
product *= i

Or functionally (faster but perhaps less clear):

Works with: Python version 2.5
sum = reduce(add, numbers) # note: this version doesn't work with empty lists
product = reduce(mul, numbers) # note: this version doesn't work with empty lists
product = reduce(mul, numbers, 1)
Library: NumPy
from numpy import r_
numbers = r_[1:4]
total = numbers.sum()
product = numbers.prod()

If you are summing floats in Python 2.6+, you should use math.fsum() to avoid loss of precision:

Works with: Python version 2.6, 3.x
import math
total = math.fsum(floats)

QBasic

Works with: QBasic
Works with: QuickBasic
Works with: True BASIC
DIM array(1 TO 5)
DATA 1, 2, 3, 4, 5
FOR index = LBOUND(array) TO UBOUND(array)
NEXT index

LET sum = 0
LET prod = 1
FOR index = LBOUND(array) TO UBOUND(array)
LET sum = sum + array(index)
LET prod = prod * array(index)
NEXT index
PRINT "The sum is "; sum
PRINT "and the product is "; prod
END

Quackery

[ 0 swap witheach + ] is sum ( [ --> n )

[ 1 swap witheach * ] is product ( [ --> n )

In the shell (i.e. Quackery REPL):

/O> ' [ 1 2 3 4 5 ] sum echo cr
... ' [ 1 2 3 4 5 ] product echo
...
15
120
Stack empty.

R

total <- sum(1:5)
product <- prod(1:5)

Racket

#lang racket

(for/sum ([x #(3 1 4 1 5 9)]) x)
(for/product ([x #(3 1 4 1 5 9)]) x)

Raku

(formerly Perl 6)

my @ary = 1, 5, 10, 100;
say 'Sum: ', [+] @ary;
say 'Product: ', [*] @ary;

Raven

0 [ 1 2 3 ] each +
1 [ 1 2 3 ] each *

REBOL

rebol [
Title: "Sum and Product"
URL: http://rosettacode.org/wiki/Sum_and_product_of_array
]

; Simple:

sum: func [a [block!] /local x] [x: 0 forall a [x: x + a/1] x]

product: func [a [block!] /local x] [x: 1 forall a [x: x * a/1] x]

; Way too fancy:

redux: func [
"Applies an operation across an array to produce a reduced value."
a [block!] "Array to operate on."
op [word!] "Operation to perform."
/init x "Initial value (default 0)."
][if not init [x: 0] forall a [x: do compose [x (op) (a/1)]] x]

rsum: func [a [block!]][redux a '+]

rproduct: func [a [block!]][redux/init a '* 1]

; Tests:

assert: func [code][print [either do code [" ok"]["FAIL"] mold code]]

print "Simple dedicated functions:"
assert [55 = sum [1 2 3 4 5 6 7 8 9 10]]
assert [3628800 = product [1 2 3 4 5 6 7 8 9 10]]

print [crlf "Fancy reducing function:"]
assert [55 = rsum [1 2 3 4 5 6 7 8 9 10]]
assert [3628800 = rproduct [1 2 3 4 5 6 7 8 9 10]]
Output:
Simple dedicated functions:
ok [55 = sum [1 2 3 4 5 6 7 8 9 10]]
ok [3628800 = product [1 2 3 4 5 6 7 8 9 10]]

Fancy reducing function:
ok [55 = rsum [1 2 3 4 5 6 7 8 9 10]]
ok [3628800 = rproduct [1 2 3 4 5 6 7 8 9 10]]

Red

Red [
red-version: 0.6.4
description: "Find the sum and product of an array of numbers."
]

product: function [
"Returns the product of all values in a block."
values [any-list! vector!]
][
result: 1
foreach value values [result: result * value]
result
]

a: [1 2 3 4 5 6 7 8 9 10]
print a
print ["Sum:" sum a]
print ["Product:" product a]
Output:
1 2 3 4 5 6 7 8 9 10
Sum: 55
Product: 3628800

