I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Magic squares of singly even order

Magic squares of singly even order
You are encouraged to solve this task according to the task description, using any language you may know.

A magic square is an NxN square matrix whose numbers consist of consecutive numbers arranged so that the sum of each row and column, and both diagonals are equal to the same sum (which is called the magic number or magic constant).

A magic square of singly even order has a size that is a multiple of 4, plus 2 (e.g. 6, 10, 14). This means that the subsquares have an odd size, which plays a role in the construction.

Create a magic square of 6 x 6.

## 11l

Translation of: Python
`-V LOG_10 = 2.302585092994 F build_oms(=s)   I s % 2 == 0      s++   V q = [[0] * s] * s   V p = 1   V i = s I/ 2   V j = 0    L p <= (s * s)      q[i][j] = p      V ti = i + 1      I ti >= s         ti = 0      V tj = j - 1      I tj < 0         tj = s - 1      I q[ti][tj] != 0         ti = i         tj = j + 1      i = ti      j = tj      p++    R (q, s) F build_sems(=s)   I s % 2 == 1      s++   L s % 4 == 0      s += 2   V q = [[0] * s] * s   V z = s I/ 2   V b = z * z   V c = 2 * b   V d = 3 * b   V o = build_oms(z)    L(j) 0 .< z      L(i) 0 .< z         V a = o[0][i][j]         q[i][j] = a         q[i + z][j + z] = a + b         q[i + z][j] = a + c         q[i][j + z] = a + d    V lc = z I/ 2   V rc = lc   L(j) 0 .< z      L(i) 0 .< s         I i < lc         | i > s - rc         | (i == lc & j == lc)            I !(i == 0 & j == lc)               swap(&q[i][j], &q[i][j + z])   R (q, s) F display(q)   V s = q[1]   print(" - #. x #.\n".format(s, s))   V k = 1 + Int(floor(log(s * s) / :LOG_10))   L(j) 0 .< s      L(i) 0 .< s         print(String(q[0][i][j]).zfill(k), end' ‘ ’)      print()   print(‘Magic sum: #.’.format(s * ((s * s) + 1) I/ 2)) print(‘Singly Even Magic Square’, end' ‘’)display(build_sems(6))`
Output:
```Singly Even Magic Square - 6 x 6

35 01 06 26 19 24
03 32 07 21 23 25
31 09 02 22 27 20
08 28 33 17 10 15
30 05 34 12 14 16
04 36 29 13 18 11
Magic sum: 111
```

## 360 Assembly

`*        Magic squares of singly even order - 21/04/2021MAGSQSE  CSECT         USING  MAGSQSE,R13        base register         B      72(R15)            skip savearea         DC     17F'0'             savearea         SAVE   (14,12)            save previous context         ST     R13,4(R15)         link backward         ST     R15,8(R13)         link forward         LR     R13,R15            set addressability         LH     R2,N               n         MH     R2,N               *n         LA     R2,1(R2)           +1         MH     R2,N               *n         SRA    R2,1               /2         STH    R2,MAGSUM          magsum=n*(n^2+1)/2         LH     R2,N               n         SRA    R2,1               /2         STH    R2,ND              nd=n/2         LH     R2,ND              n         MH     R2,ND              *n         STH    R2,ND2             nd2=nd^2         LH     R2,N               n         SH     R2,=H'2'           -2         SRA    R2,2               /4         STH    R2,LL              ll=(n-2)/4         LH     R6,ND              nd         SRA    R6,1               /2         LA     R6,1(R6)           i=nd/2+1         LA     R7,1               j=1         LR     R5,R7              nr=1         LH     R4,N               n       IF    CH,R4,LT,=H'6' THEN   if n<6 then         XPRNT  =C'Error: too small',16         B      FIN                  stop       ENDIF    ,                  endif         LH     R2,N               n         SH     R2,=H'2'           -2         SRDA   R2,32              ~         D      R2,=F'4'           /4       IF   LTR,R2,NZ,R2 THEN      if mod(n-2,4)<>0 then         XPRNT  =C'Error: not possible',19         B      FIN                  stop       ENDIF    ,                  endifLOOP     EQU    *                  do loop --------------v         LR     R1,R6                i         LR     R2,R7                j         BAL    R14,SQXY             [email protected](i,j)         LH     R2,SQ(R1)            sq(i,j)       IF   LTR,R2,Z,R2 THEN         if sq(i,j)=0 then         STH    R5,SQ(R1)              sq(i,j)=nr             _A         LR     R1,R6                  i         AH     R1,ND                  +nd         LR     R2,R7                  j         AH     R2,ND                  +nd         BAL    R14,SQXY               [email protected](i+nd,j+nd)         LR     R3,R5                  nr         AH     R3,ND2                 +nd2         STH    R3,SQ(R1)              sq(i+nd,j+nd)=nr+nd2   _B         LR     R1,R6                  i         AH     R1,ND                  +nd         LR     R2,R7                  j         BAL    R14,SQXY               [email protected](i+nd,j)         LH     R3,ND2                 nd2         SLA    R3,1                   *2         AR     R3,R5                  +nr         STH    R3,SQ(R1)              sq(i+nd,j)=nr+nd2*2;   _C         LR     R1,R6                  i         LR     R2,R7                  j         AH     R2,ND                  +nd         BAL    R14,SQXY               [email protected](i,j+nd)         LH     R3,ND2                 nd2         MH     R3,=H'3'               *3         AR     R3,R5                  +nr         STH    R3,SQ(R1)              sq(i,j+nd)=nr+nd2*3;   _D         LR     R2,R5                  nr         LH     R0,ND                  nd         SRDA   R2,32                  ~         DR     R2,R0                  nr/nd       IF   LTR,R2,Z,R2 THEN           if mod(nr,nd)=0 then         LA     R7,1(R7)                 j=j+1       ELSE     ,                      else         LA     R6,1(R6)                 i=i+1         BCTR   R7,0                     j=j-1       ENDIF    ,                      endif         LA     R5,1(R5)               nr=nr+1       ENDIF    ,                    endif       IF    CH,R6,GT,ND THEN        if i>nd then         LA     R6,1                   i=1         BAL    R12,SQIJ               r2=sq(i,j)       DO WHILE=(LTR,R2,NZ,R2)         do while sq(i,j)<>0          LA     R6,1(R6)                 i=i+1         BAL    R12,SQIJ                 r2=sq(i,j)       ENDDO    ,                      enddo       ENDIF    ,                    endif       IF    CH,R7,LT,=H'1' THEN     if j<1 then         LH     R7,ND                  j=nd         BAL    R12,SQIJ               r2=sq(i,j)       DO WHILE=(LTR,R2,NZ,R2)         do while sq(i,j)<>0          BCTR   R7,0                     j=j-1         BAL    R12,SQIJ                 r2=sq(i,j)       ENDDO    ,                      enddo       ENDIF    ,                    endif         CH     R5,ND2             nr>nd2         BNH    LOOP               until nr>nd2 ---------^         LA     R7,1               j=1 -- swap left side       DO WHILE=(CH,R7,LE,ND)      do j=1 to nd         LA     R6,1                 i=1        DO WHILE=(CH,R6,LE,LL)        do i=1 to ll         BAL    R12,SWAPIJ             swap sq(i,j),sq(i,j+nd)         LA     R6,1(R6)               i++        ENDDO    ,                    enddo i         LA     R7,1(R7)             j++       ENDDO    ,                  enddo j         LH     R7,ND              nd         SRA    R7,1               /2         LA     R7,1(R7)           j=nd/2+1         LA     R1,1               1         LR     R2,R7              j         BAL    R14,SQXY           [email protected](1,j)         LR     R3,R1              [email protected](1,j)         LA     R1,1               1         LR     R2,R7              j         AH     R2,ND              j+nd         BAL    R14,SQXY           [email protected](1,j+nd)         BAL    R14,SWAPXY         swap sq(1,j),sq(1,j+nd)              LH     R1,LL              ll         LA     R1,1(R1)           ll+1         LR     R2,R7              j         BAL    R14,SQXY           [email protected](ll+1,j)         LR     R3,R1              [email protected](ll+1,j)         LH     R1,LL              ll         LA     R1,1(R1)           +1         LR     R2,R7              j         AH     R2,ND              +nd         BAL    R14,SQXY           [email protected](ll+1,j+nd)         BAL    R14,SWAPXY         swap sq(ll+1,j),sq(ll+1,j+nd)         LH     R5,N               n         SH     R5,LL              -ll         LA     R5,2(R5)           r5=n-ll+2         LA     R7,1               j=1 -- swap right side       DO WHILE=(CH,R7,LE,ND)      do j=1 to nd         LR     R6,R5                i=n-ll+2        DO WHILE=(CH,R6,LE,N)         do i=n-ll+2 to n         BAL    R12,SWAPIJ             swap sq(i,j),sq(i,j+nd)         LA     R6,1(R6)               i++        ENDDO    ,                    enddo i         LA     R7,1(R7)             j++       ENDDO    ,                  enddo j         LA     R7,1               j=1  check columms and rows       DO WHILE=(CH,R7,LE,N)       do j=1 to n         SR     R4,R4                nr=0         SR     R5,R5                nc=0         LA     R6,1                 i=1        DO WHILE=(CH,R6,LE,N)         do i=1 to n         LR     R1,R6                  i         LR     R2,R7                  j         BAL    R14,SQXY               [email protected](i,j)         AH     R4,SQ(R1)              nr=nr+sq(i,j)         LR     R1,R7                  j         LR     R2,R6                  i         BAL    R14,SQXY               [email protected](j,i)         AH     R5,SQ(R1)              nc=nc+sq(j,i)         LA     R6,1(R6)               i++        ENDDO    ,                    enddo i       IF    CH,R4,NE,MAGSUM,OR,CH,R5,NE,MAGSUM THEN         XPRNT  =C'Error: row/col value<>magsum',28         B      FIN                    stop       ENDIF    ,                    endif         LA     R7,1(R7)             j++       ENDDO    ,                  enddo j         SR     R4,R4              nr=0         SR     R5,R5              nc=0         LA     R6,1               i=1        DO WHILE=(CH,R6,LE,N)       do i=1 to n         LR     R1,R6                i         LR     R2,R6                i         BAL    R14,SQXY             [email protected](i,i)         AH     R4,SQ(R1)            nr=nr+sq(i,i)         LH     R1,N                 n         SR     R1,R6                n-i         LA     R1,1(R1)             n-i+1         LR     R2,R1                n-i+1         BAL    R14,SQXY             [email protected](i,i)         AH     R5,SQ(R1)            nc=nc+sq(n-i+1,n-i+1)         LA     R6,1(R6)             i++        ENDDO    ,                  enddo i       IF    CH,R4,NE,MAGSUM,OR,CH,R5,NE,MAGSUM THEN         XPRNT  =C'Error: diag value<>magsum',25         B      FIN                  stop       ENDIF    ,                  endif         MVC    PG(31),=C'Single even magic square size: '         LH     R1,N               n         XDECO  R1,XDEC            edit n         MVC    PG+31(3),XDEC+9    output n         XPRNT  PG,34              print buffer         MVC    PG(15),=C'The magic sum= '         LH     R1,MAGSUM          magsum         XDECO  R1,XDEC            edit magsum         MVC    PG+15(4),XDEC+8    output magsum         XPRNT  PG,19              print buffer         LA     R7,1               j=1        DO WHILE=(CH,R7,LE,N)       do j=1 to n         MVC    PG,=CL120' '         clear buffer         LA     R9,PG                @buffer         LA     R6,1                 i=1        DO WHILE=(CH,R6,LE,N)         do i=1 to n         LR     R1,R6                  i         LR     R2,R7                  j         BAL    R14,SQXY               [email protected](i,i)         LH     R2,SQ(R1)              sq(i,j)         XDECO  R2,XDEC                edit sq(i,j)         MVC    0(4,R9),XDEC+8         output  sq(i,j)         LA     R9,4(R9)               @buffer+=4         LA     R6,1(R6)               i++        ENDDO    ,                    enddo i         XPRNT  PG,L'PG              print buffer         LA     R7,1(R7)             j++       ENDDO    ,                  enddo jFIN      L      R13,4(0,R13)       restore previous savearea pointer         RETURN (14,12),RC=0       restore registers from calling saveSQIJ     CNOP   0,4                routine sq(i,j)         LR     R1,R6              i         LR     R2,R7              j         BAL    R14,SQXY           [email protected](i,j)         LH     R2,SQ(R1)          sq(i,j)         BR     R12                returnSQXY     CNOP   0,4                routine sq(r1,r2)         BCTR   R1,0               -1         MH     R1,N               *n         BCTR   R2,0               -1         AR     R1,R2              (r1-1)*n+(r2-1)         SLA    R1,1               *2 (H)         BR     R14                returnSWAPIJ   CNOP   0,4                routine swap sq(i,j),sq(i,j+nd)         LR     R1,R6              i         LR     R2,R7              j         BAL    R14,SQXY           [email protected](i,j)         LR     R3,R1              [email protected](i,j)         LR     R1,R6              i         LR     R2,R7              j         AH     R2,ND              +nd         BAL    R14,SQXY           [email protected](i,j+nd)         BAL    R14,SWAPXY         swap         BR     R12                returnSWAPXY   CNOP   0,4                routine swap sq(r1),sq(r3)         LH     R0,SQ(R3)          r0=sq(r3)         LH     R2,SQ(R1)          r2=sq(r1)         STH    R2,SQ(R3)          sq(r3)=r2         STH    R0,SQ(R1)          sq(r1)=r0         BR     R14                returnNN       EQU    6                  <== parameter (6,10,14,18,22,26,...)N        DC     AL2(NN)            nSQ       DC     (NN*NN)H'0'        array sq(n,n)MAGSUM   DS     H                  magsumND       DS     H                  ndND2      DS     H                  nd2LL       DS     H                  llPG       DC     CL120' '           bufferXDEC     DS     CL12               temp for xdeco         REGEQU         END    MAGSQSE`
Output:
```Single even magic square size:   6
The magic sum=  111
35   1   6  26  19  24
3  32   7  21  23  25
31   9   2  22  27  20
8  28  33  17  10  15
30   5  34  12  14  16
4  36  29  13  18  11
```

