I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Modified random distribution

From Rosetta Code
Task
Modified random distribution
You are encouraged to solve this task according to the task description, using any language you may know.

Given a random number generator, (rng), generating numbers in the range 0.0 .. 1.0 called rgen, for example; and a function modifier(x) taking an number in the same range and generating the probability that the input should be generated, in the same range 0..1; then implement the following algorithm for generating random numbers to the probability given by function modifier:

while True:
    random1 = rgen()
    random2 = rgen()
    if random2 < modifier(random1):
        answer = random1
        break
    endif
endwhile
Task
  • Create a modifier function that generates a 'V' shaped probability of number generation using something like, for example:
                      modifier(x)  =  2*(0.5 - x)  if x < 0.5  else 2*(x - 0.5) 
  • Create a generator of random numbers with probabilities modified by the above function.
  • Generate >= 10,000 random numbers subject to the probability modification.
  • Output a textual histogram with from 11 to 21 bins showing the distribution of the random numbers generated.


Show your output here, on this page.

11l[edit]

Translation of: Python
F modifier(Float x) -> Float
R I x < 0.5 {2 * (.5 - x)} E 2 * (x - .5)
 
F modified_random_distribution((Float -> Float) modifier, Int n) -> [Float]
[Float] d
L d.len < n
V prob = random:()
I random:() < modifier(prob)
d.append(prob)
R d
 
V data = modified_random_distribution(modifier, 50'000)
V bins = 15
DefaultDict[Int, Int] counts
L(d) data
counts[d I/ (1 / bins)]++
 
V mx = max(counts.values())
print(" BIN, COUNTS, DELTA: HISTOGRAM\n")
Float? last
L(b, count) sorted(counts.items())
V delta = I last == N {‘N/A’} E String(count - last)
print(‘ #2.2, #4, #4: ’.format(Float(b) / bins, count, delta)‘’(‘#’ * Int(40 * count / mx)))
last = count
Output:
   BIN, COUNTS, DELTA: HISTOGRAM

   0.00,  6218,   N/A: #######################################
   0.07,  5313,  -905: #################################
   0.13,  4328,  -985: ###########################
   0.20,  3572,  -756: ######################
   0.27,  2642,  -930: ################
   0.33,  1805,  -837: ###########
   0.40,   877,  -928: #####
   0.47,   216,  -661: #
   0.53,   887,   671: #####
   0.60,  1779,   892: ###########
   0.67,  2644,   865: ################
   0.73,  3618,   974: #######################
   0.80,  4495,   877: ############################
   0.87,  5341,   846: ##################################
   0.93,  6265,   924: ########################################

Ada[edit]

with Ada.Text_Io;
with Ada.Numerics.Float_Random;
with Ada.Strings.Fixed;
 
procedure Modified_Distribution is
 
Observations : constant := 20_000;
Buckets  : constant := 25;
Divider  : constant := 12;
Char  : constant Character := '*';
 
generic
with function Modifier (X : Float) return Float;
package Generic_Random is
function Random return Float;
end Generic_Random;
 
package body Generic_Random is
package Float_Random renames Ada.Numerics.Float_Random;
Generator : Float_Random.Generator;
 
function Random return Float is
Random_1 : Float;
Random_2 : Float;
begin
loop
Random_1 := Float_Random.Random (Generator);
Random_2 := Float_Random.Random (Generator);
if Random_2 < Modifier (Random_1) then
return Random_1;
end if;
end loop;
end Random;
 
begin
Float_Random.Reset (Generator);
end Generic_Random;
 
generic
Buckets : in Positive;
package Histograms is
type Bucket_Index is new Positive range 1 .. Buckets;
Bucket_Width : constant Float := 1.0 / Float (Buckets);
procedure Clean;
procedure Increment_Bucket (Observation : Float);
function Observations_In (Bucket : Bucket_Index) return Natural;
function To_Bucket (X : Float) return Bucket_Index;
function Range_Image (Bucket : Bucket_Index) return String;
end Histograms;
 
package body Histograms is
Hist : array (Bucket_Index) of Natural := (others => 0);
 
procedure Clean is
begin
Hist := (others => 0);
end Clean;
 
procedure Increment_Bucket (Observation : Float) is
Bin : constant Bucket_Index := To_Bucket (Observation);
begin
Hist (Bin) := Hist (Bin) + 1;
end Increment_Bucket;
 
function Observations_In (Bucket : Bucket_Index) return Natural
is (Hist (Bucket));
 
function To_Bucket (X : Float) return Bucket_Index
is (1 + Bucket_Index'Base (Float'Floor (X / Bucket_Width)));
 
function Range_Image (Bucket : Bucket_Index) return String is
package Float_Io is new Ada.Text_Io.Float_Io (Float);
Image : String := "F.FF..L.LL";
First : constant Float := Float (Bucket - 1) / Float (Buckets);
Last  : constant Float := Float (Bucket - 1 + 1) / Float (Buckets);
begin
Float_Io.Put (Image (1 .. 4), First, Exp => 0, Aft => 2);
Float_Io.Put (Image (7 .. 10), Last, Exp => 0, Aft => 2);
return Image;
end Range_Image;
 