REXX

/*REXX program adds and multiplies   N   elements of a (populated)  array  @. */
numeric digits 200 /*200 decimal digit #s (default is 9).*/
parse arg N .; if N=='' then N=20 /*Not specified? Then use the default.*/

do j=1 for N /*build array of N elements (or 20?).*/
@.j=j /*set 1st to 1, 3rd to 3, 8th to 8 ··· */
end /*j*/
sum=0 /*initialize SUM (variable) to zero. */
prod=1 /*initialize PROD (variable) to unity.*/
do k=1 for N
sum = sum + @.k /*add the element to the running total.*/
prod = prod * @.k /*multiply element to running product. */
end /*k*/ /* [↑] this pgm: same as N factorial.*/

say ' sum of ' m " elements for the @ array is: " sum
say ' product of ' m " elements for the @ array is: " prod
/*stick a fork in it, we're all done. */

output using the default input of:   20

sum of  M  elements for the  @  array is:  210
product of  M  elements for the  @  array is:  2432902008176640000

Ring

aList = 1:10 nSum=0 nProduct=0
for x in aList nSum += x nProduct *= x next
See "Sum = " + nSum + nl
See "Product = " + nProduct + nl

Ruby

arr = [1,2,3,4,5]     # or ary = *1..5, or ary = (1..5).to_a
p sum = arr.inject(0) { |sum, item| sum + item }
# => 15
p product = arr.inject(1) { |prod, element| prod * element }
# => 120
Works with: Ruby version 1.8.7
arr = [1,2,3,4,5]
p sum = arr.inject(0, :+) #=> 15
p product = arr.inject(1, :*) #=> 120

# If you do not explicitly specify an initial value for memo,
# then the first element of collection is used as the initial value of memo.
p sum = arr.inject(:+) #=> 15
p product = arr.inject(:*) #=> 120

Note: When the Array is empty, the initial value returns. However, nil returns if not giving an initial value.

arr = []
p arr.inject(0, :+) #=> 0
p arr.inject(1, :*) #=> 1
p arr.inject(:+) #=> nil
p arr.inject(:*) #=> nil

Enumerable#reduce is the alias of Enumerable#inject.

Works with: Ruby version 1.9.3
arr = [1,2,3,4,5]
p sum = arr.sum #=> 15
p [].sum #=> 0

Run BASIC

dim array(100)
for i = 1 To 100
array(i) = rnd(0) * 100
next i

product = 1
for i = 0 To 19
sum = (sum + array(i))
product = (product * array(i))
next i

Print " Sum is ";sum
Print "Product is ";product

Rust

fn main() {
let arr = vec![1, 2, 3, 4, 5, 6, 7, 8, 9];

// using fold
let sum = arr.iter().fold(0i32, |a, &b| a + b);
let product = arr.iter().fold(1i32, |a, &b| a * b);
println!("the sum is {} and the product is {}", sum, product);

// or using sum and product
let sum = arr.iter().sum::<i32>();
let product = arr.iter().product::<i32>();
println!("the sum is {} and the product is {}", sum, product);
}

S-lang

variable a = [5, -2, 3, 4, 666, 7];

The sum of array elements is handled by an intrinsic. [note: print is slsh-specific; if not available, use printf().]

print(sum(a));

The product is slightly more involved; I'll use this as a chance to show the alternate stack-based use of 'foreach':

variable prod = a;

% Skipping the loop variable causes the val to be placed on the stack.
% Also note that the double-brackets ARE required. The inner one creates
% a "range array" based on the length of a.
foreach (a[[1:]])
% () pops it off.
prod *= ();

print(prod);

SAS

data _null_;
array a{*} a1-a100;
do i=1 to 100;
a{i}=i*i;
end;
b=sum(of a{*});
put b c;
run;

Sather

class MAIN is
main is
a :ARRAY{INT} := |10, 5, 5, 20, 60, 100|;
sum, prod :INT;
loop sum := sum + a.elt!; end;
prod := 1;
loop prod := prod * a.elt!; end;
#OUT + sum + " " + prod + "\n";
end;
end;

Scala

val seq = Seq(1, 2, 3, 4, 5)
val sum = seq.foldLeft(0)(_ + _)
val product = seq.foldLeft(1)(_ * _)

Or even shorter:

val sum = seq.sum
val product = seq.product

Works with all data types for which a Numeric implicit is available.

