I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Jacobsthal numbers

From Rosetta Code
Task
Jacobsthal numbers
You are encouraged to solve this task according to the task description, using any language you may know.

Jacobsthal numbers are an integer sequence related to Fibonacci numbers. Similar to Fibonacci, where each term is the sum of the previous two terms, each term is the sum of the previous, plus twice the one before that. Traditionally the sequence starts with the given terms 0, 1.


   J0 = 0
   J1 = 1
   Jn = Jn-1 + 2 × Jn-2

Terms may be calculated directly using one of several possible formulas:


   Jn = ( 2n - (-1)n ) / 3


Jacobsthal-Lucas numbers are very similar. They have the same recurrence relationship, the only difference is an initial starting value J0 = 2 rather than J0 = 0.

Terms may be calculated directly using one of several possible formulas:

   
   JLn = 2n + (-1)n
   

Jacobsthal oblong numbers is the sequence obtained from multiplying each Jacobsthal number Jn by its direct successor Jn+1.


Jacobsthal primes are Jacobsthal numbers that are prime.


Task
  • Find and display the first 30 Jacobsthal numbers
  • Find and display the first 30 Jacobsthal-Lucas numbers
  • Find and display the first 20 Jacobsthal oblong numbers
  • Find and display at least the first 10 Jacobsthal primes


See also



ALGOL 68[edit]

Works with: ALGOL 68G version Any - tested with release 2.8.3.win32
BEGIN # find some Jacobsthal and related Numbers                             #
INT max jacobsthal = 29; # highest Jacobsthal number we will find #
INT max oblong = 20; # highest Jacobsthal oblong number we will find #
INT max j prime = 20; # number of Jacobsthal prinmes we will find #
PR precision 200 PR # set the precision of LONG LONG INT #
PR read "primes.incl.a68" PR # include prime utilities #
[ 0 : max jacobsthal ]LONG INT j; # will hold Jacobsthal numbers #
[ 0 : max jacobsthal ]LONG INT jl; # will hold Jacobsthal-Lucas numbers #
[ 1 : max oblong ]LONG INT jo; # will hold Jacobsthal oblong numbers #
# calculate the Jacobsthal Numbers and related numbers #
# Jacobsthal  : J0 = 0, J1 = 1, Jn = Jn-1 + 2 × Jn-2 #
# Jacobsthal-Lucas: JL0 = 2, JL1 = 1, JLn = JLn-1 + 2 × JLn-2 #
# Jacobsthal oblong: JOn = Jn x Jn-1 #
j[ 0 ] := 0; j[ 1 ] := 1; jl[ 0 ] := 2; jl[ 1 ] := 1; jo[ 1 ] := 0;
FOR n FROM 2 TO UPB j DO
j[ n ] := j[ n - 1 ] + ( 2 * j[ n - 2 ] );
jl[ n ] := jl[ n - 1 ] + ( 2 * jl[ n - 2 ] )
OD;
FOR n TO UPB jo DO
jo[ n ] := j[ n ] * j[ n - 1 ]
OD;
# prints an array of numbers with the specified legend #
PROC show numbers = ( STRING legend, []LONG INT numbers )VOID:
BEGIN
INT n count := 0;
print( ( "First ", whole( ( UPB numbers - LWB numbers ) + 1, 0 ), " ", legend, newline ) );
FOR n FROM LWB numbers TO UPB numbers DO
print( ( " ", whole( numbers[ n ], -11 ) ) );
IF ( n count +:= 1 ) MOD 5 = 0 THEN print( ( newline ) ) FI
OD
END # show numbers # ;
# show the various numbers numbers #
show numbers( "Jacobsthal Numbers:", j );
show numbers( "Jacobsthal-Lucas Numbers:", jl );
show numbers( "Jacobsthal oblong Numbers:", jo );
# find some prime Jacobsthal numbers #
LONG LONG INT jn1 := j[ 1 ], jn2 := j[ 0 ];
INT p count := 0;
print( ( "First ", whole( max j prime, 0 ), " Jacobstal primes:", newline ) );
print( ( " n Jn", newline ) );
FOR n FROM 2 WHILE p count < max j prime DO
LONG LONG INT jn = jn1 + ( 2 * jn2 );
jn2 := jn1;
jn1 := jn;
IF is probably prime( jn ) THEN
# have a probably prime Jacobsthal number #
p count +:= 1;
print( ( whole( n, -4 ), ": ", whole( jn, 0 ), newline ) )
FI
OD
END
Output:
First 30 Jacobsthal Numbers:
           0           1           1           3           5
          11          21          43          85         171
         341         683        1365        2731        5461
       10923       21845       43691       87381      174763
      349525      699051     1398101     2796203     5592405
    11184811    22369621    44739243    89478485   178956971
First 30 Jacobsthal-Lucas Numbers:
           2           1           5           7          17
          31          65         127         257         511
        1025        2047        4097        8191       16385
       32767       65537      131071      262145      524287
     1048577     2097151     4194305     8388607    16777217
    33554431    67108865   134217727   268435457   536870911
First 20 Jacobsthal oblong Numbers:
           0           1           3          15          55
         231         903        3655       14535       58311
      232903      932295     3727815    14913991    59650503
   238612935   954429895  3817763271 15270965703 61084037575
First 20 Jacobstal primes:
   n  Jn
   3: 3
   4: 5
   5: 11
   7: 43
  11: 683
  13: 2731
  17: 43691
  19: 174763
  23: 2796203
  31: 715827883
  43: 2932031007403
  61: 768614336404564651
  79: 201487636602438195784363
 101: 845100400152152934331135470251
 127: 56713727820156410577229101238628035243
 167: 62357403192785191176690552862561408838653121833643
 191: 1046183622564446793972631570534611069350392574077339085483
 199: 267823007376498379256993682056860433753700498963798805883563
 313: 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
 347: 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

AppleScript[edit]

Procedural[edit]

on jacobsthalNumbers(variant, n)
-- variant: text containing "Lucas", "oblong", or "prime" — or none of these.
-- n: length of output sequence required.
 
-- The two Jacobsthal numbers preceding the current 'j'. Initially the first two in the sequence.
set {anteprev, prev} to {0, 1}
-- Default plug-in script. Its handler simply appends the current 'j' to the output.
script o
property output : {anteprev, prev}
on append(dummy, j)
set end of output to j
end append
end script
 
-- If a variant sequence is specified, change the first value or substitute
-- a script whose handler decides the values to append to the output.
ignoring case
if (variant contains "Lucas") then
set anteprev to 2
set o's output's first item to anteprev
else if (variant contains "oblong") then
script
property output : {0}
on append(prev, j)
set end of output to prev * j
end append
end script
set o to result
else if (variant contains "prime") then
script
property output : {}
on append(dummy, j)
if (isPrime(j)) then set end of output to j
end append
end script
set o to result
end if
end ignoring
 
-- Work through the Jacobsthal process until the required output length is obtained.
repeat until ((count o's output) = n)
set j to anteprev + anteprev + prev
tell o to append(prev, j)
set anteprev to prev
set prev to j
end repeat
 
return o's output
end jacobsthalNumbers
 
on isPrime(n)
if (n < 3) then return (n is 2)
if (n mod 2 is 0) then return false
repeat with i from 3 to (n ^ 0.5) div 1 by 2
if (n mod i is 0) then return false
end repeat
return true
end isPrime
 
-- Task and presentation of results!:
on intToText(n)
set txt to ""
repeat until (n < 100000000)
set txt to text 2 thru 9 of (100000000 + (n mod 100000000) div 1 as text) & txt
set n to n div 100000000
end repeat
return (n as integer as text) & txt
end intToText
 
on chopList(theList, sublistLen)
script o
property lst : theList
property output : {}
end script
 
set listLen to (count o's lst)
repeat with i from 1 to listLen by sublistLen
set j to i + sublistLen - 1
if (j > listLen) then set j to listLen
set end of o's output to items i thru j of o's lst
end repeat
return o's output
end chopList
 
on matrixToText(matrix, w)
script o
property matrix : missing value
property row : missing value
end script
 
set o's matrix to matrix
set padding to " "
repeat with r from 1 to (count o's matrix)
set o's row to o's matrix's item r
repeat with i from 1 to (count o's row)
set o's row's item i to text -w thru end of (padding & o's row's item i)
end repeat
set o's matrix's item r to join(o's row, "")
end repeat
 
return join(o's matrix, linefeed)
end matrixToText
 
on join(lst, delim)
set astid to AppleScript's text item delimiters
set AppleScript's text item delimiters to delim
set txt to lst as text
set AppleScript's text item delimiters to astid
return txt
end join
 
on task()
set output to {"First 30 Jacobsthal Numbers:", "First 30 Jacobsthal-Lucas Numbers:", ¬
"First 20 Jacobsthal oblong Numbers:", "First 11 Jacobsthal Primes:"}
set results to {jacobsthalNumbers("", 30), jacobsthalNumbers("Lucas", 30), ¬
jacobsthalNumbers("oblong", 20), jacobsthalNumbers("prime", 11)}
repeat with i from 1 to 4
set thisSequence to item i of results
repeat with j in thisSequence
set j's contents to intToText(j)
end repeat
if (i < 4) then
set theLines to chopList(thisSequence, 10)
else
set theLines to chopList(thisSequence, 6)
end if
set item i of output to item i of output & linefeed & matrixToText(theLines, (count end of thisSequence) + 1)
end repeat
 
return join(output, linefeed & linefeed)
end task
 
task()
 
