I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Reflection/List methods

From Rosetta Code
Task
Reflection/List methods
You are encouraged to solve this task according to the task description, using any language you may know.
Task

The goal is to get the methods of an object, as names, values or both.

Some languages offer dynamic methods, which in general can only be inspected if a class' public API includes a way of listing them.

C#[edit]

using System;
using System.Reflection;
 
public class Rosetta
{
public static void Main()
{
//Let's get all methods, not just public ones.
BindingFlags flags = BindingFlags.Instance | BindingFlags.Static
| BindingFlags.Public | BindingFlags.NonPublic
| BindingFlags.DeclaredOnly;
 
foreach (var method in typeof(TestForMethodReflection).GetMethods(flags))
Console.WriteLine(method);
}
 
class TestForMethodReflection
{
public void MyPublicMethod() {}
private void MyPrivateMethod() {}
 
public static void MyPublicStaticMethod() {}
private static void MyPrivateStaticMethod() {}
}
 
}
Output:
Void MyPublicMethod()
Void MyPrivateMethod()
Void MyPublicStaticMethod()
Void MyPrivateStaticMethod()

//If we do not use BindingFlags.DeclaredOnly, we also get:
System.String ToString()
Boolean Equals(System.Object)
Int32 GetHashCode()
System.Type GetType()
Void Finalize()
System.Object MemberwiseClone()

Clojure[edit]

 
; Including listing private methods in the clojure.set namespace:
=> (keys (ns-interns 'clojure.set))
(union map-invert join select intersection superset? index bubble-max-key subset? rename rename-keys project difference)
 
; Only public:
=> (keys (ns-publics 'clojure.set))
(union map-invert join select intersection superset? index subset? rename rename-keys project difference)

D[edit]

D allows you to perform compile-time reflection for code generation, such as printing a list of the functions in a struct or class.

struct S {
bool b;
 
void foo() {}
private void bar() {}
}
 
class C {
bool b;
 
void foo() {}
private void bar() {}
}
 
void printMethods(T)() if (is(T == class) || is(T == struct)) {
import std.stdio;
import std.traits;
 
writeln("Methods of ", T.stringof, ":");
foreach (m; __traits(allMembers, T)) {
static if (__traits(compiles, (typeof(__traits(getMember, T, m))))) {
alias typeof(__traits(getMember, T, m)) ti;
static if (isFunction!ti) {
writeln(" ", m);
}
}
}
}
 
void main() {
printMethods!S;
printMethods!C;
}
Output:
Methods of S:
    foo
    bar
Methods of C:
    foo
    bar
    toString
    toHash
    opCmp
    opEquals
    factory

Elena[edit]

ELENA 5.0 :

import system'routines;
import system'dynamic;
import extensions;
 
class MyClass
{
myMethod1() {}
 
myMethod2(x) {}
}
 
public program()
{
var o := new MyClass();
 
o.__getClass().__getMessages().forEach:(p)
{
console.printLine("o.",p)
}
}
Output:
o.equal[2]
o.notequal[2]
o.toPrintable[1]
o.myMethod1[1]
o.myMethod2[2]
o.#cast[1]

Factor[edit]

In Factor, methods are contained in generic words rather than objects, while methods specialize on a class. Therefore, the programmer must decide whether they want the list of methods in a generic word, or the list of methods that specialize on a class. Luckily, the methods word can do either depending on what type you give it (a word or a class). The returned sequence contains first-class word values suitable for executing.

