Ray-casting algorithm: Difference between revisions

From Rosetta Code
Content added Content deleted
(fortran)
(→‎{{header|Tcl}}: Use the better algorithm from the top of the page to fix the error)
Line 366: Line 366:


=={{header|Tcl}}==
=={{header|Tcl}}==
{{incorrect|Tcl|If you try with {-5 5} {3 0 7 0 10 5 7 10 3 10 0 5 } (exagon), you notice a bug: it says the point is inside. Even if the point is {100 5} indeed! What's wrong?}}
<lang Tcl>package require Tcl 8.5
<lang Tcl>package require Tcl 8.5

proc point_in_polygon {point polygon} {
proc point_in_polygon {point polygon} {
set count 0
set count 0
foreach side [sides $polygon] {
foreach side [sides $polygon] {
if [ray_intersects_line $point $side] {
if {[ray_intersects_line $point $side]} {
incr count
incr count
}
}
Line 379: Line 378:
}
}
proc sides polygon {
proc sides polygon {
foreach {x0 y0} $polygon break
lassign $polygon x0 y0
foreach {x y} [lrange [lappend polygon $x0 $y0] 2 end] {
foreach {x y} [lrange [lappend polygon $x0 $y0] 2 end] {
lappend res [list $x0 $y0 $x $y]
lappend res [list $x0 $y0 $x $y]
Line 388: Line 387:
}
}
proc ray_intersects_line {point line} {
proc ray_intersects_line {point line} {
foreach {x y} $point break
lassign $point Px Py
foreach {xa xb ya yb} $line break
lassign $line Ax Ay Bx By
# Reverse line direction if necessary
set xout [expr {max($xa,$xb) + 1}]
lines_cross [list $x $y $xout $y] $line
if {$By < $Ay} {
lassign $line Bx By Ax Ay
}
}
proc lines_cross {line1 line2} {
# Add epsilon to
foreach {xa ya xb yb} $line1 break
foreach {xc yc xd yd} $line2 break
if {$Py == $Ay || $Py == $By} {
set Py [expr {$Py + abs($Py)/1e6}]

}
set det [expr {($xb - $xa) * ($yd - $yc) - ($xd - $xc) * ($yb - $ya)}]
# Bounding box checks
if {$det == 0} {return 0} ;#-- parallel or collinear
if {$Py < $Ay || $Py > $By || $Px > max($Ax,$Bx)} {

return 0
set nump [expr {($xd - $xc) * ($yb + $ya) - ($xb + $xa) * ($yd - $yc) + 2. * ($xc * $yd - $xd * $yc)}]
} elseif {$Px < min($Ax,$Bx)} {
if {abs($nump) > abs($det)} {return 0} ;#-- cross outside line1
return 1

}
set numq [expr {($xd + $xc) * ($yb - $ya) - ($xb - $xa) * ($yd + $yc) + 2. * ($xb * $ya - $xa * $yb)}]
# Compare dot products to compare (cosines of) angles
if {abs($numq) > abs($det)} {return 0} ;#-- cross outside line2
set mRed [expr {$Ax != $Bx ? ($By-$Ay)/($Bx-$Ax) : Inf}]

set mBlu [expr {$Ax != $Px ? ($Py-$Ay)/($Px-$Ax) : Inf}]
return 1
return [expr {$mBlu >= $mRed}]
}
}

foreach {point poly} {
foreach {point poly} {
{0 0} {-1 -1 -1 1 1 1 1 -1}
{0 0} {-1 -1 -1 1 1 1 1 -1}
Line 420: Line 420:
{10 10} {0 0 2.5 2.5 0 10 2.5 7.5 7.5 7.5 10 10 10 0 7.5 0.1}
{10 10} {0 0 2.5 2.5 0 10 2.5 7.5 7.5 7.5 10 10 10 0 7.5 0.1}
{2.5 2.5} {0 0 2.5 2.5 0 10 2.5 7.5 7.5 7.5 10 10 10 0 7.5 0.1}
{2.5 2.5} {0 0 2.5 2.5 0 10 2.5 7.5 7.5 7.5 10 10 10 0 7.5 0.1}
{-5 5} {3 0 7 0 10 5 7 10 3 10 0 5 }
} {
} {
puts "$point in $poly = [point_in_polygon $point $poly]"
puts "$point in $poly = [point_in_polygon $point $poly]"

Revision as of 16:58, 24 May 2009

Task
Ray-casting algorithm
You are encouraged to solve this task according to the task description, using any language you may know.
This page uses content from Wikipedia. The original article was at Point_in_polygon. The list of authors can be seen in the page history. As with Rosetta Code, the text of Wikipedia is available under the GNU FDL. (See links for details on variance)

Given a point and a polygon, check if the point is inside or outside the polygon using the ray-casting algorithm.