Scheme

(apply + '(1 2 3 4 5))
(apply * '(1 2 3 4 5))

A tail-recursive solution, without the n-ary operator "trick". Because Scheme supports tail call optimization, this is as space-efficient as an imperative loop.

(define (reduce f i l)
(if (null? l)
i
(reduce f (f i (car l)) (cdr l))))

(reduce + 0 '(1 2 3 4 5)) ;; 0 is unit for +
(reduce * 1 '(1 2 3 4 5)) ;; 1 is unit for *

Seed7

const func integer: sumArray (in array integer: valueArray) is func
result
var integer: sum is 0;
local
var integer: value is 0;
begin
for value range valueArray do
sum +:= value;
end for;
end func;

const func integer: prodArray (in array integer: valueArray) is func
result
var integer: prod is 1;
local
var integer: value is 0;
begin
for value range valueArray do
prod *:= value;
end for;
end func;

Call these functions with:

writeln(sumArray([](1, 2, 3, 4, 5)));
writeln(prodArray([](1, 2, 3, 4, 5)));

SETL

numbers := [1 2 3 4 5 6 7 8 9];
print(+/ numbers, */ numbers);

=> 45 362880

Sidef

Using built-in methods:

var ary = [1, 2, 3, 4, 5];
say ary.sum; # => 15
say ary.prod; # => 120

Alternatively, using hyper-operators:

var ary = [1, 2, 3, 4, 5];
say ary«+»; # => 15
say ary«*»; # => 120

Slate

#(1 2 3 4 5) reduce: [:sum :number | sum + number]
#(1 2 3 4 5) reduce: [:product :number | product * number]

Shorthand for the above with a macro:

#(1 2 3 4 5) reduce: #+ `er
#(1 2 3 4 5) reduce: #* `er

Smalltalk

#(1 2 3 4 5) inject: 0 into: [:sum :number | sum + number]
#(1 2 3 4 5) inject: 1 into: [:product :number | product * number]

Some implementation also provide a fold: message:

#(1 2 3 4 5) fold: [:sum :number | sum + number]
#(1 2 3 4 5) fold: [:product :number | product * number]

SNOBOL4

t = table()
* read the integer from the std. input
init_tab t<x = x + 1> = trim(input)  :s(init_tab)
product = 1
sum = 0

* counting backwards to 1
loop i = t< x = ?gt(x,1) x - 1> :f(out)
sum = sum + i
product = product * i  :(loop)
out output = "Sum: " sum
output = "Prod: " product
end

Input

1
2
3
4
5
Output:
Sum:  15
Prod: 120

Sparkling

spn:1> reduce({ 1, 2, 3, 4, 5 }, 0, function(x, y) { return x + y; })
= 15
spn:2> reduce({ 1, 2, 3, 4, 5 }, 1, function(x, y) { return x * y; })
= 120

Standard ML

Arrays

(* ints *)
val a = Array.fromList [1, 2, 3, 4, 5];
Array.foldl op+ 0 a;
Array.foldl op* 1 a;
(* reals *)
val a = Array.fromList [1.0, 2.0, 3.0, 4.0, 5.0];
Array.foldl op+ 0.0 a;
Array.foldl op* 1.0 a;

Lists

(* ints *)
val x = [1, 2, 3, 4, 5];
foldl op+ 0 x;
foldl op* 1 x;
(* reals *)
val x = [1.0, 2.0, 3.0, 4.0, 5.0];
foldl op+ 0.0 x;
foldl op* 1.0 x;

Stata

Mata does not have a builtin product function, but one can do the following, which will compute the product of nonzero elements of the array:

a = 1,-2,-3,-4,5
sum(a)
-3
(-1)^mod(sum(a:<0),2)*exp(sum(log(abs(a))))
-120

Swift

let a = [1, 2, 3, 4, 5]
println(a.reduce(0, +)) // prints 15
println(a.reduce(1, *)) // prints 120

println(reduce(a, 0, +)) // prints 15
println(reduce(a, 1, *)) // prints 120

Tcl

set arr [list 3 6 8]
set sum [expr [join \$arr +]]
set prod [expr [join \$arr *]]
Works with: Tcl version 8.5
set arr [list 3 6 8]
set sum [tcl::mathop::+ {*}\$arr]
set prod [tcl::mathop::* {*}\$arr]

TI-83 BASIC

Use the built-in functions sum() and prod().

seq(X,X,1,10,1)→L₁
{1 2 3 4 5 6 7 8 9 10}
sum(L₁)
55
prod(L₁)
3628800

Toka

4 cells is-array foo

212 1 foo array.put
51 2 foo array.put
12 3 foo array.put
91 4 foo array.put

[ ( array size -- sum )
>r 0 r> 0 [ over i swap array.get + ] countedLoop nip ] is sum-array

( product )
reset 1 4 0 [ i foo array.get * ] countedLoop .