USING: io math prettyprint see ;
 
"The list of methods contained in the generic word + :" print
\ + methods . nl
 
"The list of methods specializing on the fixnum class:" print
fixnum methods .
Output:
The list of methods contained in the generic word + :
{ M\ bignum + M\ complex + M\ fixnum + M\ float + M\ ratio + }

The list of methods specializing on the fixnum class:
{
    M\ fixnum '
    M\ fixnum (bit-count)
    M\ fixnum (eql?)
    M\ fixnum (log2)
    M\ fixnum (positive>dec)
    M\ fixnum (random-integer)
    M\ fixnum *
    M\ fixnum +
    M\ fixnum -
    M\ fixnum /f
    M\ fixnum /i
    M\ fixnum /mod
    M\ fixnum <
    M\ fixnum <=
    M\ fixnum >
    M\ fixnum >=
    M\ fixnum >bignum
    M\ fixnum >fixnum
    M\ fixnum >float
    M\ fixnum >integer
    M\ fixnum ^n
    M\ fixnum bit?
    M\ fixnum bitand
    M\ fixnum bitnot
    M\ fixnum bitor
    M\ fixnum bitxor
    M\ fixnum eql?
    M\ fixnum equal?
    M\ fixnum hashcode*
    M\ fixnum integer>fixnum
    M\ fixnum integer>fixnum-strict
    M\ fixnum max
    M\ fixnum min
    M\ fixnum mod
    M\ fixnum number=
    M\ fixnum real<=>
    M\ fixnum shift
    M\ fixnum u<
    M\ fixnum u<=
    M\ fixnum u>
    M\ fixnum u>=
}

Go[edit]

Shows the name, method expression and method value of each exported method.
privateMethod is not exported because the first character is lowercase.

package main
 
import (
"fmt"
"image"
"reflect"
)
 
type t int // A type definition
 
// Some methods on the type
func (r t) Twice() t { return r * 2 }
func (r t) Half() t { return r / 2 }
func (r t) Less(r2 t) bool { return r < r2 }
func (r t) privateMethod() {}
 
func main() {
report(t(0))
report(image.Point{})
}
 
func report(x interface{}) {
v := reflect.ValueOf(x)
t := reflect.TypeOf(x) // or v.Type()
n := t.NumMethod()
fmt.Printf("Type %v has %d exported methods:\n", t, n)
const format = "%-6s %-46s %s\n"
fmt.Printf(format, "Name", "Method expression", "Method value")
for i := 0; i < n; i++ {
fmt.Printf(format,
t.Method(i).Name,
t.Method(i).Func.Type(),
v.Method(i).Type(),
)
}
fmt.Println()
}
Output:
Type main.t has 3 exported methods:
Name   Method expression                              Method value
Half   func(main.t) main.t                            func() main.t
Less   func(main.t, main.t) bool                      func(main.t) bool
Twice  func(main.t) main.t                            func() main.t

Type image.Point has 8 exported methods:
Name   Method expression                              Method value
Add    func(image.Point, image.Point) image.Point     func(image.Point) image.Point
Div    func(image.Point, int) image.Point             func(int) image.Point
Eq     func(image.Point, image.Point) bool            func(image.Point) bool
In     func(image.Point, image.Rectangle) bool        func(image.Rectangle) bool
Mod    func(image.Point, image.Rectangle) image.Point func(image.Rectangle) image.Point
Mul    func(image.Point, int) image.Point             func(int) image.Point
String func(image.Point) string                       func() string
Sub    func(image.Point, image.Point) image.Point     func(image.Point) image.Point

J[edit]

 
NB. define a stack class
coclass 'Stack'
create =: 3 : 'items =: i. 0'
push =: 3 : '# items =: items , < y'
top =: 3 : '> {: items'
pop =: 3 : ([;._2' a =. top 0; items =: }: items; a;')
destroy =: codestroy
cocurrent 'base'
 
names_Stack_'' NB. all names
create destroy pop push top
 
'p' names_Stack_ 3 NB. verbs that start with p
pop push
 
 
NB. make an object. The dyadic definition of cownew invokes the create verb
S =: conew~ 'Stack'
 
names__S'' NB. object specific names
COCREATOR items
 
 
pop__S NB. introspection: get the verbs definition
3 : 0
a =. top 0
items =: }: items
a
)
 
 
NB. get the search path of object S
copath S
┌─────┬─┐
│Stack│z│
└─────┴─┘
 
 
names__S 0 NB. get the object specific data
COCREATOR items
 
 