Output:
"First 30 Jacobsthal Numbers:
0 1 1 3 5 11 21 43 85 171
341 683 1365 2731 5461 10923 21845 43691 87381 174763
349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971
 
First 30 Jacobsthal-Lucas Numbers:
2 1 5 7 17 31 65 127 257 511
1025 2047 4097 8191 16385 32767 65537 131071 262145 524287
1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911
 
First 20 Jacobsthal oblong Numbers:
0 1 3 15 55 231 903 3655 14535 58311
232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575
 
First 11 Jacobsthal Primes:
3 5 11 43 683 2731
43691 174763 2796203 715827883 2932031007403"

Functional[edit]

-------------------- JACOBSTHAL NUMBERS ------------------
 
-- e.g. take(10, jacobsthal())
 
-- jacobsthal :: [Int]
on jacobsthal()
-- The terms of OEIS:A001045 as a non-finite sequence.
jacobsthalish(0, 1)
end jacobsthal
 
 
-- jacobsthal :: (Int, Int) -> [Int]
on jacobsthalish(x, y)
-- An infinite sequence of the terms of the
-- Jacobsthal-type series which begins with x and y.
script go
on |λ|(ab)
set {a, b} to ab
 
{a, {b, (2 * a) + b}}
end |λ|
end script
 
unfoldr(go, {x, y})
end jacobsthalish
 
 
-------------------------- TESTS -------------------------
on run
unlines(map(fShow, {¬
{"terms of the Jacobsthal sequence", ¬
30, jacobsthal()}, ¬
{"Jacobsthal-Lucas numbers", ¬
30, jacobsthalish(2, 1)}, ¬
{"Jacobsthal oblong numbers", ¬
20, zipWith(my mul, jacobsthal(), drop(1, jacobsthal()))}, ¬
{"primes in the Jacobsthal sequence", ¬
10, filter(isPrime, jacobsthal())}}))
end run
 
 
------------------------ FORMATTING ----------------------
on fShow(test)
set {k, n, xs} to test
 
str(n) & " first " & k & ":" & linefeed & ¬
table(5, map(my str, take(n, xs))) & linefeed
end fShow
 
 
-- justifyRight :: Int -> Char -> String -> String
on justifyRight(n, cFiller)
script go
on |λ|(s)
if n > length of s then
text -n thru -1 of ((replicate(n, cFiller) as text) & s)
else
s
end if
end |λ|
end script
end justifyRight
 
 
-- Egyptian multiplication - progressively doubling a list, appending
-- stages of doubling to an accumulator where needed for binary
-- assembly of a target length
-- replicate :: Int -> String -> String
on replicate(n, s)
-- Egyptian multiplication - progressively doubling a list,
-- appending stages of doubling to an accumulator where needed
-- for binary assembly of a target length
script p
on |λ|({n})
n ≤ 1
end |λ|
end script
 
script f
on |λ|({n, dbl, out})
if (n mod 2) > 0 then
set d to out & dbl
else
set d to out
end if
{n div 2, dbl & dbl, d}
end |λ|
end script
 
set xs to |until|(p, f, {n, s, ""})
item 2 of xs & item 3 of xs
end replicate
 
 
-- table :: Int -> [String] -> String
on table(n, xs)
-- A list of strings formatted as
-- right-justified rows of n columns.
set w to length of last item of xs
unlines(map(my unwords, ¬
chunksOf(n, map(justifyRight(w, space), xs))))
end table
 
 
-- unlines :: [String] -> String
on unlines(xs)
-- A single string formed by the intercalation
-- of a list of strings with the newline character.
set {dlm, my text item delimiters} to ¬
{my text item delimiters, linefeed}
set s to xs as text
set my text item delimiters to dlm
s
end unlines
 
 
-- until :: (a -> Bool) -> (a -> a) -> a -> a
on |until|(p, f, x)
set v to x
set mp to mReturn(p)
set mf to mReturn(f)
repeat until mp's |λ|(v)
set v to mf's |λ|(v)
end repeat
v
end |until|
 
 
-- unwords :: [String] -> String
on unwords(xs)
set {dlm, my text item delimiters} to ¬
{my text item delimiters, space}
set s to xs as text
set my text item delimiters to dlm
return s
end unwords
 
 
------------------------- GENERIC ------------------------
 
-- Just :: a -> Maybe a
on Just(x)
-- Constructor for an inhabited Maybe (option type) value.
-- Wrapper containing the result of a computation.
{type:"Maybe", Nothing:false, Just:x}
end Just
 
 
-- Nothing :: Maybe a
on Nothing()
-- Constructor for an empty Maybe (option type) value.
-- Empty wrapper returned where a computation is not possible.
{type:"Maybe", Nothing:true}
end Nothing
 
 
-- abs :: Num -> Num
on abs(x)
-- Absolute value.
if 0 > x then
-x
else
x
end if
end abs
 
 
-- any :: (a -> Bool) -> [a] -> Bool
on any(p, xs)
-- Applied to a predicate and a list,
-- |any| returns true if at least one element of the
-- list satisfies the predicate.
tell mReturn(p)
set lng to length of xs
repeat with i from 1 to lng
if |λ|(item i of xs) then return true
end repeat
false
end tell
end any
 
 
-- chunksOf :: Int -> [a] -> [[a]]
on chunksOf(k, xs)
script
on go(ys)
set ab to splitAt(k, ys)
set a to item 1 of ab
if {} ≠ a then
{a} & go(item 2 of ab)
else
a
end if
end go
end script
result's go(xs)
end chunksOf
 
 
-- drop :: Int -> [a] -> [a]
-- drop :: Int -> String -> String
on drop(n, xs)
take(n, xs) -- consumed
xs
end drop
 
 
-- enumFromThenTo :: Int -> Int -> Int -> [Int]
on enumFromThenTo(x1, x2, y)
set xs to {}
set gap to x2 - x1
set d to max(1, abs(gap)) * (signum(gap))
repeat with i from x1 to y by d
set end of xs to i
end repeat
return xs
end enumFromThenTo
 
 
-- filter :: (a -> Bool) -> Gen [a] -> Gen [a]
on filter(p, gen)
-- Non-finite stream of values which are
-- drawn from gen, and satisfy p
script
property mp : mReturn(p)'s |λ|
on |λ|()
set v to gen's |λ|()
repeat until mp(v)
set v to gen's |λ|()
end repeat
return v
end |λ|
end script
end filter
 
 
-- isPrime :: Int -> Bool
on isPrime(n)
-- True if n is prime
 
if {2, 3} contains n then return true
 
if 2 > n or 0 = (n mod 2) then return false
 
if 9 > n then return true
 
if 0 = (n mod 3) then return false
 
script p
on |λ|(x)
0 = n mod x or 0 = n mod (2 + x)
end |λ|
end script
 
not any(p, enumFromThenTo(5, 11, 1 + (n ^ 0.5)))
end isPrime
 
 
-- length :: [a] -> Int
on |length|(xs)
set c to class of xs
if list is c or string is c then
length of xs
else
(2 ^ 29 - 1) -- (maxInt - simple proxy for non-finite)
end if
end |length|
 
 
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
-- The list obtained by applying f
-- to each element of xs.
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
 
 
-- max :: Ord a => a -> a -> a
on max(x, y)
if x > y then
x
else
y
end if
end max
 
 
-- mReturn :: First-class m => (a -> b) -> m (a -> b)
on mReturn(f)
-- 2nd class handler function lifted into 1st class script wrapper.
if script is class of f then
f
else
script
property |λ| : f
end script
end if
end mReturn
 
 
-- mul (*) :: Num a => a -> a -> a
on mul(a, b)
a * b
end mul
 
 
-- signum :: Num -> Num
on signum(x)
if x < 0 then
-1
else if x = 0 then
0
else
1
end if
end signum
 
 
-- splitAt :: Int -> [a] -> ([a], [a])
on splitAt(n, xs)
if n > 0 and n < length of xs then
if class of xs is text then
{items 1 thru n of xs as text, ¬
items (n + 1) thru -1 of xs as text}
else
{items 1 thru n of xs, items (n + 1) thru -1 of xs}
end if
else
if n < 1 then
{{}, xs}
else
{xs, {}}
end if
end if
end splitAt
 
 
-- str :: a -> String
on str(x)
x as string
end str
 
 
-- take :: Int -> [a] -> [a]
-- take :: Int -> String -> String
on take(n, xs)
set ys to {}
repeat with i from 1 to n
set v to |λ|() of xs
if missing value is v then
return ys
else
set end of ys to v
end if
end repeat
return ys
end take
 