## Befunge

The size, N, is specified by the first value on the stack. In the example below it is set to 6, but adequate space has been left in the code to replace that with a larger value if desired.

`6>>>>>:00p:2/vv1:%g01p04:%g00::p03*2%g01/g00::[email protected]\00g/10g/3*4vv>0g\-1-30g+1+10g%10g*\30g+1+10g%1+ +:%4+*2/g01g0<vv4*`\g02\!`\0:-!-g02/2g03g04-3*2\-\3*:p02/4-2:p01<>0g00g20g-`+!!*+10g:**+.:00g%!9+,:^:`
Output:
```26      19      24      8       1       33
21      23      25      3       32      7
22      27      20      4       9       29
17      10      15      35      28      6
12      14      16      30      5       34
13      18      11      31      36      2```

## C

Takes number of rows from command line, prints out usage on incorrect invocation.

`    #include<stdlib.h>   #include<ctype.h>   #include<stdio.h>    int** oddMagicSquare(int n) {        if (n < 3 || n % 2 == 0)            return NULL;         int value = 0;        int squareSize = n * n;        int c = n / 2, r = 0,i;         int** result = (int**)malloc(n*sizeof(int*)); 		for(i=0;i<n;i++)			result[i] = (int*)malloc(n*sizeof(int));         while (++value <= squareSize) {            result[r][c] = value;            if (r == 0) {                if (c == n - 1) {                    r++;                } else {                    r = n - 1;                    c++;                }            } else if (c == n - 1) {                r--;                c = 0;            } else if (result[r - 1][c + 1] == 0) {                r--;                c++;            } else {                r++;            }        }        return result;    }     int** singlyEvenMagicSquare(int n) {        if (n < 6 || (n - 2) % 4 != 0)            return NULL;         int size = n * n;        int halfN = n / 2;        int subGridSize = size / 4, i;         int** subGrid = oddMagicSquare(halfN);        int gridFactors[] = {0, 2, 3, 1};        int** result = (int**)malloc(n*sizeof(int*)); 		for(i=0;i<n;i++)			result[i] = (int*)malloc(n*sizeof(int));         for (int r = 0; r < n; r++) {            for (int c = 0; c < n; c++) {                int grid = (r / halfN) * 2 + (c / halfN);                result[r][c] = subGrid[r % halfN][c % halfN];                result[r][c] += gridFactors[grid] * subGridSize;            }        }         int nColsLeft = halfN / 2;        int nColsRight = nColsLeft - 1;         for (int r = 0; r < halfN; r++)            for (int c = 0; c < n; c++) {                if (c < nColsLeft || c >= n - nColsRight                        || (c == nColsLeft && r == nColsLeft)) {                     if (c == 0 && r == nColsLeft)                        continue;                     int tmp = result[r][c];                    result[r][c] = result[r + halfN][c];                    result[r + halfN][c] = tmp;                }            }         return result;    } 	int numDigits(int n){		int count = 1; 		while(n>=10){			n /= 10;			count++;		} 		return count;	} 	void printMagicSquare(int** square,int rows){		int i,j; 		for(i=0;i<rows;i++){			for(j=0;j<rows;j++){				printf("%*s%d",rows - numDigits(square[i][j]),"",square[i][j]);			}			printf("\n");		}		printf("\nMagic constant: %d ", (rows * rows + 1) * rows / 2);	} 	int main(int argC,char* argV[])	{		int n; 		if(argC!=2||isdigit(argV[1][0])==0)			printf("Usage : %s <integer specifying rows in magic square>",argV[0]);		else{			n = atoi(argV[1]);			printMagicSquare(singlyEvenMagicSquare(n),n);		}		return 0;	} `

Invocation and Output:

```C:\rosettaCode>singlyEvenMagicSquare 6
35     1     6    26    19    24
3    32     7    21    23    25
31     9     2    22    27    20
8    28    33    17    10    15
30     5    34    12    14    16
4    36    29    13    18    11

Magic constant: 111
```

## C++

` #include <iostream>#include <sstream>#include <iomanip>using namespace std; class magicSqr{public:     magicSqr() { sqr = 0; }    ~magicSqr() { if( sqr ) delete [] sqr; }     void create( int d ) {        if( sqr ) delete [] sqr;        if( d & 1 ) d++;        while( d % 4 == 0 ) { d += 2; }        sz = d;        sqr = new int[sz * sz];        memset( sqr, 0, sz * sz * sizeof( int ) );        fillSqr();    }    void display() {        cout << "Singly Even Magic Square: " << sz << " x " << sz << "\n";        cout << "It's Magic Sum is: " << magicNumber() << "\n\n";        ostringstream cvr; cvr << sz * sz;        int l = cvr.str().size();         for( int y = 0; y < sz; y++ ) {            int yy = y * sz;            for( int x = 0; x < sz; x++ ) {                cout << setw( l + 2 ) << sqr[yy + x];            }            cout << "\n";        }        cout << "\n\n";    }private:    void siamese( int from, int to ) {        int oneSide = to - from, curCol = oneSide / 2, curRow = 0, count = oneSide * oneSide, s = 1;         while( count > 0 ) {            bool done = false;            while ( false == done ) {                if( curCol >= oneSide ) curCol = 0;                if( curRow < 0 ) curRow = oneSide - 1;                done = true;                if( sqr[curCol + sz * curRow] != 0 ) {                    curCol -= 1; curRow += 2;                    if( curCol < 0 ) curCol = oneSide - 1;                    if( curRow >= oneSide ) curRow -= oneSide;                     done = false;                }            }            sqr[curCol + sz * curRow] = s;            s++; count--; curCol++; curRow--;        }    }    void fillSqr() {        int n = sz / 2, ns = n * sz, size = sz * sz, add1 = size / 2, add3 = size / 4, add2 = 3 * add3;         siamese( 0, n );         for( int r = 0; r < n; r++ ) {            int row = r * sz;            for( int c = n; c < sz; c++ ) {                int m = sqr[c - n + row];                 sqr[c + row] = m + add1;                sqr[c + row + ns] = m + add3;                sqr[c - n + row + ns] = m + add2;            }        }         int lc = ( sz - 2 ) / 4, co = sz - ( lc - 1 );         for( int r = 0; r < n; r++ ) {            int row = r * sz;                for( int c = co; c < sz; c++ ) {                    sqr[c + row] -= add3;                sqr[c + row + ns] += add3;            }        }        for( int r = 0; r < n; r++ ) {            int row = r * sz;                for( int c = 0; c < lc; c++ ) {                int cc = c;                if( r == lc ) cc++;                sqr[cc + row] += add2;                sqr[cc + row + ns] -= add2;            }        }    }    int magicNumber() { return sz * ( ( sz * sz ) + 1 ) / 2; }     void inc( int& a ) { if( ++a == sz ) a = 0; }     void dec( int& a ) { if( --a < 0 ) a = sz - 1; }     bool checkPos( int x, int y ) { return( isInside( x ) && isInside( y ) && !sqr[sz * y + x] ); }     bool isInside( int s ) { return ( s < sz && s > -1 ); }     int* sqr;    int sz;};int main( int argc, char* argv[] ) {    magicSqr s; s.create( 6 );    s.display();    return 0;} `
Output:
```Singly Even Magic Square: 6 x 6
It's Magic Sum is: 111

35   1   6  26  19  24
3  32   7  21  23  25
31   9   2  22  27  20
8  28  33  17  10  15
30   5  34  12  14  16
4  36  29  13  18  11
```

## D

Translation of: Java
` import std.exception;import std.stdio; void main() {    int n = 6;    foreach (row; magicSquareSinglyEven(n)) {        foreach (x; row) {            writef("%2s ", x);        }        writeln();    }    writeln("\nMagic constant: ", (n * n + 1) * n / 2);} int[][] magicSquareOdd(const int n) {    enforce(n >= 3 && n % 2 != 0, "Base must be odd and >2");     int value = 0;    int gridSize = n * n;    int c = n / 2;    int r = 0;     int[][] result = new int[][](n, n);     while(++value <= gridSize) {        result[r][c] = value;        if (r == 0) {            if (c == n - 1) {                r++;            } else {                r = n - 1;                c++;            }        } else if (c == n - 1) {            r--;            c = 0;        } else if (result[r - 1][c + 1] == 0) {            r--;            c++;        } else {            r++;        }    }     return result;} int[][] magicSquareSinglyEven(const int n) {    enforce(n >= 6 && (n - 2) % 4 == 0, "Base must be a positive multiple of four plus 2");     int size = n * n;    int halfN = n / 2;    int subSquareSize = size / 4;     int[][] subSquare = magicSquareOdd(halfN);    int[] quadrantFactors = [0, 2, 3, 1];    int[][] result = new int[][](n, n);     for (int r = 0; r < n; r++) {        for (int c = 0; c < n; c++) {            int quadrant = (r / halfN) * 2 + (c / halfN);            result[r][c] = subSquare[r % halfN][c % halfN];            result[r][c] += quadrantFactors[quadrant] * subSquareSize;        }    }     int nColsLeft = halfN / 2;    int nColsRight = nColsLeft - 1;     for (int r = 0; r < halfN; r++) {        for (int c = 0; c < n; c++) {            if (c < nColsLeft || c >= n - nColsRight                || (c == nColsLeft && r == nColsLeft)) {                if (c == 0 && r == nColsLeft) {                    continue;                }                 int tmp = result[r][c];                result[r][c] = result[r + halfN][c];                result[r + halfN][c] = tmp;            }        }    }     return result;} `

## Elixir

`defmodule Magic_square do  @lux  %{ L: [4, 1, 2, 3], U: [1, 4, 2, 3], X: [1, 4, 3, 2] }   def singly_even(n) when rem(n-2,4)!=0, do: raise ArgumentError, "must be even, but not divisible by 4."  def singly_even(2), do: raise ArgumentError, "2x2 magic square not possible."  def singly_even(n) do    n2 = div(n, 2)    oms = odd_magic_square(n2)    mat = make_lux_matrix(n2)    square = synthesis(n2, oms, mat)    IO.puts to_string(n, square)    square  end   defp odd_magic_square(m) do       # zero beginning, it is 4 multiples.    for i <- 0..m-1, j <- 0..m-1, into: %{},        do: {{i,j}, (m*(rem(i+j+1+div(m,2),m)) + rem(i+2*j-5+2*m, m)) * 4}  end   defp make_lux_matrix(m) do    center = div(m, 2)    lux = List.duplicate(:L, center+1) ++ [:U] ++ List.duplicate(:X, m-center-2)    (for {x,i} <- Enum.with_index(lux), j <- 0..m-1, into: %{}, do: {{i,j}, x})    |> Map.put({center,   center}, :U)    |> Map.put({center+1, center}, :L)  end   defp synthesis(m, oms, mat) do    range = 0..m-1    Enum.reduce(range, [], fn i,acc ->      {row0, row1} = Enum.reduce(range, {[],[]}, fn j,{r0,r1} ->                       x = oms[{i,j}]                       [lux0, lux1, lux2, lux3] = @lux[mat[{i,j}]]                       {[x+lux0, x+lux1 | r0], [x+lux2, x+lux3 | r1]}                     end)      [row0, row1 | acc]    end)  end   defp to_string(n, square) do    format = String.duplicate("~#{length(to_char_list(n*n))}w ", n) <> "\n"    Enum.map_join(square, fn row ->      :io_lib.format(format, row)    end)  endend Magic_square.singly_even(6)`
Output:
``` 5  8 36 33 13 16
6  7 34 35 14 15
28 25 17 20 12  9
26 27 18 19 10 11
24 21  4  1 32 29
22 23  2  3 30 31
```

## FreeBASIC

`' version 18-03-2016' compile with: fbc -s console' singly even magic square 6, 10, 14, 18... Sub Err_msg(msg As String)    Print msg    Beep : Sleep 5000, 1 : Exit SubEnd Sub Sub se_magicsq(n As UInteger, filename As String = "")     ' filename <> "" then save square in a file    ' filename can contain directory name    ' if filename exist it will be overwriten, no error checking     If n < 6 Then        Err_msg( "Error: n is to small")        Exit Sub    End If     If ((n -2) Mod 4) <> 0 Then        Err_msg "Error: not possible to make singly" + _                 " even magic square size " + Str(n)        Exit Sub    End If     Dim As UInteger sq(1 To n, 1 To n)    Dim As UInteger magic_sum = n * (n ^ 2 +1) \ 2    Dim As UInteger sq_d_2 = n \ 2, q2 = sq_d_2 ^ 2    Dim As UInteger l = (n -2) \ 4    Dim As UInteger x = sq_d_2 \ 2 + 1, y = 1, nr = 1    Dim As String frmt = String(Len(Str(n * n)) +1, "#")     ' fill pattern A C    '              D B    ' main loop for creating magic square in section A    ' the value for B,C and D is derived from A    ' uses the FreeBASIC odd order magic square routine    Do        If sq(x, y) = 0 Then            sq(x         , y         ) = nr          ' A            sq(x + sq_d_2, y + sq_d_2) = nr + q2     ' B            sq(x + sq_d_2, y         ) = nr + q2 * 2 ' C            sq(x         , y + sq_d_2) = nr + q2 * 3 ' D            If nr Mod sq_d_2 = 0 Then                y += 1            Else                x += 1 : y -= 1            End If            nr += 1        End If        If x > sq_d_2 Then            x = 1            Do While sq(x,y) <> 0                x += 1            Loop        End If        If y < 1 Then            y = sq_d_2            Do While sq(x,y) <> 0                y -= 1            Loop        End If    Loop Until nr > q2      ' swap left side    For y = 1 To sq_d_2        For x = 1 To l            Swap sq(x, y), sq(x,y + sq_d_2)        Next    Next    ' make indent    y = (sq_d_2 \ 2) +1    Swap sq(1, y), sq(1, y + sq_d_2) ' was swapped, restore to orignal value    Swap sq(l +1, y), sq(l +1, y + sq_d_2)     ' swap right side    For y = 1 To sq_d_2        For x = n - l +2 To n            Swap sq(x, y), sq(x,y + sq_d_2)        Next    Next     ' check columms and rows    For y = 1 To n        nr = 0 : l  = 0        For x = 1 To n            nr += sq(x,y)            l  += sq(y,x)        Next        If nr <> magic_sum Or l <> magic_sum Then            Err_msg "Error: value <> magic_sum"            Exit Sub        End If    Next     ' check diagonals    nr = 0 : l = 0    For x = 1 To n        nr += sq(x, x)        l  += sq(n - x +1, n - x +1)    Next    If nr <> magic_sum Or l <> magic_sum Then        Err_msg "Error: value <> magic_sum"        Exit Sub    End If     ' printing square's on screen bigger when    ' n > 19 results in a wrapping of the line    Print "Single even magic square size: "; n; "*"; n    Print "The magic sum = "; magic_sum    Print    For y = 1 To n        For x = 1 To n            Print Using frmt; sq(x, y);        Next        Print    Next     ' output magic square to a file with the name provided    If filename <> "" Then        nr = FreeFile        Open filename For Output As #nr        Print #nr, "Single even magic square size: "; n; "*"; n        Print #nr, "The magic sum = "; magic_sum        Print #nr,        For y = 1 To n            For x = 1 To n                Print #nr, Using frmt; sq(x,y);            Next            Print #nr,        Next        Close #nr    End If End Sub ' ------=< MAIN >=------ se_magicsq(6, "magicse6.txt") : Print ' empty keyboard bufferWhile Inkey <> "" : WendPrint : Print "hit any key to end program"SleepEnd`
Output:
```Single even magic square size: 6*6
The magic sum = 111