Java[edit]

import java.lang.reflect.Method;
 
public class ListMethods {
public int examplePublicInstanceMethod(char c, double d) {
return 42;
}
 
private boolean examplePrivateInstanceMethod(String s) {
return true;
}
 
public static void main(String[] args) {
Class clazz = ListMethods.class;
 
System.out.println("All public methods (including inherited):");
for (Method m : clazz.getMethods()) {
System.out.println(m);
}
System.out.println();
System.out.println("All declared methods (excluding inherited):");
for (Method m : clazz.getDeclaredMethods()) {
System.out.println(m);
}
}
}
Output:
public static void ListMethods.main(java.lang.String[])
public int ListMethods.examplePublicInstanceMethod(char,double)
public final void java.lang.Object.wait(long,int) throws java.lang.InterruptedException
public final native void java.lang.Object.wait(long) throws java.lang.InterruptedException
public final void java.lang.Object.wait() throws java.lang.InterruptedException
public boolean java.lang.Object.equals(java.lang.Object)
public java.lang.String java.lang.Object.toString()
public native int java.lang.Object.hashCode()
public final native java.lang.Class java.lang.Object.getClass()
public final native void java.lang.Object.notify()
public final native void java.lang.Object.notifyAll()

All declared methods (excluding inherited):
public static void ListMethods.main(java.lang.String[])
public int ListMethods.examplePublicInstanceMethod(char,double)
private boolean ListMethods.examplePrivateInstanceMethod(java.lang.String)

JavaScript[edit]

In JavaScript, methods are properties that are functions, so methods are retrieved by getting properties and filtering. There are multiple ways of getting property names, each of which include different subsets of an object's properties, such as enumerable or inherited properties.

// Sample classes for reflection
function Super(name) {
this.name = name;
this.superOwn = function() { return 'super owned'; };
}
Super.prototype = {
constructor: Super
className: 'super',
toString: function() { return "Super(" + this.name + ")"; },
doSup: function() { return 'did super stuff'; }
}
 
function Sub() {
Object.getPrototypeOf(this).constructor.apply(this, arguments);
this.rest = [].slice.call(arguments, 1);
this.subOwn = function() { return 'sub owned'; };
}
Sub.prototype = Object.assign(
new Super('prototype'),
{
constructor: Sub
className: 'sub',
toString: function() { return "Sub(" + this.name + ")"; },
doSub: function() { return 'did sub stuff'; }
});
 
Object.defineProperty(Sub.prototype, 'shush', {
value: function() { return ' non-enumerable'; },
enumerable: false // the default
});
 
var sup = new Super('sup'),
sub = new Sub('sub', 0, 'I', 'two');
 
Object.defineProperty(sub, 'quiet', {
value: function() { return 'sub owned non-enumerable'; },
enumerable: false
});
 
// get enumerable methods on an object and its ancestors
function get_method_names(obj) {
var methods = [];
for (var p in obj) {
if (typeof obj[p] == 'function') {
methods.push(p);
}
}
return methods;
}
 
get_method_names(sub);
//["subOwn", "superOwn", "toString", "doSub", "doSup"]
 
// get enumerable properties on an object and its ancestors
function get_property_names(obj) {
var properties = [];
for (var p in obj) {
properties.push(p);
}
return properties;
}
 
// alternate way to get enumerable method names on an object and its ancestors
function get_method_names(obj) {
return get_property_names(obj)
.filter(function(p) {return typeof obj[p] == 'function';});
}
 
get_method_names(sub);
//["subOwn", "superOwn", "toString", "doSub", "doSup"]
 
// get enumerable & non-enumerable method names set directly on an object
Object.getOwnPropertyNames(sub)
.filter(function(p) {return typeof sub[p] == 'function';})
//["subOwn", "shhh"]
 
// get enumerable method names set directly on an object
Object.keys(sub)
.filter(function(p) {return typeof sub[p] == 'function';})
//["subOwn"]
 
// get enumerable method names & values set directly on an object
Object.entries(sub)
.filter(function(p) {return typeof p[1] == 'function';})
//[["subOwn", function () {...}]]