 
-- uncons :: [a] -> Maybe (a, [a])
on uncons(xs)
set lng to |length|(xs)
if 0 = lng then
Nothing()
else
if (2 ^ 29 - 1) as integer > lng then
if class of xs is string then
set cs to text items of xs
Just({item 1 of cs, rest of cs})
else
Just({item 1 of xs, rest of xs})
end if
else
set nxt to take(1, xs)
if {} is nxt then
Nothing()
else
Just({item 1 of nxt, xs})
end if
end if
end if
end uncons
 
 
-- unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
on unfoldr(f, v)
-- A lazy (generator) list unfolded from a seed value
-- by repeated application of f to a value until no
-- residue remains. Dual to fold/reduce.
-- f returns either nothing (missing value)
-- or just (value, residue).
script
property valueResidue : {v, v}
property g : mReturn(f)
on |λ|()
set valueResidue to g's |λ|(item 2 of (valueResidue))
if missing value ≠ valueResidue then
item 1 of (valueResidue)
else
missing value
end if
end |λ|
end script
end unfoldr
 
 
-- zipWith :: (a -> b -> c) -> Gen [a] -> Gen [b] -> Gen [c]
on zipWith(f, ga, gb)
script
property ma : missing value
property mb : missing value
property mf : mReturn(f)
on |λ|()
if missing value is ma then
set ma to uncons(ga)
set mb to uncons(gb)
end if
if Nothing of ma or Nothing of mb then
missing value
else
set ta to Just of ma
set tb to Just of mb
set ma to uncons(item 2 of ta)
set mb to uncons(item 2 of tb)
|λ|(item 1 of ta, item 1 of tb) of mf
end if
end |λ|
end script
end zipWith
Output:
30 first terms of the Jacobsthal sequence:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

30 first Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

20 first Jacobsthal oblong numbers:
               0                1                3               15               55
             231              903             3655            14535            58311
          232903           932295          3727815         14913991         59650503
       238612935    9.54429895E+8   3.817763271E+9 1.5270965703E+10 6.1084037575E+10

10 first primes in the Jacobsthal sequence:
            3             5            11            43           683
         2731         43691        174763       2796203 7.15827883E+8

Arturo[edit]

J:  function [n]-> ((2^n) - (neg 1)^n)/3
JL: function [n]-> (2^n) + (neg 1)^n
JO: function [n]-> (J n) * (J n+1)
 
printFirst: function [label, what, predicate, count][
print ["First" count label++":"]
result: new []
i: 0
while [count > size result][
num: do ~"|what| i"
if do predicate -> 'result ++ num
i: i + 1
]
 
(predicate=[true])? [
loop split.every: 5 result 'row [
print map to [:string] row 'item -> pad item 12
]
][
loop result 'row -> print row
]
print ""
]
 
printFirst "Jacobsthal numbers" 'J [true] 30
printFirst "Jacobsthal-Lucas numbers" 'JL [true] 30
printFirst "Jacobsthal oblong numbers" 'JO [true] 20
printFirst "Jacobsthal primes" 'J [prime? num] 20
Output:
First 30 Jacobsthal numbers: 
           0            1            1            3            5 
          11           21           43           85          171 
         341          683         1365         2731         5461 
       10923        21845        43691        87381       174763 
      349525       699051      1398101      2796203      5592405 
    11184811     22369621     44739243     89478485    178956971 

First 30 Jacobsthal-Lucas numbers: 
           2            1            5            7           17 
          31           65          127          257          511 
        1025         2047         4097         8191        16385 
       32767        65537       131071       262145       524287 
     1048577      2097151      4194305      8388607     16777217 
    33554431     67108865    134217727    268435457    536870911 

First 20 Jacobsthal oblong numbers: 
           0            1            3           15           55 
         231          903         3655        14535        58311 
      232903       932295      3727815     14913991     59650503 
   238612935    954429895   3817763271  15270965703  61084037575 

First 20 Jacobsthal primes: 
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

AutoHotkey[edit]

Jacobsthal(n){    
return SubStr(" " Format("{:.0f}", (2**n - (-1)**n ) / 3), -8)
}
 
Jacobsthal_Lucas(n){
return SubStr(" " Format("{:.0f}", 2**n + (-1)**n), -8)
}
 
prime_numbers(n) {
if (n <= 3)
return [n]
ans := [], done := false
while !done {
if !Mod(n,2)
ans.push(2), n /= 2
else if !Mod(n,3)
ans.push(3), n /= 3
else if (n = 1)
return ans
else {
sr := sqrt(n), done := true, i := 6
while (i <= sr+6) {
if !Mod(n, i-1) { ; is n divisible by i-1?
ans.push(i-1), n /= i-1, done := false
break
}
if !Mod(n, i+1) { ; is n divisible by i+1?
ans.push(i+1), n /= i+1, done := false
break
}
i += 6
}}}
ans.push(n)
return ans
}
Examples:
result := "First 30 Jacobsthal numbers:`n"
loop 30
result .= Jacobsthal(A_Index-1) (mod(A_Index, 5) ? " ":"`n")
 
result .= "`nFirst 30 Jacobsthal-Lucas numbers:`n"
loop 30
result .= Jacobsthal_Lucas(A_Index-1) (mod(A_Index, 5) ? " ":"`n")
 
result .= "`nFirst 20 Jacobsthal oblong numbers:`n"
loop 20
result .= SubStr(" " Jacobsthal(A_Index-1) * Jacobsthal(A_Index), -8) (mod(A_Index, 5) ? " ":"`n")
 
result .= "`nFirst 10 Jacobsthal primes:`n"
c:=0
while c < 10
if (prime_numbers(x:=Jacobsthal(A_Index)).Count() = 1 && x > 1)
result .= x (mod(++c, 5) ? " ":"`n")
 
MsgBox, 262144, , % result
return
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
        0         1         3        15        55
      231       903      3655     14535     58311
   232903    932295   3727815  14913991  59650503
238612935 954429895 817763271 270965703 084037575

First 10 Jacobsthal primes:
        3         5        11        43       683
     2731     43691    174763   2796203 715827883

C[edit]

Library: GMP
#include <stdio.h>
#include <gmp.h>
 
void jacobsthal(mpz_t r, unsigned long n) {
mpz_t s;
mpz_init(s);
mpz_set_ui(r, 1);
mpz_mul_2exp(r, r, n);
mpz_set_ui(s, 1);
if (n % 2) mpz_neg(s, s);
mpz_sub(r, r, s);
mpz_div_ui(r, r, 3);
}
 
void jacobsthal_lucas(mpz_t r, unsigned long n) {
mpz_t a;
mpz_init(a);
mpz_set_ui(r, 1);
mpz_mul_2exp(r, r, n);
mpz_set_ui(a, 1);
if (n % 2) mpz_neg(a, a);
mpz_add(r, r, a);
}
 
int main() {
int i, count;
mpz_t jac[30], j;
printf("First 30 Jacobsthal numbers:\n");
for (i = 0; i < 30; ++i) {
mpz_init(jac[i]);
jacobsthal(jac[i], i);
gmp_printf("%9Zd ", jac[i]);
if (!((i+1)%5)) printf("\n");
}
 
printf("\nFirst 30 Jacobsthal-Lucas numbers:\n");
mpz_init(j);
for (i = 0; i < 30; ++i) {
jacobsthal_lucas(j, i);
gmp_printf("%9Zd ", j);
if (!((i+1)%5)) printf("\n");
}
 
printf("\nFirst 20 Jacobsthal oblong numbers:\n");
for (i = 0; i < 20; ++i) {
mpz_mul(j, jac[i], jac[i+1]);
gmp_printf("%11Zd ", j);
if (!((i+1)%5)) printf("\n");
}
 
printf("\nFirst 20 Jacobsthal primes:\n");
for (i = 0, count = 0; count < 20; ++i) {
jacobsthal(j, i);
if (mpz_probab_prime_p(j, 15) > 0) {
gmp_printf("%Zd\n", j);
++count;
}
}
 
return 0;
}
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5 
       11        21        43        85       171 
      341       683      1365      2731      5461 
    10923     21845     43691     87381    174763 
   349525    699051   1398101   2796203   5592405 
 11184811  22369621  44739243  89478485 178956971 

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17 
       31        65       127       257       511 
     1025      2047      4097      8191     16385 
    32767     65537    131071    262145    524287 
  1048577   2097151   4194305   8388607  16777217 
 33554431  67108865 134217727 268435457 536870911 

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55 
        231         903        3655       14535       58311 
     232903      932295     3727815    14913991    59650503 
  238612935   954429895  3817763271 15270965703 61084037575 

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

C++[edit]