35  1  6 26 19 24
3 32  7 21 23 25
31  9  2 22 27 20
8 28 33 17 10 15
30  5 34 12 14 16
4 36 29 13 18 11```

## Go

Translation of: Java
`package main import (    "fmt"    "log") func magicSquareOdd(n int) ([][]int, error) {    if n < 3 || n%2 == 0 {        return nil, fmt.Errorf("base must be odd and > 2")    }    value := 1    gridSize := n * n    c, r := n/2, 0    result := make([][]int, n)     for i := 0; i < n; i++ {        result[i] = make([]int, n)    }     for value <= gridSize {        result[r][c] = value        if r == 0 {            if c == n-1 {                r++            } else {                r = n - 1                c++            }        } else if c == n-1 {            r--            c = 0        } else if result[r-1][c+1] == 0 {            r--            c++        } else {            r++        }        value++    }    return result, nil} func magicSquareSinglyEven(n int) ([][]int, error) {    if n < 6 || (n-2)%4 != 0 {        return nil, fmt.Errorf("base must be a positive multiple of 4 plus 2")    }    size := n * n    halfN := n / 2    subSquareSize := size / 4    subSquare, err := magicSquareOdd(halfN)    if err != nil {        return nil, err    }    quadrantFactors := [4]int{0, 2, 3, 1}    result := make([][]int, n)     for i := 0; i < n; i++ {        result[i] = make([]int, n)    }     for r := 0; r < n; r++ {        for c := 0; c < n; c++ {            quadrant := r/halfN*2 + c/halfN            result[r][c] = subSquare[r%halfN][c%halfN]            result[r][c] += quadrantFactors[quadrant] * subSquareSize        }    }     nColsLeft := halfN / 2    nColsRight := nColsLeft - 1     for r := 0; r < halfN; r++ {        for c := 0; c < n; c++ {            if c < nColsLeft || c >= n-nColsRight ||                (c == nColsLeft && r == nColsLeft) {                if c == 0 && r == nColsLeft {                    continue                }                tmp := result[r][c]                result[r][c] = result[r+halfN][c]                result[r+halfN][c] = tmp            }        }    }    return result, nil} func main() {    const n = 6    msse, err := magicSquareSinglyEven(n)    if err != nil {        log.Fatal(err)    }    for _, row := range msse {        for _, x := range row {            fmt.Printf("%2d ", x)        }        fmt.Println()    }    fmt.Printf("\nMagic constant: %d\n", (n*n+1)*n/2)}`
Output:
```35  1  6 26 19 24
3 32  7 21 23 25
31  9  2 22 27 20
8 28 33 17 10 15
30  5 34 12 14 16
4 36 29 13 18 11

Magic constant: 111
```