begin
Clean;
end Histograms;
 
function Modifier (X : Float) return Float
is (if X in Float'First .. 0.5
then 2.0 * (0.5 - X)
else 2.0 * (X - 0.5));
 
package Modified_Random is
new Generic_Random (Modifier => Modifier);
 
package Histogram_20 is
new Histograms (Buckets => Buckets);
 
function Column (Height : Natural; Char : Character) return String
renames Ada.Strings.Fixed."*";
 
use Ada.Text_Io;
begin
for N in 1 .. Observations loop
Histogram_20.Increment_Bucket (Modified_Random.Random);
end loop;
 
Put ("Range Observations: "); Put (Observations'Image);
Put (" Buckets: "); Put (Buckets'Image);
New_Line;
for I in Histogram_20.Bucket_Index'Range loop
Put (Histogram_20.Range_Image (I));
Put (" ");
Put (Column (Histogram_20.Observations_In (I) / Divider, Char));
New_Line;
end loop;
end Modified_Distribution;
Output:
Range      Observations:  20000  Buckets:  25
0.00..0.04 ****************************************************************************
0.04..0.08 ************************************************************************
0.08..0.12 **************************************************************
0.12..0.16 **********************************************************
0.16..0.20 **************************************************
0.20..0.24 ******************************************
0.24..0.28 ***************************************
0.28..0.32 *******************************
0.32..0.36 *************************
0.36..0.40 *******************
0.40..0.44 ************
0.44..0.48 *****
0.48..0.52 *
0.52..0.56 *******
0.56..0.60 ***********
0.60..0.64 ********************
0.64..0.68 ***************************
0.68..0.72 **********************************
0.72..0.76 **************************************
0.76..0.80 ********************************************
0.80..0.84 *************************************************
0.84..0.88 **********************************************************
0.88..0.92 ****************************************************************
0.92..0.96 *******************************************************************
0.96..1.00 ************************************************************************

Factor[edit]

Works with: Factor version 0.99 2021-02-05
USING: assocs assocs.extras formatting io kernel math
math.functions math.statistics random sequences
tools.memory.private ;
 
: modifier ( x -- y ) 0.5 over 0.5 < [ swap ] when - dup + ;
 
: random-unit-by ( quot: ( x -- y ) -- z )
random-unit dup pick call random-unit 2dup >
[ 2drop nip ] [ 3drop random-unit-by ] if ; inline recursive
 
: data ( n quot bins -- histogram )
'[ _ random-unit-by _ * >integer ] replicate histogram ;
inline
 
:: .histogram ( h -- )
 
h assoc-size :> buckets  ! number of buckets
h sum-values :> total  ! items in histogram
h values supremum :> max  ! largest bucket (as in most occurrences)
40 :> size  ! max size of a bar
 
total commas buckets
"Bin Histogram (%s items, %d buckets)\n" printf
 
h [| k v |
k buckets / dup buckets recip + "[%.2f, %.2f) " printf
size v * max / ceiling
[ "▇" write ] times bl bl v commas print
] assoc-each ;
 
"Modified random distribution of values in [0, 1):" print nl
100,000 [ modifier ] 20 data .histogram
Output:
Modified random distribution of values in [0, 1):

Bin          Histogram (100,000 items, 20 buckets)
[0.00, 0.05) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  9,416
[0.05, 0.10) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  8,498
[0.10, 0.15) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  7,432
[0.15, 0.20) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  6,415
[0.20, 0.25) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  5,558
[0.25, 0.30) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  4,489
[0.30, 0.35) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  3,538
[0.35, 0.40) ▇▇▇▇▇▇▇▇▇▇▇  2,532
[0.40, 0.45) ▇▇▇▇▇▇▇  1,553
[0.45, 0.50) ▇▇▇  490
[0.50, 0.55) ▇▇▇  517
[0.55, 0.60) ▇▇▇▇▇▇▇  1,467
[0.60, 0.65) ▇▇▇▇▇▇▇▇▇▇▇  2,519
[0.65, 0.70) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  3,559
[0.70, 0.75) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  4,546
[0.75, 0.80) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  5,569
[0.80, 0.85) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  6,444
[0.85, 0.90) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  7,428
[0.90, 0.95) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  8,487
[0.95, 1.00) ▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇  9,543

FreeBASIC[edit]