Julia[edit]

Works with: Julia version 0.6
methods(methods)
methods(println)
Output:
# 3 methods for generic function "methods":
methods(f::Core.Builtin) in Base at reflection.jl:588
methods(f::ANY) in Base at reflection.jl:601
methods(f::ANY, t::ANY) in Base at reflection.jl:580

# 3 methods for generic function "println":
println(io::IO) in Base at coreio.jl:6
println(io::IO, xs...) in Base at strings/io.jl:54
println(xs...) in Base at coreio.jl:5

Kotlin[edit]

Note that kotlin-reflect.jar needs to be included in the classpath for this program.

// Version 1.2.31
 
import kotlin.reflect.full.functions
 
open class MySuperClass {
fun mySuperClassMethod(){}
}
 
open class MyClass : MySuperClass() {
fun myPublicMethod(){}
 
internal fun myInternalMethod(){}
 
protected fun myProtectedMethod(){}
 
private fun myPrivateMethod(){}
}
 
fun main(args: Array<String>) {
val c = MyClass::class
println("List of methods declared in ${c.simpleName} and its superclasses:\n")
val fs = c.functions
for (f in fs) println("${f.name}, ${f.visibility}")
}
Output:
List of methods declared in MyClass and its superclasses:

myInternalMethod, INTERNAL
myPrivateMethod, PRIVATE
myProtectedMethod, PROTECTED
myPublicMethod, PUBLIC
equals, PUBLIC
hashCode, PUBLIC
mySuperClassMethod, PUBLIC
toString, PUBLIC

Lingo[edit]

-- parent script "MyClass"
 
on foo (me)
put "foo"
end
 
on bar (me)
put "bar"
end
obj = script("MyClass").new()
put obj.handlers()
-- [#foo, #bar]
 
-- The returned list contains the object's methods ("handlers") as "symbols".
-- Those can be used like this to call the corresponding method:
call(#foo, obj)
-- "foo"
 
call(#bar, obj)
-- "bar"

Lua[edit]

function helloWorld()
print "Hello World"
end
 
-- Will list all functions in the given table, but does not recurse into nexted tables
function printFunctions(t)
local s={}
local n=0
for k in pairs(t) do
n=n+1 s[n]=k
end
table.sort(s)
for k,v in ipairs(s) do
f = t[v]
if type(f) == "function" then
print(v)
end
end
end
 
printFunctions(_G)
Output:
assert
collectgarbage
dofile
error
gcinfo
getfenv
getmetatable
helloWorld
ipairs
load
loadfile
loadstring
module
newproxy
next
pairs
pcall
print
printFunctions
rawequal
rawget
rawset
require
select
setfenv
setmetatable
tonumber
tostring
type
unpack
xpcall

Nanoquery[edit]

// create a class with methods that will be listed
class Methods
def static method1()
return "this is a static method. it will not be printed"
end
def method2()
return "this is not a static method"
end
 
def operator=(other)
// operator methods are listed by both their defined name and
// by their internal name, which in this case is isEqual
return true
end
end
 
// lists all nanoquery and java native methods
for method in dir(new(Methods))
println method
end
Output:
add
toString
exp
getField
copy
divide
setField
multiply
lessThan
greaterThan
getInnerClass
getInnerStack
getInterpreter
serialize
deserialize
deserialize
subtract
isSerializable
isEqual
mod
wait
wait
wait
equals
hashCode
getClass
notify
notifyAll
Methods
method2
method2
operator=

Nim[edit]

Nim separates data and functions, but with method call syntax, any function that has that object as its first parameter can be used like a method:

type Foo = object
proc bar(f:Foo) = echo "bar"
var f:Foo
f.bar()

this also means object 'methods' can be defined across multiple source files

It's possible to inspect a module's entire AST at compile time with a macro, here we are interested in