`import qualified Data.Map.Strict as Mimport Data.List (transpose, intercalate)import Data.Maybe (fromJust, isJust)import Control.Monad (forM_)import Data.Monoid ((<>)) magic :: Int -> [[Int]]magic n = mapAsTable ((4 * n) + 2) (hiResMap n) -- Order of square -> sequence numbers keyed by cartesian coordinateshiResMap :: Int -> M.Map (Int, Int) InthiResMap n =  let mapLux = luxMap n      mapSiam = siamMap n  in M.fromList \$     foldMap       (\(xy, n) ->           luxNums xy (fromJust (M.lookup xy mapLux)) ((4 * (n - 1)) + 1))       (M.toList mapSiam) -- LUX table coordinate -> L|U|X -> initial number -> 4 numbered coordinatesluxNums :: (Int, Int) -> Char -> Int -> [((Int, Int), Int)]luxNums xy lux n =  zipWith (\x d -> (x, n + d)) (hiRes xy) \$  case lux of    'L' -> [3, 0, 1, 2]    'U' -> [0, 3, 1, 2]    'X' -> [0, 3, 2, 1]    _ -> [0, 0, 0, 0] -- Size of square -> integers keyed by coordinates -> rows of integersmapAsTable :: Int -> M.Map (Int, Int) Int -> [[Int]]mapAsTable nCols xyMap =  let axis = [0 .. nCols - 1]  in fmap (fromJust . flip M.lookup xyMap) <\$>     (axis >>= \y -> [axis >>= \x -> [(x, y)]]) -- Dimension of LUX table -> LUX symbols keyed by coordinatesluxMap :: Int -> M.Map (Int, Int) CharluxMap n =  (M.fromList . concat) \$  zipWith    (\y xs -> (zipWith (\x c -> ((x, y), c)) [0 ..] xs))    [0 ..]    (luxPattern n) -- LUX dimension -> square of L|U|X cells with two mixed rowsluxPattern :: Int -> [String]luxPattern n =  let d = (2 * n) + 1      [ls, us] = replicate n <\$> "LU"      [lRow, xRow] = replicate d <\$> "LX"  in replicate n lRow <> [ls <> ('U' : ls)] <> [us <> ('L' : us)] <>     replicate (n - 1) xRow -- Highest zero-based index of grid -> Siamese indices keyed by coordinatessiamMap :: Int -> M.Map (Int, Int) IntsiamMap n =  let uBound = (2 * n)      sPath uBound sMap (x, y) n =        let newMap = M.insert (x, y) n sMap        in if y == uBound && x == quot uBound 2             then newMap             else sPath uBound newMap (nextSiam uBound sMap (x, y)) (n + 1)  in sPath uBound (M.fromList []) (n, 0) 1 -- Highest index of square -> Siam xys so far -> xy -> next xy coordinatenextSiam :: Int -> M.Map (Int, Int) Int -> (Int, Int) -> (Int, Int)nextSiam uBound sMap (x, y) =  let alt (a, b)        | a > uBound && b < 0 = (uBound, 1) -- Top right corner ?        | a > uBound = (0, b) -- beyond right edge ?        | b < 0 = (a, uBound) -- above top edge ?        | isJust (M.lookup (a, b) sMap) = (a - 1, b + 2) -- already filled ?        | otherwise = (a, b) -- Up one, right one.  in alt (x + 1, y - 1) -- LUX cell coordinate -> four coordinates at higher resolutionhiRes :: (Int, Int) -> [(Int, Int)]hiRes (x, y) =  let [col, row] = (* 2) <\$> [x, y]      [col1, row1] = succ <\$> [col, row]  in [(col, row), (col1, row), (col, row1), (col1, row1)] -- TESTS ----------------------------------------------------------------------checked :: [[Int]] -> (Int, Bool)checked square = (h, all (h ==) t)  where    diagonals = fmap (flip (zipWith (!!)) [0 ..]) . ((:) <*> (return . reverse))    h:t = sum <\$> square <> transpose square <> diagonals square table :: String -> [[String]] -> [String]table delim rows =  let justifyRight c n s = drop (length s) (replicate n c <> s)  in intercalate delim <\$>     transpose       ((fmap =<< justifyRight ' ' . maximum . fmap length) <\$> transpose rows) main :: IO ()main =  forM_ [1, 2, 3] \$  \n -> do    let test = magic n    putStrLn \$ unlines (table " " (fmap show <\$> test))    print \$ checked test    putStrLn ""`
Output:
```32 29  4  1 24 21
30 31  2  3 22 23
12  9 17 20 28 25
10 11 18 19 26 27
13 16 36 33  5  8
14 15 34 35  6  7

(111,True)

68 65 96 93  4   1 32 29 60 57
66 67 94 95  2   3 30 31 58 59
92 89 20 17 28  25 56 53 64 61
90 91 18 19 26  27 54 55 62 63
16 13 24 21 49  52 80 77 88 85
14 15 22 23 50  51 78 79 86 87
37 40 45 48 76  73 81 84  9 12
38 39 46 47 74  75 82 83 10 11
41 44 69 72 97 100  5  8 33 36
43 42 71 70 99  98  7  6 35 34

(505,True)

120 117 156 153 192 189   4   1  40  37  76  73 112 109
118 119 154 155 190 191   2   3  38  39  74  75 110 111
152 149 188 185  28  25  36  33  72  69 108 105 116 113
150 151 186 187  26  27  34  35  70  71 106 107 114 115
184 181  24  21  32  29  68  65 104 101 140 137 148 145
182 183  22  23  30  31  66  67 102 103 138 139 146 147
20  17  56  53  64  61  97 100 136 133 144 141 180 177
18  19  54  55  62  63  98  99 134 135 142 143 178 179
49  52  57  60  93  96 132 129 165 168 173 176  13  16
50  51  58  59  94  95 130 131 166 167 174 175  14  15
81  84  89  92 125 128 161 164 169 172   9  12  45  48
83  82  91  90 127 126 163 162 171 170  11  10  47  46
85  88 121 124 157 160 193 196   5   8  41  44  77  80
87  86 123 122 159 158 195 194   7   6  43  42  79  78

(1379,True)```

## J

Using the Strachey method:

` odd =: i:@<[email protected]: |."0 1&|:^:2 >:@[email protected],~t =: ((*: * [email protected]:) +"0 2 odd)@-:l =: (f=:\$~ # , #)@((<. , >.)@%&4 # (1: , 0:))sh =: <:@-: * (bn=:-: # 2:) #: (2: ^ <[email protected]%&4)lm =: sh |."0 1  l rm =: [email protected] #: <:@(2: ^ <:@<[email protected]%&4)a =: (([email protected] * {[email protected]) + lm * {:@t)b =: (([email protected] * 1&{@t) + rm * 2&{@t)c =: ((rm * 1&{@t) + [email protected] * 2&{@t)d =: ((lm * {[email protected]) + [email protected] * {:@t)m =: (a ,"1 c) , d ,"1 b `
Output:
```m 6
33  7  2 24 25 20
1 32  9 19 23 27
35  3  4 26 21 22
6 34 29 15 16 11
28  5 36 10 14 18
8 30 31 17 12 13

m 18
258 268 278 288  46  56  66  76   5 177 187 197 207 208 218 147 157  86
277 287 297 298  65  75   4  14  24 196 206 216 217 227 237  85  95 105
296 306 307 317   3  13  23  33  43 215 225 226 236 165 175 104 114 124
315 316 245 255  22  32  42  52  62 234 235 164 174 184 194 123 133 143
1 254 264 274 284  51  61  71  81 163 173 183 193 203 213 142 152 162
263 273 283 293  60  70  80   9  10 182 192 202 212 222 232 161  90  91
282 292 302 312  79   8  18  19  29 201 211 221 231 241 170  99 100 110
301 311 321 250  17  27  28  38  48 220 230 240 169 179 189 109 119 129
320 249 259 269  36  37  47  57  67 239 168 178 188 198 199 128 138 148
15  25  35  45 289 299 309 319 248  96 106 116 126 127 137 228 238 167
34  44  54  55 308 318 247 257 267 115 125 135 136 146 156 166 176 186
53  63  64  74 246 256 266 276 286 134 144 145 155  84  94 185 195 205
72  73   2  12 265 275 285 295 305 153 154  83  93 103 113 204 214 224
244  11  21  31  41 294 304 314 324  82  92 102 112 122 132 223 233 243
20  30  40  50 303 313 323 252 253 101 111 121 131 141 151 242 171 172
39  49  59  69 322 251 261 262 272 120 130 140 150 160  89 180 181 191
58  68  78   7 260 270 271 281 291 139 149 159  88  98 108 190 200 210
77   6  16  26 279 280 290 300 310 158  87  97 107 117 118 209 219 229
```

Alternative implementation of the Strachey method:

`odd=: i. |."_1&|:^:2 >:@[email protected],~strachey2=: (odd +/~ (0 2,:3 1) * *:)@-:exchange=: (* -.) + (* |.)~columns=: {: | i.strachey3=: exchange (,:~1 0) * ((2%~1-~{:) > columns)@\$strachey4=: exchange (,:~0 1) * ((2%~1+{:)< columns)@\$strachey5=: exchange (,:~1 0) */ ([email protected],[email protected]{: e. ((]*0 1+[)-:@<:)@{:)@\$ strachey=: [: ,/ [: ,./"3 strachey5 @ strachey4 @ strachey3 @ strachey2`
Output:
```   strachey 6
28  5  9 19 23 27
8 30  4 26 21 22
33  7  2 24 25 20
1 32 36 10 14 18
35  3 31 17 12 13
6 34 29 15 16 11```

## Java

`public class MagicSquareSinglyEven {     public static void main(String[] args) {        int n = 6;        for (int[] row : magicSquareSinglyEven(n)) {            for (int x : row)                System.out.printf("%2s ", x);            System.out.println();        }        System.out.printf("\nMagic constant: %d ", (n * n + 1) * n / 2);    }     public static int[][] magicSquareOdd(final int n) {        if (n < 3 || n % 2 == 0)            throw new IllegalArgumentException("base must be odd and > 2");         int value = 0;        int gridSize = n * n;        int c = n / 2, r = 0;         int[][] result = new int[n][n];         while (++value <= gridSize) {            result[r][c] = value;            if (r == 0) {                if (c == n - 1) {                    r++;                } else {                    r = n - 1;                    c++;                }            } else if (c == n - 1) {                r--;                c = 0;            } else if (result[r - 1][c + 1] == 0) {                r--;                c++;            } else {                r++;            }        }        return result;    }     static int[][] magicSquareSinglyEven(final int n) {        if (n < 6 || (n - 2) % 4 != 0)            throw new IllegalArgumentException("base must be a positive "                    + "multiple of 4 plus 2");         int size = n * n;        int halfN = n / 2;        int subSquareSize = size / 4;         int[][] subSquare = magicSquareOdd(halfN);        int[] quadrantFactors = {0, 2, 3, 1};        int[][] result = new int[n][n];         for (int r = 0; r < n; r++) {            for (int c = 0; c < n; c++) {                int quadrant = (r / halfN) * 2 + (c / halfN);                result[r][c] = subSquare[r % halfN][c % halfN];                result[r][c] += quadrantFactors[quadrant] * subSquareSize;            }        }         int nColsLeft = halfN / 2;        int nColsRight = nColsLeft - 1;         for (int r = 0; r < halfN; r++)            for (int c = 0; c < n; c++) {                if (c < nColsLeft || c >= n - nColsRight                        || (c == nColsLeft && r == nColsLeft)) {                     if (c == 0 && r == nColsLeft)                        continue;                     int tmp = result[r][c];                    result[r][c] = result[r + halfN][c];                    result[r + halfN][c] = tmp;                }            }         return result;    }}`
```35  1  6 26 19 24
3 32  7 21 23 25
31  9  2 22 27 20
8 28 33 17 10 15
30  5 34 12 14 16
4 36 29 13 18 11

Magic constant: 111```

## Julia

Translation of: Lua
`function oddmagicsquare(order)    if iseven(order)        order += 1    end    q = zeros(Int, (order, order))    p = 1    i = div(order, 2) + 1    j = 1    while p <= order * order        q[i, j] = p        ti = (i + 1 > order) ? 1 : i + 1        tj = (j - 1 < 1) ? order : j - 1        if q[ti, tj] != 0            ti = i            tj = j + 1        end        i = ti        j = tj        p = p + 1    end    q, orderend function singlyevenmagicsquare(order)    if isodd(order)        order += 1    end    if order % 4 == 0        order += 2    end    q = zeros(Int, (order, order))    z = div(order, 2)    b = z * z    c = 2 * b    d = 3 * b    sq, ord = oddmagicsquare(z)     for j in 1:z, i in 1:z        a = sq[i, j]        q[i, j] = a        q[i + z, j + z] = a + b        q[i + z, j] = a + c        q[i, j + z] = a + d    end    lc = div(z, 2)    rc = lc - 1    for j in 1:z, i in 1:order        if i <= lc || i > order - rc || (i == lc && j == lc)            if i != 0 || j != lc + 1                t = q[i, j]                q[i, j] = q[i, j + z]                q[i, j + z] = t            end        end    end    q, orderend function check(q)    side = size(q)[1]    sums = Vector{Int}()    for n in 1:side        push!(sums, sum(q[n, :]))        push!(sums, sum(q[:, n]))    end    println(all(x->x==sums[1], sums) ?        "Checks ok: all sides add to \$(sums[1])." : "Bad sum.")end function display(q)    r, c = size(q)    for i in 1:r, j in 1:c        nstr = lpad(string(q[i, j]), 4)        print(j % c > 0 ? nstr : "\$nstr\n")    endend for o in (6, 10)    println("\nWith order \$o:")    msq = singlyevenmagicsquare(o)[1]    display(msq)    check(msq)end `
Output:
```
With order 6:
35  30  31   8   3   4
1   5   9  28  32  36
6   7   2  33  34  29
26  21  22  17  12  13
19  23  27  10  14  18
24  25  20  15  16  11
Checks ok: all sides add to 111.