A pseudocode can be simply:

 count ← 0
 foreach side in polygon:
   if ray_intersects_segment(P,side) then
     count ← count + 1
 if is_odd(count) then
   return inside
 else
   return outside

Where the function ray_intersects_segment return true if the horizontal ray starting from the point P intersects the side (segment), false otherwise.

An intuitive explanation of why it works is that every time we cross a border, we change "country" (inside-outside, or outside-inside), but the last "country" we land on is surely outside (since the inside of the polygon is finite, while the ray continues towards infinity). So, if we crossed an odd number of borders we was surely inside, otherwise we was outside; we can follow the ray backward to see it better: starting from outside, only an odd number of crossing can give an inside: outside-inside, outside-inside-outside-inside, and so on (the - represents the crossing of a border).

So the main part of the algorithm is how we determine if a ray intersects a segment. The following text explain one of the possible ways.

Looking at the image on the right, we can easily be convinced of the fact that rays starting from points in the hatched area (like P1 and P2) surely do not intersect the segment AB. We also can easily see that rays starting from points in the greenish area surely intersect the segment AB (like point P3).

So the problematic points are those inside the white area (the box delimited by the points A and B), like P4.

Let us take into account a segment AB (the point A having y coordinate always smaller than B's y coordinate, i.e. point A is always below point B) and a point P. Let us use the cumbersome notation PAX to denote the angle between segment AP and AX, where X is always a point on the horizontal line passing by A with x coordinate bigger than the maximum between the x coordinate of A and the x coordinate of B. As explained graphically by the figures on the right, if PAX is greater than the angle BAX, then the ray starting from P intersects the segment AB. (In the images, the ray starting from PA does not intersect the segment, while the ray starting from PB in the second picture, intersects the segment).

Points on the boundary or "on" a vertex are someway special and through this approach we do not obtain coherent results. They could be treated apart, but it is not necessary to do so.

An algorithm for the previous speech could be (if P is a point, Px is its x coordinate):

 ray_intersects_segment:
    P : the point from which the ray starts
    A : the end-point of the segment with the smallest y coordinate
        (A must be "below" B)
    B : the end-point of the segment with the greatest y coordinate
        (B must be "above" A)
 if Py = Ay or Py = By then
   Py ← Py + ε
 end if
 if Py < Ay or Py > By then 
   return false
 else if Px > max(Ax, Bx) then 
   return false
 else
   if Px < min(Ax, Bx) then
     return true
   else
     if Ax ≠ Bx then
       m_red ← (By - Ay)/(Bx - Ax)
     else
       m_red ← ∞
     end if
     if Ax ≠ Px then
       m_blue ← (Py - Ay)/(Px - Ax)
     else
       m_blue ← ∞
     end if
     if m_blue ≥ m_red then
       return true
     else
       return false
     end if
   end if
 end if

(To avoid the "ray on vertex" problem, the point is moved upward of a small quantity ε)


C

Required includes and definitions:

<lang c>#include <stdio.h>

  1. include <stdlib.h>
  2. include <stdbool.h>
  3. include <math.h>

typedef struct {

 double x, y;

} point_t;

typedef struct {

 point_t *vertices;
 int edges[];

} polygon_t;</lang>

Polygons for testing:

<lang c>point_t square_v[] = {

 {0,0}, {10,0}, {10,10}, {0,10},
 {2.5,2.5}, {7.5,0.1}, {7.5,7.5}, {2.5,7.5}

};

point_t esa_v[] = {

 {3,0}, {7,0}, {10,5}, {7,10}, {3,10}, {0,5}

};

polygon_t esa = {

 esa_v,
 { 0,1, 1,2, 2,3, 3,4, 4,5, 5,0, -1 }

};

polygon_t square = {

 square_v, 
 { 0,1, 1,2, 2,3, 3,0, -1 } 

};

polygon_t squarehole = {

 square_v, 
 { 0,1, 1,2, 2,3, 3,0, 
   4,5, 5,6, 6,7, 7,4, -1 }

};

polygon_t strange = {

 square_v,
 { 0,4, 4,3, 3,7, 7,6, 6,2, 2,1, 1,5, 5,0, -1 }

};</lang>

Check for intersection code:

<lang c>#define MAX(A,B) (((A)>(B))?(A):(B))

  1. define MIN(A,B) (((A)>(B))?(B):(A))
  2. define minP(A,B,C) ( (((A)->C) > ((B)->C)) ? (B) : (A) )
  3. define coeff_ang(PA,PB) ( ((PB)->y - (PA)->y) / ((PB)->x - (PA)->x) )
  4. define EPS 0.00001

inline bool hseg_intersect_seg(point_t *s, point_t *a, point_t *b) {

 double eps = 0.0;
 if ( s->y == MAX(a->y, b->y) ||
      s->y == MIN(a->y, b->y) ) eps = EPS;
 if (  (s->y + eps) > MAX(a->y, b->y) ||