  • any method-like definitions (funcs,procs,iterators,methods,macros,templates,etc)

that are

  • exported (publicly useable)

and

  • have our type, or a related type (var Foo, ptr Foo, ref Foo) as first parameter
import macros, fusion/matching
{.experimental: "caseStmtMacros".}
macro listMethods(modulepath:static string, typename): untyped =
let module = parseStmt(staticRead(modulepath))
var procs: seq[string]
for stmt in module:
case stmt
of (kind: in {nnkFuncDef,nnkProcDef..nnkIteratorDef}):#any kind of methody thing
case stmt
of [
PostFix[_, @name],#only exported procs
_,
_,
FormalParams[
_, #return type
IdentDefs[ #first parameter
_, #paramname
(typename | #Foo
VarTy[typename] | #var Foo
PtrTy[typename] | #ptr Foo
RefTy[typename]), #ref Foo
_],
.._], #other params
.._]: procs.add($name)
result = newLit(procs)
 
 
type Bar = object
proc a*(b: Bar) = discard
func b*(b: Bar, c: int): string = discard
template c*(b: var Bar, c: float) = discard
iterator d*(b: ptr Bar):int = discard
method e*(b:ref Bar) {.base.} = discard
proc second_param*(a: int, b: Bar) = discard #will not match
proc unexported(a: Bar) = discard #will not match
 
 
template thisfile:string =
instantiationInfo().filename
echo thisfile.listMethods(Bar)
 
#works for any module:
#const lib = "/path/to/nim/lib/pure/collections/tables.nim"
echo listMethods(lib,Table[A,B])
Output:
@["a", "b", "c", "d", "e"]
@["[]=", "[]", "[]", "hasKey", "contains", "hasKeyOrPut", "getOrDefault", "getOrDefault", "mgetOrPut", "len", "add", "del", "pop", "take", "clear", "$", "withValue", "withValue", "pairs", "mpairs", "keys", "values", "mvalues", "allValues"]

Objective-C[edit]

#import <Foundation/Foundation.h>
#import <objc/runtime.h>
 
@interface Foo : NSObject
@end
@implementation Foo
- (int)bar:(double)x {
return 42;
}
@end
 
int main() {
unsigned int methodCount;
Method *methods = class_copyMethodList([Foo class], &methodCount);
for (unsigned int i = 0; i < methodCount; i++) {
Method m = methods[i];
SEL selector = method_getName(m);
const char *typeEncoding = method_getTypeEncoding(m);
NSLog(@"%@\t%s", NSStringFromSelector(selector), typeEncoding);
}
free(methods);
return 0;
}
Output:
bar:	[email protected]:8d16

Perl[edit]

Given this simple class, display results of introspection of the symbol table hash. Note that the overloaded comparison operator also shows up in the list of methods.

package Nums;
 
use overload ('<=>' => \&compare);
sub new { my $self = shift; bless [@_] }
sub flip { my @a = @_; 1/$a }
sub double { my @a = @_; 2*$a }
sub compare { my ($a, $b) = @_; abs($a) <=> abs($b) }
 
my $a = Nums->new(42);
print "$_\n" for %{ref ($a)."::" });
Output:
double
(<=>
new
BEGIN
flip
compare
((

Another alternative is the module Class::MOP, which implements a meta-object protocol for the Perl. It alters nothing about Perl's object system; it is just a tool for manipulation and introspection. Note that this output includes methods inherited methods (DOES, VERSION, can, isa)

use Class::MOP;
my $meta = Class::MOP::Class->initialize( ref $a );
say join "\n", $meta->get_all_method_names()
Output:
compare
new
(<=>
VERSION
double
isa
flip
can
DOES

Phix[edit]

emulated[edit]

Even before the introduction of classes (see below), but this sort of thing was fairly easy to emulate.

enum METHODS, PROPERTIES

sequence all_methods = {}

function method_visitor(object key, object /*data*/, /*user_data*/)
    all_methods = append(all_methods,key)
    return 1
end function

function get_all_methods(object o)
    all_methods = {}
    traverse_dict(method_visitor,0,o[METHODS])
    return all_methods
end function

function exists()
    return "exists"
end function

--class X: Xmethods emulates a vtable
constant Xmethods = new_dict({{"exists",exists}})