With order 10:
92  98  79  85  86  17  23   4  10  11
99  80  81  87  93  24   5   6  12  18
1   7  13  19  25  76  82  88  94 100
8  14  20  21   2  83  89  95  96  77
15  16  22   3   9  90  91  97  78  84
67  73  54  60  61  42  48  29  35  36
74  55  56  62  68  49  30  31  37  43
51  57  63  69  75  26  32  38  44  50
58  64  70  71  52  33  39  45  46  27
40  41  47  28  34  65  66  72  53  59
Checks ok: all sides add to 505.

```

## Kotlin

Translation of: Java
`// version 1.0.6 fun magicSquareOdd(n: Int): Array<IntArray> {    if (n < 3 || n % 2 == 0)         throw IllegalArgumentException("Base must be odd and > 2")     var value = 0    val gridSize = n * n    var c = n / 2    var r = 0    val result = Array(n) { IntArray(n) }    while (++value <= gridSize) {        result[r][c] = value        if (r == 0) {            if (c == n - 1) r++            else {                r = n - 1                c++            }        }         else if (c == n - 1) {            r--            c = 0        }         else if (result[r - 1][c + 1] == 0) {            r--            c++        }         else r++    }    return result} fun magicSquareSinglyEven(n: Int): Array<IntArray> {    if (n < 6 || (n - 2) % 4 != 0)        throw IllegalArgumentException("Base must be a positive multiple of 4 plus 2")     val size = n * n    val halfN = n / 2    val subSquareSize = size / 4    val subSquare = magicSquareOdd(halfN)    val quadrantFactors = intArrayOf(0, 2, 3, 1)    val result = Array(n) { IntArray(n) }    for (r in 0 until n)        for (c in 0 until n) {            val quadrant = r / halfN * 2  + c / halfN            result[r][c] = subSquare[r % halfN][c % halfN]            result[r][c] += quadrantFactors[quadrant] * subSquareSize        }    val nColsLeft = halfN / 2    val nColsRight = nColsLeft - 1    for (r in 0 until halfN)        for (c in 0 until n)             if (c < nColsLeft || c >= n - nColsRight || (c == nColsLeft && r == nColsLeft)) {                 if (c == 0 && r == nColsLeft) continue                val tmp = result[r][c]                result[r][c] = result[r + halfN][c]                result[r + halfN][c] = tmp            }     return result} fun main(args: Array<String>) {    val n = 6    for (ia in magicSquareSinglyEven(n)) {         for (i in ia) print("%2d  ".format(i))        println()    }    println("\nMagic constant \${(n * n + 1) * n / 2}")}`
Output:
```35   1   6  26  19  24
3  32   7  21  23  25
31   9   2  22  27  20
8  28  33  17  10  15
30   5  34  12  14  16
4  36  29  13  18  11

Magic constant 111
```

## Lua

For all three kinds of Magic Squares(Odd, singly and doubly even)
See Magic_squares/Lua.

## Nim

Translation of: Kotlin
`import sequtils, strutils type Square = seq[seq[int]] func magicSquareOdd(n: Positive): Square =  ## Build a magic square of odd order.   assert n >= 3 and (n and 1) != 0, "base must be odd and greater than 2."  result = newSeqWith(n, newSeq[int](n))   var    r = 0    c = n div 2    value = 0   while value < n * n:    inc value    result[r][c] = value    if r == 0:      if c == n - 1:        inc r      else:        r = n - 1        inc c    elif c == n - 1:      dec r      c = 0    elif result[r - 1][c + 1] == 0:      dec r      inc c    else:      inc r  func magicSquareSinglyEven(n: int): Square =  ## Build a magic square of singly even order.   assert n >= 6 and ((n - 2) and 3) == 0, "base must be a positive multiple of 4 plus 2."  result = newSeqWith(n, newSeq[int](n))   let    halfN = n div 2    subSquareSize = n * n div 4    subSquare = magicSquareOdd(halfN)   const QuadrantFactors = [0, 2, 3, 1]   for r in 0..<n:    for c in 0..<n:      let quadrant = r div halfN * 2 + c div halfN      result[r][c] = subSquare[r mod halfN][c mod halfN] + QuadrantFactors[quadrant] * subSquareSize   let    nColsLeft = halfN div 2    nColsRight = nColsLeft - 1   for r in 0..<halfN:    for c in 0..<n:      if c < nColsLeft or c >= n - nColsRight or (c == nColsLeft and r == nColsLeft):        if c != 0 or r != nColsLeft:          swap result[r][c], result[r + halfN][c]  func `\$`(square: Square): string =  ## Return the string representation of a magic square.  let length = len(\$(square.len * square.len))  for row in square:    result.add row.mapIt((\$it).align(length)).join(" ") & '\n'  when isMainModule:  let n = 6  echo magicSquareSinglyEven(n)  echo "Magic constant = ", n * (n * n + 1) div 2`
Output:
```35  1  6 26 19 24
3 32  7 21 23 25
31  9  2 22 27 20
8 28 33 17 10 15
30  5 34 12 14 16
4 36 29 13 18 11

Magic constant = 111```

## Perl

See Magic squares/Perl for a general magic square generator.

` `

## Phix

Translation of: FreeBASIC
`procedure Abort(string msg)    puts(1,msg&"\nPress any key...")    {} = wait_key()    abort(0)end procedure function swap(sequence s, integer x1, y1, x2, y2)    {s[x1,y1],s[x2,y2]} = {s[x2,y2],s[x1,y1]}    return send function function se_magicsq(integer n)     if n<6 or mod(n-2,4)!=0 then        Abort(sprintf("illegal size (%d)",{n}))    end if     sequence sq = repeat(repeat(0,n),n)    integer magic_sum = n*(n*n+1)/2,            sq_d_2 = n/2,            q2 = power(sq_d_2,2),            l = (n-2)/4,            x1 = floor(sq_d_2/2)+1, x2,            y1 = 1, y2,            r = 1     -- fill pattern a c    --              d b    -- main loop for creating magic square in section a    -- the value for b,c and d is derived from a    while true do        if sq[x1,y1]=0 then            x2 = x1+sq_d_2            y2 = y1+sq_d_2            sq[x1,y1] = r       -- a            sq[x2,y2] = r+q2    -- b            sq[x2,y1] = r+q2*2  -- c            sq[x1,y2] = r+q2*3  -- d            if mod(r,sq_d_2)=0 then                y1 += 1            else                x1 += 1                y1 -= 1            end if            r += 1        end if        if x1>sq_d_2 then            x1 = 1            while sq[x1,y1] <> 0 do                x1 += 1            end while        end if        if y1<1 then            y1 = sq_d_2            while sq[x1,y1] <> 0 do                y1 -= 1            end while        end if        if r>q2 then exit end if    end while     -- swap left side    for y1=1 to sq_d_2 do        y2 = y1+sq_d_2        for x1=1 to l do            sq = swap(sq, x1,y1, x1,y2)        end for    end for     -- make indent    y1 = floor(sq_d_2/2) +1    y2 = y1+sq_d_2    x1 = 1    sq = swap(sq, x1,y1, x1,y2)    x1 = l+1    sq = swap(sq, x1,y1, x1,y2)     -- swap right side    for y1=1 to sq_d_2 do        y2 = y1+sq_d_2        for x1=n-l+2 to n do            sq = swap(sq, x1,y1, x1,y2)        end for    end for     -- check columms and rows    for y1=1 to n do        r = 0        l = 0        for x1=1 to n do            r += sq[x1,y1]            l += sq[y1,x1]        end for        if r<>magic_sum        or l<>magic_sum then            Abort("error: value <> magic_sum")        end if    end for     -- check diagonals    r = 0    l = 0    for x1=1 to n do        r += sq[x1,x1]        x2 = n-x1+1        l += sq[x2,x2]    end for    if r<>magic_sum    or l<>magic_sum then        Abort("error: value <> magic_sum")    end if     return sqend function pp(se_magicsq(6),{pp_Nest,1,pp_IntFmt,"%3d",pp_StrFmt,3,pp_IntCh,false,pp_Pause,0})`
Output:
```{{35, 3,31, 8,30, 4},
{ 1,32, 9,28, 5,36},
{ 6, 7, 2,33,34,29},
{26,21,22,17,12,13},
{19,23,27,10,14,18},
{24,25,20,15,16,11}}
```