Trith

[1 2 3 4 5] 0 [+] foldl
[1 2 3 4 5] 1 [*] foldl

True BASIC

Works with: QBasic
DIM array(1 TO 5)
DATA 1, 2, 3, 4, 5
FOR index = LBOUND(array) TO UBOUND(array)
NEXT index

LET sum = 0
LET prod = 1
FOR index = LBOUND(array) TO UBOUND(array)
LET sum = sum + array(index)
LET prod = prod * array(index)
NEXT index
PRINT "The sum is "; sum
PRINT "and the product is "; prod
END

TUSCRIPT

\$\$ MODE TUSCRIPT
list="1'2'3'4'5"
sum=SUM(list)
PRINT " sum: ",sum

product=1
LOOP l=list
product=product*l
ENDLOOP
PRINT "product: ",product

Output:
sum: 15
product: 120

UNIX Shell

Works with: NetBSD version 3.0

From an internal variable, \$IFS delimited:

sum=0
prod=1
list="1 2 3"
for n in \$list
do sum="\$((\$sum + \$n))"; prod="\$((\$prod * \$n))"
done
echo \$sum \$prod

From the argument list (ARGV):

sum=0
prod=1
for n
do sum="\$((\$sum + \$n))"; prod="\$((\$prod * \$n))"
done
echo \$sum \$prod

From STDIN, one integer per line:

sum=0
prod=1
do sum="\$((\$sum + \$n))"; prod="\$((\$prod * \$n))"
done
echo \$sum \$prod
Works with: GNU bash version 3.2.0(1)-release (i386-unknown-freebsd6.1)

From variable:

LIST='20 20 2';
SUM=0; PROD=1;
for i in \$LIST; do
SUM=\$[\$SUM + \$i]; PROD=\$[\$PROD * \$i];
done;
echo \$SUM \$PROD

UnixPipes

Uses ksh93-style process substitution.

Works with: bash
prod() {
(read B; res=\$1; test -n "\$B" && expr \$res \* \$B || echo \$res)
}

sum() {
(read B; res=\$1; test -n "\$B" && expr \$res + \$B || echo \$res)
}

fold() {
(func=\$1; while read a ; do fold \$func | \$func \$a ; done)
}

(echo 3; echo 1; echo 4;echo 1;echo 5;echo 9) |
tee >(fold sum) >(fold prod) > /dev/null

There is a race between fold sum and fold prod, which run in parallel. The program might print sum before product, or print product before sum.

Ursa

Ursa doesn't have arrays in the traditional sense. Its equivalent is the stream. All math operators take streams as arguments, so sums and products of streams can be found like this.

declare int<> stream
append 34 76 233 8 2 734 56 stream

# outputs 1143
out (+ stream) endl console

# outputs 3.95961079808E11
out (* stream) endl console

Ursala

The reduction operator, :-, takes an associative binary function and a constant for the empty case. Natural numbers are unsigned and of unlimited size.

#import nat
#cast %nW

sp = ^(sum:-0,product:-1) <62,43,46,40,29,55,51,82,59,92,48,73,93,35,42,25>
Output:
(875,2126997171723931187788800000)

V

[sp dup 0 [+] fold 'product=' put puts 1 [*] fold 'sum=' put puts].
Using it:
[1 2 3 4 5] sp
=
product=15
sum=120

Vala

void main() {
int sum = 0, prod = 1;
int[] data = { 1, 2, 3, 4 };
foreach (int val in data) {
sum += val;
prod *= val;
}
print(@"sum: \$(sum)\nproduct: \$(prod)");
}
Output:
sum: 10
product: 24

VBA

Assumes Excel is used.