Library: GMP
#include <gmpxx.h>
 
#include <iomanip>
#include <iostream>
 
using big_int = mpz_class;
 
bool is_probably_prime(const big_int& n) {
return mpz_probab_prime_p(n.get_mpz_t(), 30) != 0;
}
 
big_int jacobsthal_number(unsigned int n) {
return ((big_int(1) << n) - (n % 2 == 0 ? 1 : -1)) / 3;
}
 
big_int jacobsthal_lucas_number(unsigned int n) {
return (big_int(1) << n) + (n % 2 == 0 ? 1 : -1);
}
 
big_int jacobsthal_oblong_number(unsigned int n) {
return jacobsthal_number(n) * jacobsthal_number(n + 1);
}
 
int main() {
std::cout << "First 30 Jacobsthal Numbers:\n";
for (unsigned int n = 0; n < 30; ++n) {
std::cout << std::setw(9) << jacobsthal_number(n)
<< ((n + 1) % 5 == 0 ? '\n' : ' ');
}
std::cout << "\nFirst 30 Jacobsthal-Lucas Numbers:\n";
for (unsigned int n = 0; n < 30; ++n) {
std::cout << std::setw(9) << jacobsthal_lucas_number(n)
<< ((n + 1) % 5 == 0 ? '\n' : ' ');
}
std::cout << "\nFirst 20 Jacobsthal oblong Numbers:\n";
for (unsigned int n = 0; n < 20; ++n) {
std::cout << std::setw(11) << jacobsthal_oblong_number(n)
<< ((n + 1) % 5 == 0 ? '\n' : ' ');
}
std::cout << "\nFirst 20 Jacobsthal primes:\n";
for (unsigned int n = 0, count = 0; count < 20; ++n) {
auto jn = jacobsthal_number(n);
if (is_probably_prime(jn)) {
++count;
std::cout << jn << '\n';
}
}
}
Output:
First 30 Jacobsthal Numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas Numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong Numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Factor[edit]

Works with: Factor version 0.99 2021-06-02
USING: grouping io kernel lists lists.lazy math math.functions
math.primes prettyprint sequences ;
 
: 2^-1^ ( n -- 2^n -1^n ) dup 2^ -1 rot ^ ;
: jacobsthal ( m -- n ) 2^-1^ - 3 / ;
: jacobsthal-lucas ( m -- n ) 2^-1^ + ;
: as-list ( quot -- list ) 0 lfrom swap lmap-lazy ; inline
: jacobsthals ( -- list ) [ jacobsthal ] as-list ;
: lucas-jacobthals ( -- list ) [ jacobsthal-lucas ] as-list ;
: prime-jacobsthals ( -- list ) jacobsthals [ prime? ] lfilter ;
: show ( n list -- ) ltake list>array 5 group simple-table. nl ;
 
: oblong ( -- list )
jacobsthals dup cdr lzip [ product ] lmap-lazy ;
 
"First 30 Jacobsthal numbers:" print
30 jacobsthals show
 
"First 30 Jacobsthal-Lucas numbers:" print
30 lucas-jacobthals show
 
"First 20 Jacobsthal oblong numbers:" print
20 oblong show
 
"First 20 Jacobsthal primes:" print
20 prime-jacobsthals ltake [ . ] leach
Output:
First 30 Jacobsthal numbers:
0        1        1        3        5
11       21       43       85       171
341      683      1365     2731     5461
10923    21845    43691    87381    174763
349525   699051   1398101  2796203  5592405
11184811 22369621 44739243 89478485 178956971

First 30 Jacobsthal-Lucas numbers:
2        1        5         7         17
31       65       127       257       511
1025     2047     4097      8191      16385
32767    65537    131071    262145    524287
1048577  2097151  4194305   8388607   16777217
33554431 67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
0         1         3          15          55
231       903       3655       14535       58311
232903    932295    3727815    14913991    59650503
238612935 954429895 3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

FreeBASIC[edit]

Function isPrime(n As Ulongint) As Boolean
If n < 2 Then Return False
If n Mod 2 = 0 Then Return false
For i As Uinteger = 3 To Int(Sqr(n))+1 Step 2
If n Mod i = 0 Then Return false
Next i
Return true
End Function
 
Dim Shared As Uinteger n(1)
Dim Shared As Uinteger i0 = 0, i1 = 1
Dim Shared As Integer j, c, P = 1, Q = -2
 
Print "First 30 Jacobsthal numbers:"
c = 0 : n(i0) = 0: n(i1) = 1
For j = 0 To 29
c += 1
Print Using " #########"; n(i0);
Print Iif (c Mod 5, "", !"\n");
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Next j
 
Print !"\n\nFirst 30 Jacobsthal-Lucas numbers: "
c = 0 : n(i0) = 2: n(i1) = 1
For j = 0 To 29
c += 1
Print Using " #########"; n(i0);
Print Iif (c Mod 5, "", !"\n");
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Next j
 
Print !"\n\nFirst 20 Jacobsthal oblong numbers: "
c = 0 : n(i0) = 0: n(i1) = 1
For j = 0 To 19
c += 1
Print Using " ###########"; n(i0)*n(i1);
Print Iif (c Mod 5, "", !"\n");
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Next j
 
Print !"\n\nFirst 10 Jacobsthal primes: "
c = 0 : n(i0) = 0: n(i1) = 1
Do
If isPrime(n(i0)) Then c += 1 : Print n(i0)
n(i0) = P * n(i1) - Q * n(i0)
Swap i0, i1
Loop Until c = 10
Sleep
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 10 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883

Go[edit]

package main
 
import (
"fmt"
"math/big"
)
 
func jacobsthal(n uint) *big.Int {
t := big.NewInt(1)
t.Lsh(t, n)
s := big.NewInt(1)
if n%2 != 0 {
s.Neg(s)
}
t.Sub(t, s)
return t.Div(t, big.NewInt(3))
}
 
func jacobsthalLucas(n uint) *big.Int {
t := big.NewInt(1)
t.Lsh(t, n)
a := big.NewInt(1)
if n%2 != 0 {
a.Neg(a)
}
return t.Add(t, a)
}
 
func main() {
jac := make([]*big.Int, 30)
fmt.Println("First 30 Jacobsthal numbers:")
for i := uint(0); i < 30; i++ {
jac[i] = jacobsthal(i)
fmt.Printf("%9d ", jac[i])
if (i+1)%5 == 0 {
fmt.Println()
}
}
 
fmt.Println("\nFirst 30 Jacobsthal-Lucas numbers:")
for i := uint(0); i < 30; i++ {
fmt.Printf("%9d ", jacobsthalLucas(i))
if (i+1)%5 == 0 {
fmt.Println()
}
}
 
fmt.Println("\nFirst 20 Jacobsthal oblong numbers:")
for i := uint(0); i < 20; i++ {
t := big.NewInt(0)
fmt.Printf("%11d ", t.Mul(jac[i], jac[i+1]))
if (i+1)%5 == 0 {
fmt.Println()
}
}
 
fmt.Println("\nFirst 20 Jacobsthal primes:")
for n, count := uint(0), 0; count < 20; n++ {
j := jacobsthal(n)
if j.ProbablyPrime(10) {
fmt.Println(j)
count++
}
}
}
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5 
       11        21        43        85       171 
      341       683      1365      2731      5461 
    10923     21845     43691     87381    174763 
   349525    699051   1398101   2796203   5592405 
 11184811  22369621  44739243  89478485 178956971 

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17 
       31        65       127       257       511 
     1025      2047      4097      8191     16385 
    32767     65537    131071    262145    524287 
  1048577   2097151   4194305   8388607  16777217 
 33554431  67108865 134217727 268435457 536870911 

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55 
        231         903        3655       14535       58311 
     232903      932295     3727815    14913991    59650503 
  238612935   954429895  3817763271 15270965703 61084037575 

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Haskell[edit]

jacobsthal :: [Integer]
jacobsthal = 0 : 1 : zipWith (\x y -> 2 * x + y) jacobsthal (tail jacobsthal)
 
jacobsthalLucas :: [Integer]
jacobsthalLucas = 2 : 1 : zipWith (\x y -> 2 * x + y) jacobsthalLucas (tail jacobsthalLucas)
 
jacobsthalOblong :: [Integer]
jacobsthalOblong = zipWith (*) jacobsthal (tail jacobsthal)
 
isPrime :: Integer -> Bool
isPrime n = n > 1 && not (or [n `mod` i == 0 | i <- [2 .. floor (sqrt (fromInteger n))]])
 
main :: IO ()
main = do
putStrLn "First 30 Jacobsthal numbers:"
print $ take 30 jacobsthal
putStrLn ""
putStrLn "First 30 Jacobsthal-Lucas numbers:"
print $ take 30 jacobsthalLucas
putStrLn ""
putStrLn "First 20 Jacobsthal oblong numbers:"
print $ take 20 jacobsthalOblong
putStrLn ""
putStrLn "First 10 Jacobsthal primes:"
print $ take 10 $ filter isPrime jacobsthal
Output:
First 30 Jacobsthal numbers:
[0,1,1,3,5,11,21,43,85,171,341,683,1365,2731,5461,10923,21845,43691,87381,174763,349525,699051,1398101,2796203,5592405,11184811,22369621,44739243,89478485,178956971]