## Python

Translation of: Lua
` import mathfrom sys import stdout LOG_10 = 2.302585092994  # build odd magic squaredef build_oms(s):    if s % 2 == 0:        s += 1    q = [[0 for j in range(s)] for i in range(s)]    p = 1    i = s // 2    j = 0    while p <= (s * s):        q[i][j] = p        ti = i + 1        if ti >= s: ti = 0        tj = j - 1        if tj < 0: tj = s - 1        if q[ti][tj] != 0:            ti = i            tj = j + 1        i = ti        j = tj        p = p + 1     return q, s  # build singly even magic squaredef build_sems(s):    if s % 2 == 1:        s += 1    while s % 4 == 0:        s += 2     q = [[0 for j in range(s)] for i in range(s)]    z = s // 2    b = z * z    c = 2 * b    d = 3 * b    o = build_oms(z)     for j in range(0, z):        for i in range(0, z):            a = o[0][i][j]            q[i][j] = a            q[i + z][j + z] = a + b            q[i + z][j] = a + c            q[i][j + z] = a + d     lc = z // 2    rc = lc    for j in range(0, z):        for i in range(0, s):            if i < lc or i > s - rc or (i == lc and j == lc):                if not (i == 0 and j == lc):                    t = q[i][j]                    q[i][j] = q[i][j + z]                    q[i][j + z] = t     return q, s  def format_sqr(s, l):    for i in range(0, l - len(s)):        s = "0" + s    return s + " "  def display(q):    s = q[1]    print(" - {0} x {1}\n".format(s, s))    k = 1 + math.floor(math.log(s * s) / LOG_10)    for j in range(0, s):        for i in range(0, s):            stdout.write(format_sqr("{0}".format(q[0][i][j]), k))        print()    print("Magic sum: {0}\n".format(s * ((s * s) + 1) // 2))  stdout.write("Singly Even Magic Square")display(build_sems(6)) `
Output:
```Singly Even Magic Square - 6 x 6

35 01 06 26 19 24
03 32 07 21 23 25
31 09 02 22 27 20
08 28 33 17 10 15
30 05 34 12 14 16
04 36 29 13 18 11
Magic sum: 111```

## R

See here for the solution for all three cases.

Example

```> magic(6)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,]   35    1    6   26   19   24
[2,]    3   32    7   21   23   25
[3,]   31    9    2   22   27   20
[4,]    8   28   33   17   10   15
[5,]   30    5   34   12   14   16
[6,]    4   36   29   13   18   11```

## Raku

(formerly Perl 6)

See Magic squares/Raku for a general magic square generator.

Output:

With a parameter of 6:

```35  1  6 26 19 24
3 32  7 21 23 25
31  9  2 22 27 20
8 28 33 17 10 15
30  5 34 12 14 16
4 36 29 13 18 11

The magic number is 111```

With a parameter of 10:

``` 92  99   1   8  15  67  74  51  58  40
98  80   7  14  16  73  55  57  64  41
4  81  88  20  22  54  56  63  70  47
85  87  19  21   3  60  62  69  71  28
86  93  25   2   9  61  68  75  52  34
17  24  76  83  90  42  49  26  33  65
23   5  82  89  91  48  30  32  39  66
79   6  13  95  97  29  31  38  45  72
10  12  94  96  78  35  37  44  46  53
11  18 100  77  84  36  43  50  27  59

The magic number is 505```

## Ruby

`def odd_magic_square(n)  n.times.map{|i| n.times.map{|j| n*((i+j+1+n/2)%n) + ((i+2*j-5)%n) + 1} }end def single_even_magic_square(n)   raise ArgumentError, "must be even, but not divisible by 4." unless (n-2) % 4 == 0  raise ArgumentError, "2x2 magic square not possible." if n == 2   order = (n-2)/4  odd_square = odd_magic_square(n/2)  to_add = (0..3).map{|f| f*n*n/4}  quarts = to_add.map{|f| odd_square.dup.map{|row|row.map{|el| el+f}} }   sq = []  quarts[0].zip(quarts[2]){|d1,d2| sq << [d1,d2].flatten}  quarts[3].zip(quarts[1]){|d1,d2| sq << [d1,d2].flatten}   sq = sq.transpose  order.times{|i| sq[i].rotate!(n/2)}  swap(sq[0][order], sq[0][-order-1])  swap(sq[order][order], sq[order][-order-1])  (order-1).times{|i| sq[-(i+1)].rotate!(n/2)}  randomize(sq)end def swap(a,b)  a,b = b,aend def randomize(square)  square.shuffle.transpose.shuffleend def to_string(square)  n = square.size  fmt = "%#{(n*n).to_s.size + 1}d" * n  square.inject(""){|str,row| str << fmt % row << "\n"}end puts to_string(single_even_magic_square(6))`
Output:
``` 23  7  5 21 30 25
18 29 36 13  4 11
14 34 32 12  3 16
19  6  1 26 35 24
27  2  9 22 31 20
10 33 28 17  8 15
```

### LUX method

`class Magic_square  attr_reader :square  LUX = { L: [[4, 1], [2, 3]], U: [[1, 4], [2, 3]], X: [[1, 4], [3, 2]] }   def initialize(n)    raise ArgumentError, "must be even, but not divisible by 4." unless (n-2) % 4 == 0    raise ArgumentError, "2x2 magic square not possible." if n == 2    @n = n    oms = odd_magic_square(n/2)    mat = make_lux_matrix(n/2)    @square = synthesize(oms, mat)    puts to_s  end   def odd_magic_square(n)       # zero beginning, it is 4 multiples.    n.times.map{|i| n.times.map{|j| (n*((i+j+1+n/2)%n) + ((i+2*j-5)%n)) * 4} }  end   def make_lux_matrix(n)    center = n / 2    lux = [*[:L]*(center+1), :U, *[:X]*(n-center-2)]    matrix = lux.map{|x| Array.new(n, x)}    matrix[center][center] = :U    matrix[center+1][center] = :L    matrix  end   def synthesize(oms, mat)    range = 0[email protected]/2    range.inject([]) do |matrix,i|      row = [[], []]      range.each do |j|        x = oms[i][j]        LUX[mat[i][j]].each_with_index{|lux,k| row[k] << lux.map{|y| x+y}}      end      matrix << row[0].flatten << row[1].flatten    end  end   def to_s    format = "%#{(@n*@n).to_s.size}d " * @n + "\n"    @square.map{|row| format % row}.join  endend sq = Magic_square.new(6).square`
Output:
```32 29  4  1 24 21
30 31  2  3 22 23
12  9 17 20 28 25
10 11 18 19 26 27
13 16 36 33  5  8
14 15 34 35  6  7
```