#define NRUNS 100000
#define NBINS 20
 
function modifier( x as double ) as double
return iif(x < 0.5, 2*(0.5 - x), 2*(x - 0.5))
end function
 
function modrand() as double
dim as double random1, random2
do
random1 = rnd
random2 = rnd
if random2 < modifier(random1) then
return random1
endif
loop
end function
 
function histo( byval bn as uinteger ) as string
dim as double db = NRUNS/(50*NBINS)
dim as string h
while bn > db:
h = h + "#"
bn -= db
wend
return h
 
end function
 
dim as uinteger bins(0 to NBINS-1), i, b
dim as double db = 1./NBINS, rand
 
randomize timer
 
for i = 1 to NRUNS
rand = modrand()
b = int(rand/db)
bins(b) += 1
next i
 
for b = 0 to NBINS-1
print using "Bin ## (#.## to #.##): & ####";b;b*db;(b+1)*db;histo(bins(b));bins(b)
next b
Output:
Bin  0 (0.00 to 0.05): ############################################################################################## 9479
Bin  1 (0.05 to 0.10): #################################################################################### 8499
Bin  2 (0.10 to 0.15): ########################################################################## 7416
Bin  3 (0.15 to 0.20): ################################################################## 6650
Bin  4 (0.20 to 0.25): ###################################################### 5457
Bin  5 (0.25 to 0.30): ############################################ 4416
Bin  6 (0.30 to 0.35): ################################## 3469
Bin  7 (0.35 to 0.40): ######################## 2481
Bin  8 (0.40 to 0.45): ############## 1466
Bin  9 (0.45 to 0.50): ####  489
Bin 10 (0.50 to 0.55): ####  475
Bin 11 (0.55 to 0.60): ############## 1472
Bin 12 (0.60 to 0.65): ######################### 2548
Bin 13 (0.65 to 0.70): #################################### 3617
Bin 14 (0.70 to 0.75): ############################################# 4538
Bin 15 (0.75 to 0.80): ####################################################### 5590
Bin 16 (0.80 to 0.85): ############################################################### 6395
Bin 17 (0.85 to 0.90): ########################################################################### 7538
Bin 18 (0.90 to 0.95): #################################################################################### 8401
Bin 19 (0.95 to 1.00): ################################################################################################ 9604

Fōrmulæ[edit]

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

In this page you can see the program(s) related to this task and their results.

Go[edit]

Translation of: Wren
package main
 
import (
"fmt"
"math"
"math/rand"
"strings"
"time"
)
 
func rng(modifier func(x float64) float64) float64 {
for {
r1 := rand.Float64()
r2 := rand.Float64()
if r2 < modifier(r1) {
return r1
}
}
}
 
func commatize(n int) string {
s := fmt.Sprintf("%d", n)
if n < 0 {
s = s[1:]
}
le := len(s)
for i := le - 3; i >= 1; i -= 3 {
s = s[0:i] + "," + s[i:]
}
if n >= 0 {
return s
}
return "-" + s
}
 
func main() {
rand.Seed(time.Now().UnixNano())
modifier := func(x float64) float64 {
if x < 0.5 {
return 2 * (0.5 - x)
}
return 2 * (x - 0.5)
}
const (
N = 100000
NUM_BINS = 20
HIST_CHAR = "■"
HIST_CHAR_SIZE = 125
)
bins := make([]int, NUM_BINS) // all zero by default
binSize := 1.0 / NUM_BINS
for i := 0; i < N; i++ {
rn := rng(modifier)
bn := int(math.Floor(rn / binSize))
bins[bn]++
}
 
fmt.Println("Modified random distribution with", commatize(N), "samples in range [0, 1):\n")
fmt.Println(" Range Number of samples within that range")
for i := 0; i < NUM_BINS; i++ {
hist := strings.Repeat(HIST_CHAR, int(math.Round(float64(bins[i])/HIST_CHAR_SIZE)))
fi := float64(i)
fmt.Printf("%4.2f ..< %4.2f  %s %s\n", binSize*fi, binSize*(fi+1), hist, commatize(bins[i]))
}
}
Output:

Specimen run:

Modified random distribution with 100,000 samples in range [0, 1):

    Range           Number of samples within that range
0.00 ..< 0.05  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9,396
0.05 ..< 0.10  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 8,434
0.10 ..< 0.15  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 7,484
0.15 ..< 0.20  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 6,576
0.20 ..< 0.25  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 5,516
0.25 ..< 0.30  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 4,625
0.30 ..< 0.35  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 3,478
0.35 ..< 0.40  ■■■■■■■■■■■■■■■■■■■■ 2,506
0.40 ..< 0.45  ■■■■■■■■■■■■ 1,504
0.45 ..< 0.50  ■■■■ 505
0.50 ..< 0.55  ■■■■ 511
0.55 ..< 0.60  ■■■■■■■■■■■■■ 1,563
0.60 ..< 0.65  ■■■■■■■■■■■■■■■■■■■■■ 2,582
0.65 ..< 0.70  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 3,520
0.70 ..< 0.75  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 4,326
0.75 ..< 0.80  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 5,489
0.80 ..< 0.85  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 6,589
0.85 ..< 0.90  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 7,472
0.90 ..< 0.95  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 8,592
0.95 ..< 1.00  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9,332

Haskell[edit]

The modifier is a pure function which consumes a sequence of numbers (probably, random) and applies a modification rule to it.