First 30 Jacobsthal-Lucas numbers:
[2,1,5,7,17,31,65,127,257,511,1025,2047,4097,8191,16385,32767,65537,131071,262145,524287,1048577,2097151,4194305,8388607,16777217,33554431,67108865,134217727,268435457,536870911]

First 20 Jacobsthal oblong numbers:
[0,1,3,15,55,231,903,3655,14535,58311,232903,932295,3727815,14913991,59650503,238612935,954429895,3817763271,15270965703,61084037575]

First 10 Jacobsthal primes:
[3,5,11,43,683,2731,43691,174763,2796203,715827883]


or, defined in terms of unfoldr:

import Data.List (intercalate, transpose, uncons, unfoldr)
import Data.List.Split (chunksOf)
import Data.Numbers.Primes (isPrime)
import Text.Printf (printf)
 
-------------------- JACOBSTHAL NUMBERS ------------------
 
jacobsthal :: [Integer]
jacobsthal = jacobsthalish (0, 1)
 
jacobsthalish :: (Integer, Integer) -> [Integer]
jacobsthalish = unfoldr go
where
go (a, b) = Just (a, (b, 2 * a + b))
 
--------------------------- TEST -------------------------
main :: IO ()
main =
mapM_
(putStrLn . format)
[ ( "terms of the Jacobsthal sequence",
30,
jacobsthal
),
( "Jacobsthal-Lucas numbers",
30,
jacobsthalish (2, 1)
),
( "Jacobsthal oblong numbers",
20,
zipWith (*) jacobsthal (tail jacobsthal)
),
( "Jacobsthal primes",
10,
filter isPrime jacobsthal
)
]
 
format :: (String, Int, [Integer]) -> String
format (k, n, xs) =
show n <> (' ' : k) <> ":\n"
<> table
" "
(chunksOf 5 $ show <$> take n xs)
 
table :: String -> [[String]] -> String
table gap rows =
let ws = maximum . fmap length <$> transpose rows
pw = printf . flip intercalate ["%", "s"] . show
in unlines $ intercalate gap . zipWith pw ws <$> rows
Output:
30 terms of the Jacobsthal sequence:
       0         1         1         3          5
      11        21        43        85        171
     341       683      1365      2731       5461
   10923     21845     43691     87381     174763
  349525    699051   1398101   2796203    5592405
11184811  22369621  44739243  89478485  178956971

30 Jacobsthal-Lucas numbers:
       2         1          5          7         17
      31        65        127        257        511
    1025      2047       4097       8191      16385
   32767     65537     131071     262145     524287
 1048577   2097151    4194305    8388607   16777217
33554431  67108865  134217727  268435457  536870911

20 Jacobsthal oblong numbers:
        0          1           3           15           55
      231        903        3655        14535        58311
   232903     932295     3727815     14913991     59650503
238612935  954429895  3817763271  15270965703  61084037575

10 Jacobsthal primes:
   3      5      11       43        683
2731  43691  174763  2796203  715827883

J[edit]

Implementation:

ja=: 3 %~ 2x&^ - _1x&^ NB. Jacobsthal
jl=: 2x&^ + _1x&^ NB.Jacobsthal-Lucas

Task examples:

   ja i.3 10
0 1 1 3 5 11 21 43 85 171
341 683 1365 2731 5461 10923 21845 43691 87381 174763
349525 699051 1398101 2796203 5592405 11184811 22369621 44739243 89478485 178956971
jl i.3 10
2 1 5 7 17 31 65 127 257 511
1025 2047 4097 8191 16385 32767 65537 131071 262145 524287
1048577 2097151 4194305 8388607 16777217 33554431 67108865 134217727 268435457 536870911
2 10$2 */\ ja i.21 NB. Jacobsthal oblong
0 1 3 15 55 231 903 3655 14535 58311
232903 932295 3727815 14913991 59650503 238612935 954429895 3817763271 15270965703 61084037575
ja I.1 p:ja i.32 NB. first ten Jacobsthal primes
3 5 11 43 683 2731 43691 174763 2796203 715827883

jq[edit]

Works with gojq, the Go implementation of jq

See Erdős-primes#jq for a suitable definition of `is_prime` as used here. As a practical matter, this function limits the exploration of Jacobsthal primes.

Preliminaries

# Split the input array into a stream of arrays
def chunks(n):
def c: .[0:n], (if length > n then .[n:]|c else empty end);
c;
 
def lpad($len): tostring | ($len - length) as $l | (" " * $l)[:$l] + .;
 
# If $j is 0, then an error condition is raised;
# otherwise, assuming infinite-precision integer arithmetic,
# if the input and $j are integers, then the result will be a pair of integers.
def divmod($j):
. as $i
| ($i % $j) as $mod
| [($i - $mod) / $j, $mod] ;
 
# To take advantage of gojq's arbitrary-precision integer arithmetic:
def power($b): . as $in | reduce range(0;$b) as $i (1; . * $in);

The Tasks

def jacobsthal:
. as $n
| ( (2|power($n)) - (if ($n%2 == 0) then 1 else -1 end)) | divmod(3)[0];
 
def jacobsthalLucas:
. as $n
| (2|power($n)) + (if ($n%2 == 0) then 1 else -1 end);
 
def tasks:
def pp($width): chunks(5) | map(lpad($width)) | join("");
 
[range(0;30) | jacobsthal] as $js
| "First 30 Jacobsthal numbers:",
( $js | pp(12)),
 
"\nFirst 30 Jacobsthal-Lucas numbers:",
( [range(0;30) | jacobsthalLucas] | pp(12)),
 
"\nFirst 20 Jacobsthal oblong numbers:",
( [range(0;20) | $js[.] * $js[1+.]] | pp(14)),
 
"\nFirst 11 Jacobsthal primes:",
limit(11; range(0; infinite) | jacobsthal | select(is_prime))
;
 
tasks
Output:
First 30 Jacobsthal numbers:
           0           1           1           3           5
          11          21          43          85         171
         341         683        1365        2731        5461
       10923       21845       43691       87381      174763
      349525      699051     1398101     2796203     5592405
    11184811    22369621    44739243    89478485   178956971

First 30 Jacobsthal-Lucas numbers:
           2           1           5           7          17
          31          65         127         257         511
        1025        2047        4097        8191       16385
       32767       65537      131071      262145      524287
     1048577     2097151     4194305     8388607    16777217
    33554431    67108865   134217727   268435457   536870911

First 20 Jacobsthal oblong numbers:
             0             1             3            15            55
           231           903          3655         14535         58311
        232903        932295       3727815      14913991      59650503
     238612935     954429895    3817763271   15270965703   61084037575

First 11 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403

Julia[edit]

using Lazy
using Primes
 
J(n) = (2^n - (-1)^n) ÷ 3
L(n) = 2^n + (-1)^n
 
Jacobsthal = @>> Lazy.range(0) map(J)
JLucas = @>> Lazy.range(0) map(L)
Joblong = @>> Lazy.range(big"0") map(n -> J(n) * J(n + 1))
Jprimes = @>> Lazy.range(big"0") map(J) filter(isprime)
 
function printrows(title, vec, columnsize = 15, columns = 5, rjust=true)
println(title)
for (i, n) in enumerate(vec)
print((rjust ? lpad : rpad)(n, columnsize), i % columns == 0 ? "\n" : "")
end
println()
end
 
printrows("Thirty Jacobsthal numbers:", collect(take(30, Jacobsthal)))
printrows("Thirty Jacobsthal-Lucas numbers:", collect(take(30, JLucas)))
printrows("Twenty oblong Jacobsthal numbers:", collect(take(20, Joblong)))
printrows("Fifteen Jacabsthal prime numbers:", collect(take(15, Jprimes)), 40, 1, false)
 
 
Output:
Thirty Jacobsthal numbers:
              0              1              1              3              5
             11             21             43             85            171
            341            683           1365           2731           5461
          10923          21845          43691          87381         174763
         349525         699051        1398101        2796203        5592405
       11184811       22369621       44739243       89478485      178956971

Thirty Jacobsthal-Lucas numbers:
              2              1              5              7             17
             31             65            127            257            511
           1025           2047           4097           8191          16385
          32767          65537         131071         262145         524287
        1048577        2097151        4194305        8388607       16777217
       33554431       67108865      134217727      268435457      536870911

Twenty oblong Jacobsthal numbers:
              0              1              3             15             55
            231            903           3655          14535          58311
         232903         932295        3727815       14913991       59650503
      238612935      954429895     3817763271    15270965703    61084037575

Fifteen Jacabsthal prime numbers:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243

Mathematica/Wolfram Language[edit]