--class X: destructor
procedure destructor(object o)
    destroy_dict(o[PROPERTIES])
end procedure

--class X: create new instances
function newX(object x,y)
    integer Xproperties = new_dict({{"x",x},{"y",y}})
    object res = delete_routine({Xmethods,Xproperties},destructor)
    return res
end function

object x = newX(2,"string")

?get_all_methods(x)
Output:
{"exists"}

classes[edit]

Library: Phix/Class

Needs 0.8.1+ Note that content from and parameters to get_struct_fields() may change between releases.

class c
    private function foo();
    public procedure bar();
end class
 
include builtins\structs.e as structs
sequence f = structs:get_struct_fields(c)
for i=1 to length(f) do
    {string name, integer tid, integer flags} = f[i]
    if and_bits(flags,SF_RTN) then
        if tid!=ST_INTEGER then ?9/0 end if -- (sanity check)
        printf(1,"%s:%s\n",{name,structs:get_field_flags(c,name,true)})
    end if
end for
Output:
foo:SF_PRIVATE+SF_FUNC
bar:SF_PROC

PHP[edit]

<?
class Foo {
function bar(int $x) {
}
}
 
$method_names = get_class_methods('Foo');
foreach ($method_names as $name) {
echo "$name\n";
$method_info = new ReflectionMethod('Foo', $name);
echo $method_info;
}
?>
Output:
bar
Method [ <user> public method bar ] {
  @@ /Users/xuanluo/test.php 3 - 4

  - Parameters [1] {
    Parameter #0 [ <required> int $x ]
  }
}

Python[edit]

In Python, methods are properties that are functions, so methods are retrieved by getting properties and filtering, using (e.g.) dir() and a list comprehension. Python's inspect module offers a simple way to get a list of an object's methods, though it won't include wrapped, C-native methods (type 'method-wrapper', type 'wrapper_descriptor', or class 'wrapper_descriptor', depending on version). Dynamic methods can be listed by overriding __dir__ in the class.

import inspect
 
# Sample classes for inspection
class Super(object):
def __init__(self, name):
self.name = name
 
def __str__(self):
return "Super(%s)" % (self.name,)
 
def doSup(self):
return 'did super stuff'
 
@classmethod
def cls(cls):
return 'cls method (in sup)'
 
@classmethod
def supCls(cls):
return 'Super method'
 
@staticmethod
def supStatic():
return 'static method'
 
class Other(object):
def otherMethod(self):
return 'other method'
 
class Sub(Other, Super):
def __init__(self, name, *args):
super(Sub, self).__init__(name);
self.rest = args;
self.methods = {}
 
def __dir__(self):
return list(set( \
sum([dir(base) for base in type(self).__bases__], []) \
+ type(self).__dict__.keys() \
+ self.__dict__.keys() \
+ self.methods.keys() \
))
 
def __getattr__(self, name):
if name in self.methods:
if callable(self.methods[name]) and self.methods[name].__code__.co_argcount > 0:
if self.methods[name].__code__.co_varnames[0] == 'self':
return self.methods[name].__get__(self, type(self))
if self.methods[name].__code__.co_varnames[0] == 'cls':
return self.methods[name].__get__(type(self), type)
return self.methods[name]
raise AttributeError("'%s' object has no attribute '%s'" % (type(self).__name__, name))
 
def __str__(self):
return "Sub(%s)" % self.name
 
def doSub():
return 'did sub stuff'
 
@classmethod
def cls(cls):
return 'cls method (in Sub)'
 
@classmethod
def subCls(cls):
return 'Sub method'
 
@staticmethod
def subStatic():
return 'Sub method'
 
sup = Super('sup')
sub = Sub('sub', 0, 'I', 'two')
sub.methods['incr'] = lambda x: x+1
sub.methods['strs'] = lambda self, x: str(self) * x
 