(s->y + eps) < MIN(a->y, b->y) ||

        s->x > MAX(a->x, b->x) ) return false;
 if ( s->x <= MIN(a->x, b->x) ) return true;
 double ca = (a->x != b->x) ? coeff_ang(a,b) : 
   HUGE_VAL;
 point_t *my = minP(a,b,y);
 double cp = (s->x - my->x) ? coeff_ang(my, s) :
   HUGE_VAL;
 if ( cp >= ca ) return true;
 return false;

}</lang>

The ray-casting algorithm:

<lang c>bool point_is_inside(polygon_t *poly, point_t *pt) {

 int cross = 0, i;
 for(i=0; poly->edges[i] != -1 ; i+=2) {
   if ( hseg_intersect_seg(pt, 
      &poly->vertices[ poly->edges[i] ],
      &poly->vertices[ poly->edges[i+1] ]) ) 
     cross++;
 }
 return !(cross%2 == 0);

}</lang>

Testing:

<lang c>#define MAKE_TEST(S) do { \

   printf("point (%.5f,%.5f) is ", test_points[i].x, test_points[i].y); \
   if ( point_is_inside(&S, &test_points[i]) )                          \
     printf("INSIDE " #S "\n");                                         \
   else                                                                 \
     printf("OUTSIDE " #S "\n");                                        \
 } while(0);
 

int main() {

 point_t test_points[] = { {5,5}, {5,8}, {2,2},
      {0,0}, {10,10}, {2.5,2.5}, 
      {0.01,5}, {2.2,7.4}, {0,5}, {10,5}, {-4,10}};
 int i;
 
 for(i=0; i < sizeof(test_points)/sizeof(point_t); i++) {
   MAKE_TEST(square);
   MAKE_TEST(squarehole);
   MAKE_TEST(strange);
   MAKE_TEST(esa);
   printf("\n");
 }
 return EXIT_SUCCESS;

}</lang>

The test's output reveals the meaning of coherent results: a point on the leftmost vertical side of the square (coordinate 0,5) is considered outside; while a point on the rightmost vertical side of the square (coordinate 10,5) is considered inside, but on the top-right vertex (coordinate 10,10), it is considered outside again.

Fortran

Works with: Fortran version 95 and later

The following code uses the Points_Module defined here.

This module defines "polygons".

<lang fortran>module Polygons

 use Points_Module
 implicit none
 type polygon
    type(point), dimension(:), allocatable :: points
    integer, dimension(:), allocatable :: vertices
 end type polygon

contains

 function create_polygon(pts, vt)
   type(polygon) :: create_polygon
   type(point), dimension(:), intent(in) :: pts
   integer, dimension(:), intent(in) :: vt
   integer :: np, nv
   np = size(pts,1)
   nv = size(vt,1)
   allocate(create_polygon%points(np), create_polygon%vertices(nv))
   create_polygon%points = pts
   create_polygon%vertices = vt
 end function create_polygon
 subroutine free_polygon(pol)
   type(polygon), intent(inout) :: pol
   deallocate(pol%points, pol%vertices)
 end subroutine free_polygon

end module Polygons</lang>

The ray casting algorithm module:

<lang fortran>module Ray_Casting_Algo

 use Polygons
 implicit none
 real, parameter, private :: eps = 0.00001
 private :: ray_intersects_seg

contains

 function ray_intersects_seg(p0, a0, b0) result(intersect)
   type(point), intent(in) :: p0, a0, b0
   logical :: intersect
   type(point) :: a, b, p
   real :: m_red, m_blue
   p = p0
   ! let variable "a" be the point with smallest y coordinate
   if ( a0%y > b0%y ) then
      b = a0
      a = b0
   else
      a = a0
      b = b0
   end if
   if ( (p%y == a%y) .or. (p%y == b%y) ) p%y = p%y + eps
   intersect = .false.
   if ( (p%y > b%y) .or. (p%y < a%y) ) return
   if ( p%x > max(a%x, b%x) ) return
   if ( p%x < min(a%x, b%x) ) then
      intersect = .true.
   else
      if ( abs(a%x - b%x) > tiny(a%x) ) then
         m_red = (b%y - a%y) / (b%x - a%x)
      else
         m_red = huge(m_red)
      end if
      if ( abs(a%x - p%x) > tiny(a%x) ) then
         m_blue = (p%y - a%y) / (p%x - a%x)
      else
         m_blue = huge(m_blue)
      end if
      if ( m_blue >= m_red ) then
         intersect = .true.
      else
         intersect = .false.
      end if
   end if
 end function ray_intersects_seg
 function point_is_inside(p, pol) result(inside)
   logical :: inside
   type(point), intent(in) :: p
   type(polygon), intent(in) :: pol
   