ClearAll[Jacobsthal, JacobsthalLucas, JacobsthalOblong]
Jacobsthal[n_]:=(2^n-(-1)^n)/3
JacobsthalLucas[n_]:=2^n+(-1)^n
JacobsthalOblong[n_]:=Jacobsthal[n]Jacobsthal[n+1]
Jacobsthal[Range[0, 29]]
JacobsthalLucas[Range[0, 29]]
JacobsthalOblong[Range[0, 19]]
n=0;
i=0;
Reap[While[n<20,
If[
PrimeQ[Jacobsthal[i]]
,
Sow[{i,Jacobsthal[i]}];
n++;
];
i++;
]][[2,1]]//Grid
 
Output:
{0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971}

{2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911}

{0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575}

3	3
4	5
5	11
7	43
11	683
13	2731
17	43691
19	174763
23	2796203
31	715827883
43	2932031007403
61	768614336404564651
79	201487636602438195784363
101	845100400152152934331135470251
127	56713727820156410577229101238628035243
167	62357403192785191176690552862561408838653121833643
191	1046183622564446793972631570534611069350392574077339085483
199	267823007376498379256993682056860433753700498963798805883563
313	5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
347	95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Perl[edit]

Library: ntheory
use strict;
use warnings;
use feature <say state>;
use bigint;
use List::Util 'max';
use ntheory 'is_prime';
 
sub table { my $t = 5 * (my $c = 1 + length max @_); ( sprintf( ('%'.$c.'d')x@_, @_) ) =~ s/.{1,$t}\K/\n/gr }
 
sub jacobsthal { my($n) = @_; state @J = (0, 1); do { push @J, $J[-1] + 2 * $J[-2]} until @J > $n; $J[$n] }
sub jacobsthal_lucas { my($n) = @_; state @JL = (2, 1); do { push @JL, $JL[-1] + 2 * $JL[-2]} until @JL > $n; $JL[$n] }
 
my(@j,@jp,$c,$n);
push @j, jacobsthal $_ for 0..29;
do { is_prime($n = ( 2**++$c - -1**$c ) / 3) and push @jp, $n } until @jp == 20;
 
say "First 30 Jacobsthal numbers:\n", table @j;
say "First 30 Jacobsthal-Lucas numbers:\n", table map { jacobsthal_lucas $_-1 } 1..30;
say "First 20 Jacobsthal oblong numbers:\n", table map { $j[$_-1] * $j[$_] } 1..20;
say "First 20 Jacobsthal primes:\n", join "\n", @jp;
Output:
First 30 Jacobsthal numbers:
         0         1         1         3         5
        11        21        43        85       171
       341       683      1365      2731      5461
     10923     21845     43691     87381    174763
    349525    699051   1398101   2796203   5592405
  11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
         2         1         5         7        17
        31        65       127       257       511
      1025      2047      4097      8191     16385
     32767     65537    131071    262145    524287
   1048577   2097151   4194305   8388607  16777217
  33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
           0           1           3          15          55
         231         903        3655       14535       58311
      232903      932295     3727815    14913991    59650503
   238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Phix[edit]

You can run this online here.

with javascript_semantics 
function jacobsthal(integer n)
    return floor((power(2,n)+odd(n))/3)
end function

function jacobsthal_lucas(integer n)
    return power(2,n)+power(-1,n)
end function

function jacobsthal_oblong(integer n)
    return jacobsthal(n)*jacobsthal(n+1)
end function

printf(1,"First 30 Jacobsthal numbers:\n%s\n",       {join_by(apply(true,sprintf,{{"%9d" },apply(tagset(29,0),jacobsthal)}),1,5," ")})
printf(1,"First 30 Jacobsthal-Lucas numbers:\n%s\n", {join_by(apply(true,sprintf,{{"%9d" },apply(tagset(29,0),jacobsthal_lucas)}),1,5," ")})
printf(1,"First 20 Jacobsthal oblong numbers:\n%s\n",{join_by(apply(true,sprintf,{{"%11d"},apply(tagset(19,0),jacobsthal_oblong)}),1,5," ")})
--printf(1,"First 10 Jacobsthal primes:\n%s\n",    {join(apply(true,sprintf,{{"%d"},filter(apply(tagset(31,0),jacobsthal),is_prime)}),"\n")})
--hmm(""), fine, but to go further roll out gmp:
include mpfr.e
mpz z = mpz_init()
integer n = 1, found = 0
printf(1,"First 20 jacobsthal primes:\n")
while found<20 do
    mpz_ui_pow_ui(z,2,n)
    mpz_add_ui(z,z,odd(n))
    {} = mpz_fdiv_q_ui(z,z,3)
    if mpz_prime(z) then
        found += 1
        printf(1,"%s\n",{mpz_get_str(z)})
    end if
    n += 1
end while

Likewise should you want the three basic functions to go further they'll have to look much more like the C submission above.

Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Python[edit]

Translation of: Phix
#!/usr/bin/python
from math import floor, pow
 
def isPrime(n):
for i in range(2, int(n**0.5) + 1):
if n % i == 0:
return False
return True
 
def odd(n):
return n and 1 != 0
 
def jacobsthal(n):
return floor((pow(2,n)+odd(n))/3)
 
def jacobsthal_lucas(n):
return int(pow(2,n)+pow(-1,n))
 
def jacobsthal_oblong(n):
return jacobsthal(n)*jacobsthal(n+1)
 
 
if __name__ == '__main__':
print("First 30 Jacobsthal numbers:")
for j in range(0, 30):
print(jacobsthal(j), end=" ")
 
print("\n\nFirst 30 Jacobsthal-Lucas numbers: ")
for j in range(0, 30):
print(jacobsthal_lucas(j), end = '\t')
 
print("\n\nFirst 20 Jacobsthal oblong numbers: ")
for j in range(0, 20):
print(jacobsthal_oblong(j), end=" ")
 
print("\n\nFirst 10 Jacobsthal primes: ")
for j in range(3, 33):
if isPrime(jacobsthal(j)):
print(jacobsthal(j))
Output:
First 30 Jacobsthal numbers:
0  1  1  3  5  11  21  43  85  171  341  683  1365  2731  5461  10923  21845  43691  87381  174763  349525  699051  1398101  2796203  5592405  11184811  22369621  44739243  89478485  178956971  

First 30 Jacobsthal-Lucas numbers: 
2	1	5	7	17	31	65	127	257	511	1025	2047	4097	8191	16385	32767	65537	131071	262145	524287	1048577	2097151	4194305	8388607	16777217	33554431	67108865	134217727	268435457	536870911	

First 20 Jacobsthal oblong numbers: 
0  1  3  15  55  231  903  3655  14535  58311  232903  932295  3727815  14913991  59650503  238612935  954429895  3817763271  15270965703  61084037575  

First 10 Jacobsthal primes: 
3
5
11
43
683
2731
43691
174763
2796203
715827883


Or, defining an infinite series in terms of a general unfoldr anamorphism:

'''Jacobsthal numbers'''
 
from itertools import islice
from operator import mul
 
 
# jacobsthal :: [Integer]
def jacobsthal():
'''Infinite sequence of terms of OEIS A001045
'''

return jacobsthalish(0, 1)
 
 
# jacobsthalish :: (Int, Int) -> [Int]
def jacobsthalish(*xy):
'''Infinite sequence of jacobsthal-type series
beginning with a, b
'''

def go(ab):
a, b = ab
return a, (b, 2 * a + b)
 
return unfoldr(go)(xy)
 
 
# ------------------------- TEST -------------------------
# main :: IO ()
def main():
'''First 15 terms each n-step Fibonacci(n) series
where n is drawn from [2..8]
'''

print('\n\n'.join([
fShow(*x) for x in [
(
'terms of the Jacobsthal sequence',
30, jacobsthal()),
(
'Jacobsthal-Lucas numbers',
30, jacobsthalish(2, 1)
),
(
'Jacobsthal oblong numbers',
20, map(
mul, jacobsthal(),
drop(1)(jacobsthal())
)
),
(
'primes in the Jacobsthal sequence',
10, filter(isPrime, jacobsthal())
)
]
]))
 
 
# fShow :: (String, Int, [Integer]) -> String
def fShow(k, n, xs):
'''N tabulated terms of XS, prefixed by the label K
'''

return f'{n} {k}:\n' + spacedTable(
list(chunksOf(5)(
[str(t) for t in take(n)(xs)]
))
)
 
 
# ----------------------- GENERIC ------------------------
 
# drop :: Int -> [a] -> [a]
# drop :: Int -> String -> String
def drop(n):
'''The sublist of xs beginning at
(zero-based) index n.
'''

def go(xs):
if isinstance(xs, (list, tuple, str)):
return xs[n:]
else:
take(n)(xs)
return xs
return go
 
 
# isPrime :: Int -> Bool
def isPrime(n):
'''True if n is prime.'''
if n in (2, 3):
return True
if 2 > n or 0 == n % 2:
return False
if 9 > n:
return True
if 0 == n % 3:
return False
 
def p(x):
return 0 == n % x or 0 == n % (2 + x)
 
return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))
 
 
# take :: Int -> [a] -> [a]
# take :: Int -> String -> String
def take(n):
'''The prefix of xs of length n,
or xs itself if n > length xs.
'''

def go(xs):
return (
xs[0:n]
if isinstance(xs, (list, tuple))
else list(islice(xs, n))
)
return go
 