# names
[method for method in dir(sub) if callable(getattr(sub, method))]
# instance methods
[method for method in dir(sub) if callable(getattr(sub, method)) and hasattr(getattr(sub, method), '__self__') and getattr(sub, method).__self__ == sub]
#['__dir__', '__getattr__', '__init__', '__str__', 'doSub', 'doSup', 'otherMethod', 'strs']
# class methods
[method for method in dir(sub) if callable(getattr(sub, method)) and hasattr(getattr(sub, method), '__self__') and getattr(sub, method).__self__ == type(sub)]
#['__subclasshook__', 'cls', 'subCls', 'supCls']
# static & free dynamic methods
[method for method in dir(sub) if callable(getattr(sub, method)) and type(getattr(sub, method)) == type(lambda:nil)]
#['incr', 'subStatic', 'supStatic']
 
# names & values; doesn't include wrapped, C-native methods
inspect.getmembers(sub, predicate=inspect.ismethod)
# names using inspect
map(lambda t: t[0], inspect.getmembers(sub, predicate=inspect.ismethod))
#['__dir__', '__getattr__', '__init__', '__str__', 'cls', 'doSub', 'doSup', 'otherMethod', 'strs', 'subCls', 'supCls']

Raku[edit]

(formerly Perl 6)

You can get a list of an object's methods using .^methods, which is part of the Meta Object Protocol.
Each is represented as a Method object that contains a bunch of info:

class Foo {
method foo ($x) { }
method bar ($x, $y) { }
method baz ($x, $y?) { }
}
 
my $object = Foo.new;
 
for $object.^methods {
say join ", ", .name, .arity, .count, .signature.gist
}
Output:
foo, 2, 2, (Foo $: $x, *%_)
bar, 3, 3, (Foo $: $x, $y, *%_)
baz, 2, 3, (Foo $: $x, $y?, *%_)

Ring[edit]

 
# Project : Reflection/List methods
 
o1 = new test
aList = methods(o1)
for x in aList
cCode = "o1."+x+"()"
eval(cCode)
next
Class Test
func f1
see "hello from f1" + nl
func f2
see "hello from f2" + nl
func f3
see "hello from f3" + nl
func f4
see "hello from f4" + nl
 

Output:

hello from f1
hello from f2
hello from f3
hello from f4

Ruby[edit]

Ruby has various properties that will return lists of methods:

Dynamic methods can be listed by overriding these methods. Ancestor methods can be filtered out by subtracting a list of methods from the ancestor.

# Sample classes for reflection
class Super
CLASSNAME = 'super'
 
def initialize(name)
@name = name
def self.superOwn
'super owned'
end
end
 
def to_s
"Super(#{@name})"
end
 
def doSup
'did super stuff'
end
 
def self.superClassStuff
'did super class stuff'
end
 
protected
def protSup
"Super's protected"
end
 
private
def privSup
"Super's private"
end
end
 
module Other
def otherStuff
'did other stuff'
end
end
 
class Sub < Super
CLASSNAME = 'sub'
attr_reader :dynamic
 
include Other
 
def initialize(name, *args)
super(name)
@rest = args;
@dynamic = {}
def self.subOwn
'sub owned'
end
end
 
def methods(regular=true)
super + @dynamic.keys
end
 
def method_missing(name, *args, &block)
return super unless @dynamic.member?(name)
method = @dynamic[name]
if method.arity > 0
if method.parameters[0][1] == :self
args.unshift(self)
end
if method.lambda?
# procs (hence methods) set missing arguments to `nil`, lambdas don't, so extend args explicitly
args += args + [nil] * [method.arity - args.length, 0].max
# procs (hence methods) discard extra arguments, lambdas don't, so discard arguments explicitly (unless lambda is variadic)
if method.parameters[-1][0] != :rest
args = args[0,method.arity]
end
end
method.call(*args)
else
method.call
end
end
 