import System.Random
import Data.List
import Text.Printf
 
modify :: Ord a => (a -> a) -> [a] -> [a]
modify f = foldMap test . pairs
where
pairs lst = zip lst (tail lst)
test (r1, r2) = if r2 < f r1 then [r1] else []
 
vShape x = if x < 0.5 then 2*(0.5-x) else 2*(x-0.5)
 
hist b lst = zip [0,b..] res
where
res = (`div` sum counts) . (*300) <$> counts
counts = map length $ group $
sort $ floor . (/b) <$> lst
 
showHist h = foldMap mkLine h
where
mkLine (b,n) = printf "%.2f\t%s %d%%\n" b (replicate n '▇') n
λ> showHist $ hist 0.05 $ take 50000 $ modify vShape $ randoms $ mkStdGen 1234
0.00	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 28%
0.05	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 25%
0.10	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 22%
0.15	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 19%
0.20	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 16%
0.25	▇▇▇▇▇▇▇▇▇▇▇▇▇ 13%
0.30	▇▇▇▇▇▇▇▇▇▇ 10%
0.35	▇▇▇▇▇▇▇ 7%
0.40	▇▇▇▇ 4%
0.45	▇ 1%
0.50	▇ 1%
0.55	▇▇▇▇ 4%
0.60	▇▇▇▇▇▇▇ 7%
0.65	▇▇▇▇▇▇▇▇▇▇▇ 11%
0.70	▇▇▇▇▇▇▇▇▇▇▇▇▇ 13%
0.75	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 16%
0.80	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 19%
0.85	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 22%
0.90	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 25%
0.95	▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 29%

Julia[edit]

using UnicodePlots
 
modifier(x) = (y = 2x - 1; y < 0 ? -y : y)
modrands(rands1, rands2) = [x for (i, x) in enumerate(rands1) if rands2[i] < modifier(x)]
histogram(modrands(rand(50000), rand(50000)), nbins = 20)
 
Output:
                ┌                                        ┐ 
   [0.0 , 0.05) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2412   
   [0.05, 0.1 ) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2164      
   [0.1 , 0.15) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1850           
   [0.15, 0.2 ) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1652              
   [0.2 , 0.25) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1379                  
   [0.25, 0.3 ) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1121                     
   [0.3 , 0.35) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇ 903                         
   [0.35, 0.4 ) ┤▇▇▇▇▇▇▇▇▇▇ 695                            
   [0.4 , 0.45) ┤▇▇▇▇▇▇ 407                                
   [0.45, 0.5 ) ┤▇▇ 118                                    
   [0.5 , 0.55) ┤▇▇ 126                                    
   [0.55, 0.6 ) ┤▇▇▇▇▇ 358                                 
   [0.6 , 0.65) ┤▇▇▇▇▇▇▇▇▇ 639                             
   [0.65, 0.7 ) ┤▇▇▇▇▇▇▇▇▇▇▇▇ 837                          
   [0.7 , 0.75) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1121                    
   [0.75, 0.8 ) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1332                 
   [0.8 , 0.85) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1608             
   [0.85, 0.9 ) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 1920         
   [0.9 , 0.95) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2204     
   [0.95, 1.0 ) ┤▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇▇ 2348   
                └                                        ┘
                                Frequency

Mathematica/Wolfram Language[edit]

ClearAll[Modifier, CreateRandomNumber]
Modifier[x_] := If[x < 0.5, 2 (0.5 - x), 2 (x - 0.5)]
CreateRandomNumber[] := Module[{r1, r2, done = True},
While[done,
r1 = RandomReal[];
r2 = RandomReal[];
If[r2 < Modifier[r1],
Return[r1];
done = False
]
]
]
numbers = Table[CreateRandomNumber[], 100000];
{bins, counts} = HistogramList[numbers, {0, 1, 0.05}, "PDF"];
Grid[MapThread[{#1, " - ", [email protected]["X", Round[20 #2]]} &, {Partition[bins, 2, 1], counts}], Alignment -> Left]
Output:
{0.,0.05}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
{0.05,0.1}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
{0.1,0.15}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
{0.15,0.2}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXX
{0.2,0.25}	 - 	XXXXXXXXXXXXXXXXXXXXXX
{0.25,0.3}	 - 	XXXXXXXXXXXXXXXXXX
{0.3,0.35}	 - 	XXXXXXXXXXXXXX
{0.35,0.4}	 - 	XXXXXXXXXX
{0.4,0.45}	 - 	XXXXXX
{0.45,0.5}	 - 	XX
{0.5,0.55}	 - 	XX
{0.55,0.6}	 - 	XXXXXX
{0.6,0.65}	 - 	XXXXXXXXXX
{0.65,0.7}	 - 	XXXXXXXXXXXXXX
{0.7,0.75}	 - 	XXXXXXXXXXXXXXXXXX
{0.75,0.8}	 - 	XXXXXXXXXXXXXXXXXXXXXX
{0.8,0.85}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXX
{0.85,0.9}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
{0.9,0.95}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
{0.95,1.}	 - 	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Nim[edit]