 
# unfoldr :: (b -> Maybe (a, b)) -> b -> [a]
def unfoldr(f):
'''Generic anamorphism.
A lazy (generator) list unfolded from a seed value by
repeated application of f until no residue remains.
Dual to fold/reduce.
f returns either None, or just (value, residue).
For a strict output value, wrap in list().
'''

def go(x):
valueResidue = f(x)
while None is not valueResidue:
yield valueResidue[0]
valueResidue = f(valueResidue[1])
return go
 
 
# ---------------------- FORMATTING ----------------------
 
# chunksOf :: Int -> [a] -> [[a]]
def chunksOf(n):
'''A series of lists of length n, subdividing the
contents of xs. Where the length of xs is not evenly
divisible, the final list will be shorter than n.
'''

def go(xs):
return (
xs[i:n + i] for i in range(0, len(xs), n)
) if 0 < n else None
return go
 
 
# spacedTable :: [[String]] -> String
def spacedTable(rows):
'''Tabulated stringification of rows'''
columnWidths = [
max([len(x) for x in col])
for col in zip(*rows)
]
return '\n'.join([
' '.join(
map(
lambda x, w: x.rjust(w, ' '),
row, columnWidths
)
)
for row in rows
])
 
 
# MAIN ---
if __name__ == '__main__':
main()
Output:
30 terms of the Jacobsthal sequence:
       0        1        1        3         5
      11       21       43       85       171
     341      683     1365     2731      5461
   10923    21845    43691    87381    174763
  349525   699051  1398101  2796203   5592405
11184811 22369621 44739243 89478485 178956971

30 Jacobsthal-Lucas numbers:
       2        1         5         7        17
      31       65       127       257       511
    1025     2047      4097      8191     16385
   32767    65537    131071    262145    524287
 1048577  2097151   4194305   8388607  16777217
33554431 67108865 134217727 268435457 536870911

20 Jacobsthal oblong numbers:
        0         1          3          15          55
      231       903       3655       14535       58311
   232903    932295    3727815    14913991    59650503
238612935 954429895 3817763271 15270965703 61084037575

10 primes in the Jacobsthal sequence:
   3     5     11      43       683
2731 43691 174763 2796203 715827883

Raku[edit]

my $jacobsthal = cache lazy 0, 1, * × 2 + **;
my $jacobsthal-lucas = lazy 2, 1, * × 2 + **;
 
say "First 30 Jacobsthal numbers:";
say $jacobsthal[^30].batch(5)».fmt("%9d").join: "\n";
 
say "\nFirst 30 Jacobsthal-Lucas numbers:";
say $jacobsthal-lucas[^30].batch(5)».fmt("%9d").join: "\n";
 
say "\nFirst 20 Jacobsthal oblong numbers:";
say (^).map( { $jacobsthal[$_] × $jacobsthal[$_+1] } )[^20].batch(5)».fmt("%11d").join: "\n";
 
say "\nFirst 20 Jacobsthal primes:";
say $jacobsthal.grep( &is-prime )[^20].join: "\n";
Output:
First 30 Jacobsthal numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Red[edit]

Red ["Jacobsthal numbers"]
 
jacobsthal: function [n] [to-integer (2 ** n - (-1 ** n) / 3)]
 
lucas: function [n] [2 ** n + (-1 ** n)]
 
oblong: function [n] [
first split mold multiply to-float jacobsthal n to-float jacobsthal n + 1 #"." ; work around integer overflow
]
 
prime?: function [
"Returns true if the input is a prime number"
n [number!] "An integer to check for primality"
][
if 2 = n [return true]
if any [1 = n even? n] [return false]
limit: sqrt n
candidate: 3
while [candidate < limit][
if n % candidate = 0 [return false]
candidate: candidate + 2
]
true
]
 
show: function [n fn][
cols: length? mold fn n
repeat i n [
prin [pad fn subtract i 1 cols]
if i % 5 = 0 [prin newline]
]
prin newline
]
 
print "First 30 Jacobsthal numbers:"
show 30 :jacobsthal
 
print "First 30 Jacobsthal-Lucas numbers:"
show 30 :lucas
 
print "First 20 Jacobsthal oblong numbers:"
show 20 :oblong
 
print "First 10 Jacobsthal primes:"
primes: n: 0
while [primes < 10][
if prime? jacobsthal n [
print jacobsthal n
primes: primes + 1
]
n: n + 1
]
Output:
First 30 Jacobsthal numbers:
0        1        1        3        5        
11       21       43       85       171      
341      683      1365     2731     5461     
10923    21845    43691    87381    174763   
349525   699051   1398101  2796203  5592405  
11184811 22369621 44739243 89478485 178956971

First 30 Jacobsthal-Lucas numbers:
2         1         5         7         17        
31        65        127       257       511       
1025      2047      4097      8191      16385     
32767     65537     131071    262145    524287    
1048577   2097151   4194305   8388607   16777217  
33554431  67108865  134217727 268435457 536870911 

First 20 Jacobsthal oblong numbers:
0             1             3             15            55            
231           903           3655          14535         58311         
232903        932295        3727815       14913991      59650503      
238612935     954429895     3817763271    15270965703   61084037575   

First 10 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883

Rust[edit]

// [dependencies]
// rug = "0.3"
 
use rug::integer::IsPrime;
use rug::Integer;
 
fn jacobsthal_numbers() -> impl std::iter::Iterator<Item = Integer> {
(0..).map(|x| ((Integer::from(1) << x) - if x % 2 == 0 { 1 } else { -1 }) / 3)
}
 
fn jacobsthal_lucas_numbers() -> impl std::iter::Iterator<Item = Integer> {
(0..).map(|x| (Integer::from(1) << x) + if x % 2 == 0 { 1 } else { -1 })
}
 
fn jacobsthal_oblong_numbers() -> impl std::iter::Iterator<Item = Integer> {
let mut jn = jacobsthal_numbers();
let mut n0 = jn.next().unwrap();
std::iter::from_fn(move || {
let n1 = jn.next().unwrap();
let result = Integer::from(&n0 * &n1);
n0 = n1;
Some(result)
})
}
 
fn jacobsthal_primes() -> impl std::iter::Iterator<Item = Integer> {
jacobsthal_numbers().filter(|x| x.is_probably_prime(30) != IsPrime::No)
}
 
fn main() {
println!("First 30 Jacobsthal Numbers:");
for (i, n) in jacobsthal_numbers().take(30).enumerate() {
print!("{:9}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
}
println!("\nFirst 30 Jacobsthal-Lucas Numbers:");
for (i, n) in jacobsthal_lucas_numbers().take(30).enumerate() {
print!("{:9}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
}
println!("\nFirst 20 Jacobsthal oblong Numbers:");
for (i, n) in jacobsthal_oblong_numbers().take(20).enumerate() {
print!("{:11}{}", n, if (i + 1) % 5 == 0 { "\n" } else { " " });
}
println!("\nFirst 20 Jacobsthal primes:");
for n in jacobsthal_primes().take(20) {
println!("{}", n);
}
}
Output:
First 30 Jacobsthal Numbers:
        0         1         1         3         5
       11        21        43        85       171
      341       683      1365      2731      5461
    10923     21845     43691     87381    174763
   349525    699051   1398101   2796203   5592405
 11184811  22369621  44739243  89478485 178956971

First 30 Jacobsthal-Lucas Numbers:
        2         1         5         7        17
       31        65       127       257       511
     1025      2047      4097      8191     16385
    32767     65537    131071    262145    524287
  1048577   2097151   4194305   8388607  16777217
 33554431  67108865 134217727 268435457 536870911

First 20 Jacobsthal oblong Numbers:
          0           1           3          15          55
        231         903        3655       14535       58311
     232903      932295     3727815    14913991    59650503
  238612935   954429895  3817763271 15270965703 61084037575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

Sidef[edit]

func jacobsthal(n) {
lucasU(1, -2, n)
}
 
func lucas_jacobsthal(n) {
lucasV(1, -2, n)
}
 
say "First 30 Jacobsthal numbers:"
say 30.of(jacobsthal)
 
say "\nFirst 30 Jacobsthal-Lucas numbers:"
say 30.of(lucas_jacobsthal)
 
say "\nFirst 20 Jacobsthal oblong numbers:"
say 21.of(jacobsthal).cons(2, {|a,b| a * b })
 
say "\nFirst 20 Jacobsthal primes:";
say (1..Inf -> lazy.map(jacobsthal).grep{.is_prime}.first(20))
Output:
First 30 Jacobsthal numbers:
[0, 1, 1, 3, 5, 11, 21, 43, 85, 171, 341, 683, 1365, 2731, 5461, 10923, 21845, 43691, 87381, 174763, 349525, 699051, 1398101, 2796203, 5592405, 11184811, 22369621, 44739243, 89478485, 178956971]