def public_methods(all=true)
super + @dynamic.keys
end
 
def respond_to?(symbol, include_all=false)
@dynamic.member?(symbol) || super
end
 
def to_s
"Sub(#{@name})"
end
 
def doSub
'did sub stuff'
end
 
def self.subClassStuff
'did sub class stuff'
end
 
protected
def protSub
"Sub's protected"
end
 
private
def privSub
"Sub's private"
end
end
 
sup = Super.new('sup')
sub = Sub.new('sub', 0, 'I', 'two')
sub.dynamic[:incr] = proc {|i| i+1}
 
p sub.public_methods(false)
#=> [:superOwn, :subOwn, :respond_to?, :method_missing, :to_s, :methods, :public_methods, :dynamic, :doSub, :incr]
 
p sub.methods - Object.methods
#=> [:superOwn, :subOwn, :method_missing, :dynamic, :doSub, :protSub, :otherStuff, :doSup, :protSup, :incr]
 
p sub.public_methods - Object.public_methods
#=> [:superOwn, :subOwn, :method_missing, :dynamic, :doSub, :otherStuff, :doSup, :incr]
 
p sub.methods - sup.methods
#=> [:subOwn, :method_missing, :dynamic, :doSub, :protSub, :otherStuff, :incr]
 
# singleton/eigenclass methods
p sub.methods(false)
#=> [:superOwn, :subOwn, :incr]
p sub.singleton_methods
#=> [:superOwn, :subOwn]

Scala[edit]

Java Interoperability[edit]

Output:
Best seen running in your browser by Scastie (remote JVM).
object ListMethods extends App {
 
private val obj = new {
def examplePublicInstanceMethod(c: Char, d: Double) = 42
 
private def examplePrivateInstanceMethod(s: String) = true
}
private val clazz = obj.getClass
 
println("All public methods (including inherited):")
clazz.getMethods.foreach(m => println(s"${m}"))
 
println("\nAll declared fields (excluding inherited):")
clazz.getDeclaredMethods.foreach(m => println(s"${m}}"))
 
}

Sidef[edit]

The super-method Object.methods() returns an Hash with method names as keys and LazyMethod objects as values. Each LazyMethod can be called with zero or more arguments, internally invoking the method on the object on which .methods was called.

class Example {
method foo { }
method bar(arg) { say "bar(#{arg})" }
}
 
var obj = Example()
say obj.methods.keys.sort #=> ["bar", "call", "foo", "new"]
 
var meth = obj.methods.item(:bar) # `LazyMethod` representation for `obj.bar()`
meth(123) # calls obj.bar()

Tcl[edit]

In TclOO, the info command can inspect the complete state of an object or a class, including private and methods:

% info object methods ::oo::class -all -private
<cloned> create createWithNamespace destroy eval new unknown variable varname

For many more examples, see https://wiki.tcl.tk/40640 and the linked manuals for info class and info object. Plugins for tkcon and twDebugInspector (also found on the wiki) use this to create interactive object inspectors similar to Smalltalk's.

Wren[edit]

Wren doesn't currently have reflection as such but it's possible to identify a class's methods and list them at runtime by placing a suitable attribute on the class.

Note that, since attributes are stored internally as a map, the order in which the method names appear is undefined.

#! instance_methods(m, n, o)
#! instance_properties(p, q, r)
class C {
construct new() {}
 
m() {}
 
n() {}
 
o() {}
 
p {}
 
q {}
 
r {}
}
 
var c = C.new() // create an object of type C
System.print("List of instance methods available for object 'c':")
for (method in c.type.attributes.self["instance_methods"]) System.print(method.key)
Output:
List of instance methods available for object 'c':
n
m
o

zkl[edit]

Every object has a "methods" method, which returns a list of method names [for that object]. If you want to get a method from a string, you can use reflection.

methods:=List.methods;
methods.println();
List.method(methods[0]).println(); // == .Method(name) == .BaseClass(name)
Output:
L("create","createLong","copy","toString","toBool","toData","toDictionary","toList","isType","isInstanceOf","holds","append","write","writeln","read","readln","extend","insert","find","findBop",...)
Method(TSList.create)