Translation of: Wren
import random, strformat, strutils, sugar
 
type ValRange = range[0.0..1.0]
 
func modifier(x: ValRange): ValRange =
if x < 0.5: 2 * (0.5 - x) else: 2 * (x - 0.5)
 
proc rand(modifier: (float) -> float): ValRange =
while true:
let r1 = rand(1.0)
let r2 = rand(1.0)
if r2 < modifier(r1):
return r1
 
const
N = 100_000
NumBins = 20
HistChar = "■"
HistCharSize = 125
BinSize = 1 / NumBins
 
randomize()
 
var bins: array[NumBins, int]
for i in 0..<N:
let rn = rand(modifier)
let bn = int(rn / BinSize)
inc bins[bn]
 
echo &"Modified random distribution with {N} samples in range [0, 1):"
echo " Range Number of samples within that range"
for i in 0..<NumBins:
let hist = repeat(HistChar, (bins[i] / HistCharSize).toInt)
echo &"{BinSize * float(i):4.2f} ..< {BinSize * float(i + 1):4.2f} {hist} {bins[i]}"
Output:
Modified random distribution with 100000 samples in range [0, 1):
    Range           Number of samples within that range
0.00 ..< 0.05  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9480
0.05 ..< 0.10  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 8469
0.10 ..< 0.15  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 7631
0.15 ..< 0.20  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 6484
0.20 ..< 0.25  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 5472
0.25 ..< 0.30  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 4327
0.30 ..< 0.35  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 3523
0.35 ..< 0.40  ■■■■■■■■■■■■■■■■■■■■ 2528
0.40 ..< 0.45  ■■■■■■■■■■■■ 1500
0.45 ..< 0.50  ■■■■ 444
0.50 ..< 0.55  ■■■■ 513
0.55 ..< 0.60  ■■■■■■■■■■■■ 1536
0.60 ..< 0.65  ■■■■■■■■■■■■■■■■■■■■ 2459
0.65 ..< 0.70  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 3505
0.70 ..< 0.75  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 4600
0.75 ..< 0.80  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 5525
0.80 ..< 0.85  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 6512
0.85 ..< 0.90  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 7482
0.90 ..< 0.95  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 8581
0.95 ..< 1.00  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9429

Perl[edit]

Translation of: Raku

Uses any supplied distribution function, but defaults to uniform otherwise.

use strict;
use warnings;
use List::Util 'max';
 
sub distribution {
my %param = ( function => \&{scalar sub {return 1}}, sample_size => 1e5, @_);
my @values;
do {
my($r1, $r2) = (rand, rand);
push @values, $r1 if &{$param{function}}($r1) > $r2;
} until @values == $param{sample_size};
wantarray ? @values : \@values;
}
 
sub modifier_notch {
my($x) = @_;
return 2 * ( $x < 1/2 ? ( 1/2 - $x )
: ( $x - 1/2 ) );
}
 
sub print_histogram {
our %param = (n_bins => 10, width => 80, @_);
my %counts;
$counts{ int($_ * $param{n_bins}) / $param{n_bins} }++ for @{$param{data}};
our $max_value = max values %counts;
print "Bin Counts Histogram\n";
printf "%4.2f %6d: %s\n", $_, $counts{$_}, hist($counts{$_}) for sort keys %counts;
sub hist { scalar ('■') x ( $param{width} * $_[0] / $max_value ) }
}
 
print_histogram( data => \@{ distribution() } );
print "\n\n";
 
my @samples = distribution( function => \&modifier_notch, sample_size => 50_000);
print_histogram( data => \@samples, n_bins => 20, width => 64);
Output:
Bin  Counts  Histogram
0.00  10114: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.10   9958: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.20   9960: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.30  10043: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.40   9874: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.50  10013: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.60  10085: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.70   9877: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.80  10079: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.90   9997: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

Bin  Counts  Histogram
0.00   4772: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.05   4329: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.10   3728: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.15   3249: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.20   2749: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.25   2163: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.30   1735: ■■■■■■■■■■■■■■■■■■■■■■■
0.35   1317: ■■■■■■■■■■■■■■■■■
0.40    764: ■■■■■■■■■■
0.45    259: ■■■
0.50    231: ■■■
0.55    721: ■■■■■■■■■
0.60   1255: ■■■■■■■■■■■■■■■■
0.65   1730: ■■■■■■■■■■■■■■■■■■■■■■■
0.70   2282: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.75   2720: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.80   3302: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.85   3712: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.90   4219: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.95   4763: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