Sub Demo()
Dim arr
arr = Array(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
Debug.Print "sum : " & Application.WorksheetFunction.Sum(arr)
Debug.Print "product : " & Application.WorksheetFunction.Product(arr)
End Sub
Output:
sum : 55
product : 3628800

VBScript

Function sum_and_product(arr)
sum = 0
product = 1
For i = 0 To UBound(arr)
sum = sum + arr(i)
product = product * arr(i)
Next
WScript.StdOut.Write "Sum: " & sum
WScript.StdOut.WriteLine
WScript.StdOut.Write "Product: " & product
WScript.StdOut.WriteLine
End Function

myarray = Array(1,2,3,4,5,6)
sum_and_product(myarray)

Output:
Sum: 21
Product: 720

Visual Basic .NET

Translation of: C#
Module Program
Sub Main()
Dim arg As Integer() = {1, 2, 3, 4, 5}
Dim sum = arg.Sum()
Dim prod = arg.Aggregate(Function(runningProduct, nextFactor) runningProduct * nextFactor)
End Sub
End Module

Wart

def (sum_prod nums)
(list (+ @nums) (* @nums))

WDTE

let a => import 'arrays';
let s => import 'stream';

let sum array => a.stream array -> s.reduce 0 +;
let prod array => a.stream prod -> s.reduce 1 *;

Wortel

@sum [1 2 3 4] ; returns 10
@prod [1 2 3 4] ; returns 24

Wren

Library: Wren-math
import "/math" for Nums
var a = [7, 10, 2, 4, 6, 1, 8, 3, 9, 5]
System.print("Array  : %(a)")
System.print("Sum  : %(Nums.sum(a))")
System.print("Product : %(Nums.prod(a))")
Output:
Array   : [7, 10, 2, 4, 6, 1, 8, 3, 9, 5]
Sum     : 55
Product : 3628800

XPL0

code CrLf=9, IntOut=11;

func SumProd(A, L);
int A, L;
int S, P, I;
[S:= 0; P:= 1;
for I:= 0 to L-1 do [S:= S+A(I); P:= P*A(I)];
IntOut(0, S); CrLf(0);
IntOut(0, P); CrLf(0);
]; \SumSq

SumProd([1,2,3,4,5,6,7,8,9,10], 10)
Output:
55
3628800

XSLT

XSLT (or XPath rather) has a few built-in functions for reducing from a collection, but product is not among them. Because of referential transparency, one must resort to recursive solutions for general iterative operations upon collections. The following code represents the array by numeric values in <price> elements in the source document.

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="text" />

<xsl:template name="sum-prod">
<xsl:param name="values" />
<xsl:param name="sum" select="0" />
<xsl:param name="prod" select="1" />
<xsl:choose>
<xsl:when test="not(\$values)">
<xsl:text>
Sum: </xsl:text>
<xsl:value-of select="\$sum" />
<xsl:text>
Product: </xsl:text>
<xsl:value-of select="\$prod" />
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="sum-prod">
<xsl:with-param name="values" select="\$values[position() > 1]" />
<xsl:with-param name="sum" select="\$sum + \$values" />
<xsl:with-param name="prod" select="\$prod * \$values" />
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

<xsl:template match="/">
<xsl:text>
Sum (built-in): </xsl:text>
<xsl:value-of select="sum(//price)" />

<xsl:call-template name="sum-prod">
<xsl:with-param name="values" select="//price" />
</xsl:call-template>
</xsl:template>
</xsl:stylesheet>

Yabasic

Translation of: QBasic
dim array(5)
data 1, 2, 3, 4, 5
for index = 1 to arraysize(array(), 1)
next index

sum = 0
prod = 1
for index = 1 to arraysize(array(), 1)
sum = sum + array(index)
prod = prod * array(index)
next index
print "The sum is ", sum //15
print "and the product is ", prod //120
end

zkl

Translation of: Clojure
fcn sum(vals){vals.reduce('+,0)}
fcn product(vals){vals.reduce('*,1)}
sum(T(1,2,3,4))     //-->10
product(T(1,2,3,4)) //-->24

Zoea

program: sum_and_product
case: 1
input: [3,5]
output: [8,15]
case: 2
input: [2,3,4]
output: [9,24]