## Rust

`use std::env; fn main() {    let n: usize =        match env::args().nth(1).and_then(|arg| arg.parse().ok()).ok_or(            "Please specify the size of the magic square, as a positive multiple of 4 plus 2.",        ) {            Ok(arg) if arg % 2 == 1 || arg >= 6 && (arg - 2) % 4 == 0 => arg,            Err(e) => panic!(e),            _ => panic!("Argument must be a positive multiple of 4 plus 2."),        };     let (ms, mc) = magic_square_singly_even(n);    println!("n: {}", n);    println!("Magic constant: {}\n", mc);    let width = (n * n).to_string().len() + 1;    for row in ms {        for elem in row {            print!("{e:>w\$}", e = elem, w = width);        }        println!();    }} fn magic_square_singly_even(n: usize) -> (Vec<Vec<usize>>, usize) {    let size = n * n;    let half = n / 2;    let sub_square_size = size / 4;    let sub_square = magic_square_odd(half);    let quadrant_factors = [0, 2, 3, 1];    let cols_left = half / 2;    let cols_right = cols_left - 1;     let ms = (0..n)        .map(|r| {            (0..n)                .map(|c| {                    let localr = if (c < cols_left                        || c >= n - cols_right                        || c == cols_left && r % half == cols_left)                        && !(c == 0 && r % half == cols_left)                    {                        if r >= half {                            r - half                        } else {                            r + half                        }                    } else {                        r                    };                    let quadrant = localr / half * 2 + c / half;                    let v = sub_square[localr % half][c % half];                    v + quadrant_factors[quadrant] * sub_square_size                })                .collect()        })        .collect::<Vec<Vec<_>>>();    (ms, (n * n + 1) * n / 2)} fn magic_square_odd(n: usize) -> Vec<Vec<usize>> {    (0..n)        .map(|r| {            (0..n)                .map(|c| {                    n * (((c + 1) + (r + 1) - 1 + (n >> 1)) % n)                        + (((c + 1) + (2 * (r + 1)) - 2) % n)                        + 1                })                .collect::<Vec<_>>()        })        .collect::<Vec<Vec<_>>>()}`
Output:
```n: 6
Magic constant: 111

35  3  4 26 21 22
1 32  9 19 23 27
33  7  2 24 25 20
8 30 31 17 12 13
28  5 36 10 14 18
6 34 29 15 16 11

n: 10
Magic constant: 505

92  98   4  10  11  67  73  54  60  36
99  80   6  12  18  74  55  56  62  43
1  82  88  19  25  51  57  63  69  50
83  89  20  21   2  58  64  70  71  27
90  91  22   3   9  65  66  72  53  34
17  23  79  85  86  42  48  29  35  61
24   5  81  87  93  49  30  31  37  68
76   7  13  94 100  26  32  38  44  75
8  14  95  96  77  33  39  45  46  52
15  16  97  78  84  40  41  47  28  59

n: 18
Magic constant: 2925

290 300 310 320   6  16  26  36  37 209 219 229 239 168 178 107 117 118
301 311 321 250  17  27  28  38  48 220 230 240 169 179 189 109 119 129
312 322 251 261  19  29  39  49  59 231 241 170 180 181 191 120 130 140
323 252 253 263  30  40  50  60  70 242 171 172 182 192 202 131 141 151
1 254 264 274 284  51  61  71  81 163 173 183 193 203 213 142 152 162
255 265 275 285  52  62  72  73   2 174 184 194 204 214 224 153 154  83
266 276 286 296  63  64  74   3  13 185 195 205 215 225 226 155  84  94
277 287 297 298  65  75   4  14  24 196 206 216 217 227 237  85  95 105
288 289 299 309  76   5  15  25  35 207 208 218 228 238 167  96 106 116
47  57  67  77 249 259 269 279 280 128 138 148 158  87  97 188 198 199
58  68  78   7 260 270 271 281 291 139 149 159  88  98 108 190 200 210
69  79   8  18 262 272 282 292 302 150 160  89  99 100 110 201 211 221
80   9  10  20 273 283 293 303 313 161  90  91 101 111 121 212 222 232
244  11  21  31  41 294 304 314 324  82  92 102 112 122 132 223 233 243
12  22  32  42 295 305 315 316 245  93 103 113 123 133 143 234 235 164
23  33  43  53 306 307 317 246 256 104 114 124 134 144 145 236 165 175
34  44  54  55 308 318 247 257 267 115 125 135 136 146 156 166 176 186
45  46  56  66 319 248 258 268 278 126 127 137 147 157  86 177 187 197
```

## Stata

See here for all three cases.

```. mata magic(6)
1    2    3    4    5    6
+-------------------------------+
1 |  35    1    6   26   19   24  |
2 |   3   32    7   21   23   25  |
3 |  31    9    2   22   27   20  |
4 |   8   28   33   17   10   15  |
5 |  30    5   34   12   14   16  |
6 |   4   36   29   13   18   11  |
+-------------------------------+```

## Wren

Translation of: Kotlin
Library: Wren-fmt
`import "/fmt" for Fmt var magicSquareOdd = Fn.new { |n|    if (n < 3 || n%2 == 0) Fiber.abort("Base must be odd and > 2")    var value = 1    var gridSize = n * n    var c = (n/2).floor    var r = 0    var result = List.filled(n, null)    for (i in 0...n) result[i] = List.filled(n, 0)    while (value <= gridSize) {        result[r][c] = value        if (r == 0) {            if (c == n - 1) {                r = r + 1            } else {                r = n - 1                c = c + 1            }        } else if (c == n - 1) {            r = r - 1            c = 0        } else if (result[r - 1][c + 1] == 0) {            r = r - 1            c = c + 1        } else {            r = r + 1        }        value = value + 1    }    return result} var magicSquareSinglyEven = Fn.new { |n|    if (n < 6 || (n - 2) % 4 != 0) {        Fiber.abort("Base must be a positive multiple of 4 plus 2")    }    var size = n * n    var halfN = n / 2    var subSquareSize = size / 4    var subSquare = magicSquareOdd.call(halfN)    var quadrantFactors = [0, 2, 3, 1]    var result = List.filled(n, null)    for (i in 0...n) result[i] = List.filled(n, 0)    for (r in 0...n) {        for (c in 0...n) {            var quadrant = (r/halfN).floor * 2 + (c/halfN).floor            result[r][c] = subSquare[r % halfN][c % halfN]            result[r][c] = result[r][c] + quadrantFactors[quadrant] * subSquareSize        }    }    var nColsLeft = (halfN/2).floor    var nColsRight = nColsLeft - 1    for (r in 0...halfN) {        for (c in 0...n) {            if (c < nColsLeft || c >= n - nColsRight || (c == nColsLeft && r == nColsLeft)) {                if (c != 0 || r != nColsLeft) {                    var tmp = result[r][c]                    result[r][c] = result[r + halfN][c]                    result[r + halfN][c] = tmp                }            }        }    }    return result} var n = 6for (ia in magicSquareSinglyEven.call(n)) {    for (i in ia) Fmt.write("\$2d  ", i)    System.print()}System.print("\nMagic constant %((n * n + 1) * n / 2)")`
Output:
```35   1   6  26  19  24
3  32   7  21  23  25
31   9   2  22  27  20
8  28  33  17  10  15
30   5  34  12  14  16
4  36  29  13  18  11

Magic constant 111
```

## zkl

Translation of: Java
`class MagicSquareSinglyEven{   fcn init(n){ var result=magicSquareSinglyEven(n) }   fcn toString{      sink,n:=Sink(String),result.len();  // num collumns      fmt:="%2s ";      foreach row in (result)         { sink.write(row.apply('wrap(n){ fmt.fmt(n) }).concat(),"\n") }      sink.write("\nMagic constant: %d".fmt((n*n + 1)*n/2));      sink.close();   }   fcn magicSquareOdd(n){      if (n<3 or n%2==0) throw(Exception.ValueError("base must be odd and > 2"));      value,gridSize,c,r:=0, n*n, n/2, 0;      result:=n.pump(List(),n.pump(List(),0).copy);  // array[n,n] of zero       while((value+=1)<=gridSize){	 result[r][c]=value;	 if(r==0){	    if(c==n-1) r+=1;            else{ r=n-1; c+=1; }	 }	 else if(c==n-1){ r-=1; c=0; }	 else if(result[r-1][c+1]==0){ r-=1; c+=1; }	 else r+=1;      }      result;   }   fcn magicSquareSinglyEven(n){      if (n<6 or (n-2)%4!=0)	 throw(Exception.ValueError("base must be a positive multiple of 4 +2"));      size,halfN,subSquareSize:=n*n,  n/2, size/4;       subSquare:=magicSquareOdd(halfN);      quadrantFactors:=T(0, 2, 3, 1);      result:=n.pump(List(),n.pump(List(),0).copy);  // array[n,n] of zero       foreach r,c in (n,n){         quadrant:=(r/halfN)*2 + (c/halfN);	 result[r][c]=subSquare[r%halfN][c%halfN];	 result[r][c]+=quadrantFactors[quadrant]*subSquareSize;      }      nColsLeft,nColsRight:=halfN/2, nColsLeft-1;      foreach r,c in (halfN,n){         if ( c<nColsLeft or c>=(n-nColsRight) or               (c==nColsLeft and r==nColsLeft) ){	    if(c==0 and r==nColsLeft) continue;	    tmp:=result[r][c];	    result[r][c]=result[r+halfN][c];	    result[r+halfN][c]=tmp;	 }      }      result   }   }`
`MagicSquareSinglyEven(6).println();`
Output:
```35  1  6 26 19 24
3 32  7 21 23 25
31  9  2 22 27 20
8 28 33 17 10 15
30  5 34 12 14 16
4 36 29 13 18 11

Magic constant: 111
```