Phix[edit]

function rng(integer modifier)
while true do
atom r1 := rnd()
if rnd() < modifier(r1) then
return r1
end if
end while
end function
 
function modifier(atom x)
return iff(x < 0.5 ? 2 * (0.5 - x)
 : 2 * (x - 0.5))
end function
 
constant N = 100000,
NUM_BINS = 20,
HIST_CHAR_SIZE = 125,
BIN_SIZE = 1/NUM_BINS,
LO = sq_mul(tagset(NUM_BINS-1,0),BIN_SIZE),
HI = sq_mul(tagset(NUM_BINS),BIN_SIZE),
LBLS = apply(true,sprintf,{{"[%4.2f,%4.2f)"},columnize({LO,HI})})
 
sequence bins := repeat(0, NUM_BINS)
for i=1 to N do
bins[floor(rng(modifier) / BIN_SIZE)+1] += 1
end for
 
printf(1,"Modified random distribution with %,d samples in range [0, 1):\n\n",N)
for i=1 to NUM_BINS do
sequence hist := repeat('#', round(bins[i]/HIST_CHAR_SIZE))
printf(1,"%s  %s %,d\n", {LBLS[i], hist, bins[i]})
end for
Output:
Modified random distribution with 100,000 samples in range [0, 1):

[0.00,0.05)  ############################################################################ 9,521
[0.05,0.10)  #################################################################### 8,449
[0.10,0.15)  ############################################################ 7,519
[0.15,0.20)  ##################################################### 6,651
[0.20,0.25)  ############################################ 5,470
[0.25,0.30)  #################################### 4,504
[0.30,0.35)  ########################### 3,364
[0.35,0.40)  #################### 2,475
[0.40,0.45)  ############ 1,494
[0.45,0.50)  #### 518
[0.50,0.55)  #### 482
[0.55,0.60)  ############ 1,536
[0.60,0.65)  ##################### 2,568
[0.65,0.70)  ############################ 3,498
[0.70,0.75)  #################################### 4,559
[0.75,0.80)  ############################################ 5,447
[0.80,0.85)  #################################################### 6,512
[0.85,0.90)  ############################################################ 7,486
[0.90,0.95)  #################################################################### 8,484
[0.95,1.00)  ############################################################################ 9,463

plot[edit]

Library: Phix/pGUI

A simple graphical plot. Note the labels are on the X-axis, so it's v-shaped, not <-shaped: IupPlot does not support putting user-supplied labels on the Y-axis.

include pGUI.e
IupOpen()
Ihandle plot = IupPlot("GRID=YES, AXS_YAUTOMIN=NO")
IupPlotBegin(plot, true) -- (true means x-axis are labels)
for i=1 to length(bins) do
IupPlotAddStr(plot, LBLS[i], bins[i]);
end for
{} = IupPlotEnd(plot)
IupSetAttribute(plot,"DS_MODE","BAR")
IupSetAttribute(plot,"DS_COLOR",IUP_DARK_BLUE)
IupShow(IupDialog(plot, `TITLE=Histogram, RASTERSIZE=1300x850`))
IupMainLoop()
IupClose()

Python[edit]

import random
from typing import List, Callable, Optional
 
 
def modifier(x: float) -> float:
"""
V-shaped, modifier(x) goes from 1 at 0 to 0 at 0.5 then back to 1 at 1.0 .
 
Parameters
----------
x : float
Number, 0.0 .. 1.0 .
 
Returns
-------
float
Target probability for generating x; between 0 and 1.
 
"""

return 2*(.5 - x) if x < 0.5 else 2*(x - .5)
 
 
def modified_random_distribution(modifier: Callable[[float], float],
n: int) -> List[float]:
"""
Generate n random numbers between 0 and 1 subject to modifier.
 
Parameters
----------
modifier : Callable[[float], float]
Target random number gen. 0 <= modifier(x) < 1.0 for 0 <= x < 1.0 .
n : int
number of random numbers generated.
 
Returns
-------
List[float]
n random numbers generated with given probability.
 
"""

d: List[float] = []
while len(d) < n:
r1 = prob = random.random()
if random.random() < modifier(prob):
d.append(r1)
return d
 
 
if __name__ == '__main__':
from collections import Counter
 
data = modified_random_distribution(modifier, 50_000)
bins = 15
counts = Counter(d // (1 / bins) for d in data)
#
mx = max(counts.values())
print(" BIN, COUNTS, DELTA: HISTOGRAM\n")
last: Optional[float] = None
for b, count in sorted(counts.items()):
delta = 'N/A' if last is None else str(count - last)
print(f" {b / bins:5.2f}, {count:4}, {delta:>4}: "
f"{'#' * int(40 * count / mx)}")
last = count
Output:
   BIN, COUNTS, DELTA: HISTOGRAM

   0.00,  6326,   N/A: ########################################
   0.07,  5327,  -999: #################################
   0.13,  4487,  -840: ############################
   0.20,  3495,  -992: ######################
   0.27,  2601,  -894: ################
   0.33,  1744,  -857: ###########
   0.40,   914,  -830: #####
   0.47,   225,  -689: #
   0.53,   899,   674: #####
   0.60,  1783,   884: ###########
   0.67,  2623,   840: ################
   0.73,  3566,   943: ######################
   0.80,  4383,   817: ###########################
   0.87,  5422,  1039: ##################################
   0.93,  6205,   783: #######################################