First 30 Jacobsthal-Lucas numbers:
[2, 1, 5, 7, 17, 31, 65, 127, 257, 511, 1025, 2047, 4097, 8191, 16385, 32767, 65537, 131071, 262145, 524287, 1048577, 2097151, 4194305, 8388607, 16777217, 33554431, 67108865, 134217727, 268435457, 536870911]

First 20 Jacobsthal oblong numbers:
[0, 1, 3, 15, 55, 231, 903, 3655, 14535, 58311, 232903, 932295, 3727815, 14913991, 59650503, 238612935, 954429895, 3817763271, 15270965703, 61084037575]

First 20 Jacobsthal primes:
[3, 5, 11, 43, 683, 2731, 43691, 174763, 2796203, 715827883, 2932031007403, 768614336404564651, 201487636602438195784363, 845100400152152934331135470251, 56713727820156410577229101238628035243, 62357403192785191176690552862561408838653121833643, 1046183622564446793972631570534611069350392574077339085483, 267823007376498379256993682056860433753700498963798805883563, 5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731, 95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443]

Vlang[edit]

Translation of: go
This example is incomplete. Probably Prime section isn't implemented yet (This is in development) Please ensure that it meets all task requirements and remove this message.
import math.big
 
fn jacobsthal(n u32) big.Integer {
mut t := big.one_int
t=t.lshift(n)
mut s := big.one_int
if n%2 != 0 {
s=s.neg()
}
t -= s
return t/big.integer_from_int(3)
}
 
fn jacobsthal_lucas(n u32) big.Integer {
mut t := big.one_int
t=t.lshift(n)
mut a := big.one_int
if n%2 != 0 {
a=a.neg()
}
return t+a
}
 
fn main() {
mut jac := []big.Integer{len: 30}
println("First 30 Jacobsthal numbers:")
for i := u32(0); i < 30; i++ {
jac[i] = jacobsthal(i)
print("${jac[i]:9} ")
if (i+1)%5 == 0 {
println('')
}
}
 
println("\nFirst 30 Jacobsthal-Lucas numbers:")
for i := u32(0); i < 30; i++ {
print("${jacobsthal_lucas(i):9} ")
if (i+1)%5 == 0 {
println('')
}
}
 
println("\nFirst 20 Jacobsthal oblong numbers:")
for i := u32(0); i < 20; i++ {
print("${jac[i]*jac[i+1]:11} ")
if (i+1)%5 == 0 {
println('')
}
}
 
/*println("\nFirst 20 Jacobsthal primes:")
for n, count := u32(0), 0; count < 20; n++ {
j := jacobsthal(n)
if j.probably_prime(10) {
println(j)
count++
}
}*/
}
Output:
First 30 Jacobsthal numbers:
           0            1            1            3            5
          11           21           43           85          171
         341          683        1,365        2,731        5,461
      10,923       21,845       43,691       87,381      174,763
     349,525      699,051    1,398,101    2,796,203    5,592,405
  11,184,811   22,369,621   44,739,243   89,478,485  178,956,971

First 30 Jacobsthal-Lucas numbers:
           2            1            5            7           17
          31           65          127          257          511
       1,025        2,047        4,097        8,191       16,385
      32,767       65,537      131,071      262,145      524,287
   1,048,577    2,097,151    4,194,305    8,388,607   16,777,217
  33,554,431   67,108,865  134,217,727  268,435,457  536,870,911

First 20 Jacobsthal oblong numbers:
             0              1              3             15             55
           231            903          3,655         14,535         58,311
       232,903        932,295      3,727,815     14,913,991     59,650,503
   238,612,935    954,429,895  3,817,763,271 15,270,965,703 61,084,037,575

Wren[edit]

Library: Wren-big
Library: Wren-seq
Library: Wren-fmt
import "./big" for BigInt
import "./seq" for Lst
import "./fmt" for Fmt
 
var jacobsthal = Fn.new { |n| ((BigInt.one << n) - ((n%2 == 0) ? 1 : -1)) / 3 }
 
var jacobsthalLucas = Fn.new { |n| (BigInt.one << n) + ((n%2 == 0) ? 1 : -1) }
 
System.print("First 30 Jacobsthal numbers:")
var js = (0..29).map { |i| jacobsthal.call(i) }.toList
for (chunk in Lst.chunks(js, 5)) Fmt.print("$,12i", chunk)
 
System.print("\nFirst 30 Jacobsthal-Lucas numbers:")
var jsl = (0..29).map { |i| jacobsthalLucas.call(i) }.toList
for (chunk in Lst.chunks(jsl, 5)) Fmt.print("$,12i", chunk)
 
System.print("\nFirst 20 Jacobsthal oblong numbers:")
var oblongs = (0..19).map { |i| js[i] * js[i+1] }.toList
for (chunk in Lst.chunks(oblongs, 5)) Fmt.print("$,14i", chunk)
 
var primes = js.where { |j| j.isProbablePrime(10) }.toList
var count = primes.count
var i = 31
while (count < 20) {
var j = jacobsthal.call(i)
if (j.isProbablePrime(10)) {
primes.add(j)
count = count + 1
}
i = i + 1
}
System.print("\nFirst 20 Jacobsthal primes:")
for (i in 0..19) Fmt.print("$i", primes[i])
Output:
First 30 Jacobsthal numbers:
           0            1            1            3            5
          11           21           43           85          171
         341          683        1,365        2,731        5,461
      10,923       21,845       43,691       87,381      174,763
     349,525      699,051    1,398,101    2,796,203    5,592,405
  11,184,811   22,369,621   44,739,243   89,478,485  178,956,971

First 30 Jacobsthal-Lucas numbers:
           2            1            5            7           17
          31           65          127          257          511
       1,025        2,047        4,097        8,191       16,385
      32,767       65,537      131,071      262,145      524,287
   1,048,577    2,097,151    4,194,305    8,388,607   16,777,217
  33,554,431   67,108,865  134,217,727  268,435,457  536,870,911

First 20 Jacobsthal oblong numbers:
             0              1              3             15             55
           231            903          3,655         14,535         58,311
       232,903        932,295      3,727,815     14,913,991     59,650,503
   238,612,935    954,429,895  3,817,763,271 15,270,965,703 61,084,037,575

First 20 Jacobsthal primes:
3
5
11
43
683
2731
43691
174763
2796203
715827883
2932031007403
768614336404564651
201487636602438195784363
845100400152152934331135470251
56713727820156410577229101238628035243
62357403192785191176690552862561408838653121833643
1046183622564446793972631570534611069350392574077339085483
267823007376498379256993682056860433753700498963798805883563
5562466239377370006237035693149875298444543026970449921737087520370363869220418099018130434731
95562442332919646317117537304253622533190207882011713489066201641121786503686867002917439712921903606443

XPL0[edit]

func IsPrime(N);        \Return 'true' if N is prime
int N, I;
[if N <= 2 then return N = 2;
if (N&1) = 0 then \even >2\ return false;
for I:= 3 to sqrt(N) do
[if rem(N/I) = 0 then return false;
I:= I+1;
];
return true;
];
 
proc Jaco(J2); \Display 30 Jacobsthal (or -Lucas) numbers
real J2, J1, J;
int N;
[RlOut(0, J2);
J1:= 1.0;
RlOut(0, J1);
for N:= 2 to 30-1 do
[J:= J1 + 2.0*J2;
RlOut(0, J);
if rem((N+1)/5) = 0 then CrLf(0);
J2:= J1; J1:= J;
];
CrLf(0);
];
 
real J, J1, J2, JO;
int N;
[Format(14, 0);
Jaco(0.0);
Jaco(2.0);
J2:= 1.0;
RlOut(0, 0.0);
J1:= 1.0;
RlOut(0, J1);
for N:= 2 to 20-1 do
[J:= (J1 + 2.0*J2);
JO:= J*J1;
RlOut(0, JO);
if rem((N+1)/5) = 0 then CrLf(0);
J2:= J1; J1:= J;
];
CrLf(0);
J2:= 0.0; J1:= 1.0; N:= 0;
loop [J:= J1 + 2.0*J2;
if IsPrime(fix(J)) then
[RlOut(0, J);
N:= N+1;
if rem(N/5) = 0 then CrLf(0);
if N >= 10 then quit;
];
J2:= J1; J1:= J;
];
]
Output:
             0             1             1             3             5
            11            21            43            85           171
           341           683          1365          2731          5461
         10923         21845         43691         87381        174763
        349525        699051       1398101       2796203       5592405
      11184811      22369621      44739243      89478485     178956971

             2             1             5             7            17
            31            65           127           257           511
          1025          2047          4097          8191         16385
         32767         65537        131071        262145        524287
       1048577       2097151       4194305       8388607      16777217
      33554431      67108865     134217727     268435457     536870911

             0             1             3            15            55
           231           903          3655         14535         58311
        232903        932295       3727815      14913991      59650503
     238612935     954429895    3817763271   15270965703   61084037575

             3             5            11            43           683
          2731         43691        174763       2796203     715827883