R[edit]

Although it may not be immediately obvious, both modifier and gen are equivalent to the corresponding functions in the task.

library(NostalgiR) #For the textual histogram.
modifier <- function(x) 2*abs(x - 0.5)
gen <- function()
{
repeat
{
random <- runif(2)
if(random[2] < modifier(random[1])) return(random[1])
}
}
data <- replicate(100000, gen())
NostalgiR::nos.hist(data, breaks = 20, pch = "#")
Output:
> NostalgiR::nos.hist(data, breaks = 20, pch = "#")
  10000 +--+---------------------+---------------------+----------------------+---------------------+---------------------+--+
        |                                                                                                              #     |
        |    #                                                                                                         #     |
        |    #                                                                                                         #     |
        |    #     #                                                                                              #    #     |
        |    #     #                                                                                              #    #     |
   8000 +    #     #                                                                                              #    #     +
        |    #     #                                                                                              #    #     |
        |    #     #    #                                                                                   #     #    #     |
        |    #     #    #                                                                                   #     #    #     |
        |    #     #    #     #                                                                        #    #     #    #     |
F       |    #     #    #     #                                                                        #    #     #    #     |
r  6000 +    #     #    #     #                                                                        #    #     #    #     +
e       |    #     #    #     #     #                                                            #     #    #     #    #     |
q       |    #     #    #     #     #                                                            #     #    #     #    #     |
u       |    #     #    #     #     #                                                            #     #    #     #    #     |
e       |    #     #    #     #     #    #                                                  #    #     #    #     #    #     |
n  4000 +    #     #    #     #     #    #                                                  #    #     #    #     #    #     +
c       |    #     #    #     #     #    #     #                                            #    #     #    #     #    #     |
y       |    #     #    #     #     #    #     #                                      #     #    #     #    #     #    #     |
        |    #     #    #     #     #    #     #                                      #     #    #     #    #     #    #     |
        |    #     #    #     #     #    #     #                                #     #     #    #     #    #     #    #     |
        |    #     #    #     #     #    #     #    #                           #     #     #    #     #    #     #    #     |
   2000 +    #     #    #     #     #    #     #    #                           #     #     #    #     #    #     #    #     +
        |    #     #    #     #     #    #     #    #     #                #    #     #     #    #     #    #     #    #     |
        |    #     #    #     #     #    #     #    #     #                #    #     #     #    #     #    #     #    #     |
        |    #     #    #     #     #    #     #    #     #                #    #     #     #    #     #    #     #    #     |
        |    #     #    #     #     #    #     #    #     #     #    #     #    #     #     #    #     #    #     #    #     |
        |    #     #    #     #     #    #     #    #     #     #    #     #    #     #     #    #     #    #     #    #     |
      0 +    #     #    #     #     #    #     #    #     #     #    #     #    #     #     #    #     #    #     #    #     +
        +--+---------------------+---------------------+----------------------+---------------------+---------------------+--+
           0                    0.2                   0.4                    0.6                   0.8                    1   

REXX[edit]

If a vertical histograph   (instead of a   <   shaped horizontal histograph)   were to be used,   it would be a   V   shaped.

/*REXX program generates a "<" shaped probability of number generation using a modifier.*/
parse arg randn bins seed . /*obtain optional argument from the CL.*/
if randN=='' | randN=="," then randN= 100000 /*Not specified? Then use the default.*/
if bins=='' | bins=="," then bins= 20 /* " " " " " " */
if datatype(seed, 'W') then call random ,,seed /* " " " " " " */
call MRD
!.= 0
do j=1 for randN; bin= @.j*bins%1
 !.bin= !.bin + 1 /*bump the applicable bin counter. */
end /*j*/
mx= 0
do k=1 for randN; mx= max(mx, !.k) /*find the maximum, used for histograph*/
end /*k*/
 
say ' bin'
say '────── ' center('(with ' commas(randN) " samples", 80 - 10)
 
do b=0 for bins; say format(b/bins,2,2) copies('■', 70*!.b%mx)" " commas(!.b)
end /*b*/
exit 0
/*──────────────────────────────────────────────────────────────────────────────────────*/
commas: arg ?; do jc=length(?)-3 to 1 by -3;  ?=insert(',', ?, jc); end; return ?
rand: return random(0, 100000) / 100000
/*──────────────────────────────────────────────────────────────────────────────────────*/
modifier: parse arg y; if y<.5 then return 2 * (.5 - y)
else return 2 * ( y - .5)
/*──────────────────────────────────────────────────────────────────────────────────────*/
MRD: #=0; @.= /*MRD: Modified Random distribution. */
do until #==randN; r= rand() /*generate a random number; assign bkup*/
if rand()>=modifier(r) then iterate /*Doesn't meet requirement? Then skip.*/
#= # + 1; @.#= r /*bump counter; assign the MRD to array*/
end /*until*/
return
output   when using the default inputs:
  bin
──────                         (with  100,000  samples
 0.00 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  9,476
 0.05 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  8,471
 0.10 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  7,528
 0.15 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  6,403
 0.20 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  5,593
 0.25 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  4,541
 0.30 ■■■■■■■■■■■■■■■■■■■■■■■■  3,424
 0.35 ■■■■■■■■■■■■■■■■■■  2,514
 0.40 ■■■■■■■■■■■  1,508
 0.45 ■■■  463
 0.50 ■■■  493
 0.55 ■■■■■■■■■■  1,501
 0.60 ■■■■■■■■■■■■■■■■■■  2,508
 0.65 ■■■■■■■■■■■■■■■■■■■■■■■■  3,416
 0.70 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  4,574
 0.75 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  5,556
 0.80 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  6,506
 0.85 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  7,551
 0.90 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  8,383
 0.95 ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■  9,590

Raku[edit]

sub modified_random_distribution ( Code $modifier --> Seq ) {
return lazy gather loop {
my ( $r1, $r2 ) = rand, rand;
take $r1 if $modifier.($r1) > $r2;
}
}
sub modifier ( Numeric $x --> Numeric ) {
return 2 * ( $x < 1/2 ?? ( 1/2 - $x )
!! ( $x - 1/2 ) );
}
sub print_histogram ( @data, :$n-bins, :$width ) { # Assumes minimum of zero.
my %counts = bag @data.map: { floor( $_ * $n-bins ) / $n-bins };
my $max_value = %counts.values.max;
sub hist { '■' x ( $width * $^count / $max_value ) }
say ' Bin, Counts: Histogram';
printf "%4.2f, %6d: %s\n", .key, .value, hist(.value) for %counts.sort;
}
 
my @d = modified_random_distribution( &modifier );
 
print_histogram( @d.head(50_000), :n-bins(20), :width(64) );
Output:
 Bin, Counts: Histogram
0.00,   4718: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.05,   4346: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.10,   3685: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.15,   3246: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.20,   2734: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.25,   2359: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.30,   1702: ■■■■■■■■■■■■■■■■■■■■■■
0.35,   1283: ■■■■■■■■■■■■■■■■■
0.40,    702: ■■■■■■■■■
0.45,    250: ■■■
0.50,    273: ■■■
0.55,    745: ■■■■■■■■■■
0.60,   1231: ■■■■■■■■■■■■■■■■
0.65,   1757: ■■■■■■■■■■■■■■■■■■■■■■■
0.70,   2209: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.75,   2738: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.80,   3255: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.85,   3741: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.90,   4268: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
0.95,   4758: ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

Wren[edit]

Library: Wren-fmt
import "random" for Random
import "/fmt" for Fmt
 
var rgen = Random.new()
 
var rng = Fn.new { |modifier|
while (true) {
var r1 = rgen.float()
var r2 = rgen.float()
if (r2 < modifier.call(r1)) {
return r1
}
}
}
 
var modifier = Fn.new { |x| (x < 0.5) ? 2 * (0.5 - x) : 2 * (x - 0.5) }
 
var N = 100000
var NUM_BINS = 20
var HIST_CHAR = "■"
var HIST_CHAR_SIZE = 125
var bins = List.filled(NUM_BINS, 0)
var binSize = 1 / NUM_BINS
for (i in 0...N) {
var rn = rng.call(modifier)
var bn = (rn / binSize).floor
bins[bn] = bins[bn] + 1
}
 
Fmt.print("Modified random distribution with $,d samples in range [0, 1):\n", N)
System.print(" Range Number of samples within that range")
for (i in 0...NUM_BINS) {
var hist = HIST_CHAR * (bins[i] / HIST_CHAR_SIZE).round
Fmt.print("$4.2f ..< $4.2f $s $,d", binSize * i, binSize * (i + 1), hist, bins[i])
}
Output:

Specimen run:

Modified random distribution with 100,000 samples in range [0, 1):

    Range           Number of samples within that range
0.00 ..< 0.05  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9,605
0.05 ..< 0.10  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 8,573
0.10 ..< 0.15  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 7,440
0.15 ..< 0.20  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 6,582
0.20 ..< 0.25  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 5,482
0.25 ..< 0.30  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 4,472
0.30 ..< 0.35  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 3,478
0.35 ..< 0.40  ■■■■■■■■■■■■■■■■■■■■ 2,497
0.40 ..< 0.45  ■■■■■■■■■■■■ 1,519
0.45 ..< 0.50  ■■■■ 489
0.50 ..< 0.55  ■■■■ 485
0.55 ..< 0.60  ■■■■■■■■■■■■ 1,453
0.60 ..< 0.65  ■■■■■■■■■■■■■■■■■■■■ 2,477
0.65 ..< 0.70  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 3,492
0.70 ..< 0.75  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 4,453
0.75 ..< 0.80  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 5,535
0.80 ..< 0.85  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 6,480
0.85 ..< 0.90  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 7,573
0.90 ..< 0.95  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 8,372
0.95 ..< 1.00  ■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■ 9,543