   integer :: i, cnt, pa, pb
   cnt = 0
   do i = lbound(pol%vertices,1), ubound(pol%vertices,1), 2
      pa = pol%vertices(i)
      pb = pol%vertices(i+1)
      if ( ray_intersects_seg(p, pol%points(pa), pol%points(pb)) ) cnt = cnt + 1
   end do
   
   inside = .true.
   if ( mod(cnt, 2) == 0 ) then
      inside = .false.
   end if
 end function point_is_inside

end module Ray_Casting_Algo</lang>

Testing

<lang fortran>program Pointpoly

 use Points_Module
 use Ray_Casting_Algo
 implicit none
 character(len=16), dimension(4) :: names
 type(polygon), dimension(4) :: polys
 type(point), dimension(14) :: pts
 type(point), dimension(7) :: p
 integer :: i, j
 pts = (/ point(0,0), point(10,0), point(10,10), point(0,10), &
          point(2.5,2.5), point(7.5,2.5), point(7.5,7.5), point(2.5,7.5), &
          point(0,5), point(10,5), &
          point(3,0), point(7,0), point(7,10), point(3,10) /)
 polys(1) = create_polygon(pts, (/ 1,2, 2,3, 3,4, 4,1 /) )
 polys(2) = create_polygon(pts, (/ 1,2, 2,3, 3,4, 4,1, 5,6, 6,7, 7,8, 8,5 /) )
 polys(3) = create_polygon(pts, (/ 1,5, 5,4, 4,8, 8,7, 7,3, 3,2, 2,5 /) )
 polys(4) = create_polygon(pts, (/ 11,12, 12,10, 10,13, 13,14, 14,9, 9,11 /) )
 names = (/ "square", "square hole", "strange", "exagon" /)
 p = (/ point(5,5), point(5, 8), point(-10, 5), point(0,5), point(10,5), &
        point(8,5), point(10,10) /)
 do j = 1, size(p)
    do i = 1, size(polys)
       write(*, "('point (',F8.2,',',F8.2,') is inside ',A,'? ', L)") &
            p(j)%x, p(j)%y, names(i), point_is_inside(p(j), polys(i))
    end do
    print *, ""
 end do
 do i = 1, size(polys)
    call free_polygon(polys(i))
 end do

end program Pointpoly</lang>

Tcl

<lang Tcl>package require Tcl 8.5

proc point_in_polygon {point polygon} {

   set count 0
   foreach side [sides $polygon] {
       if {[ray_intersects_line $point $side]} {
           incr count
       }
   }
   expr {$count % 2} ;#-- 1 = odd = true, 0 = even = false

} proc sides polygon {

   lassign $polygon x0 y0
   foreach {x y} [lrange [lappend polygon $x0 $y0] 2 end] {
       lappend res [list $x0 $y0 $x $y]
       set x0 $x
       set y0 $y
   }
   return $res

} proc ray_intersects_line {point line} {

   lassign $point Px Py
   lassign $line Ax Ay Bx By
   # Reverse line direction if necessary
   if {$By < $Ay} {

lassign $line Bx By Ax Ay

   }
   # Add epsilon to 
   if {$Py == $Ay || $Py == $By} {

set Py [expr {$Py + abs($Py)/1e6}]

   }
   # Bounding box checks
   if {$Py < $Ay || $Py > $By || $Px > max($Ax,$Bx)} {

return 0

   } elseif {$Px < min($Ax,$Bx)} {

return 1

   }
   # Compare dot products to compare (cosines of) angles
   set mRed [expr {$Ax != $Bx ? ($By-$Ay)/($Bx-$Ax) : Inf}]
   set mBlu [expr {$Ax != $Px ? ($Py-$Ay)/($Px-$Ax) : Inf}]
   return [expr {$mBlu >= $mRed}]

}

foreach {point poly} {

   {0 0}     {-1 -1  -1 1  1 1  1 -1}
   {2 2}     {-1 -1  -1 1  1 1  1 -1}
   {0 0}     {-2 -2  -2 2  2 2  2 -2   2 -1  1 1  -1 1  -1 -1  1 -1  2 -1}
   {1.5 1.5} {-2 -2  -2 2  2 2  2 -2   2 -1  1 1  -1 1  -1 -1  1 -1  2 -1}
   {5 5}     {0 0  2.5 2.5  0 10  2.5 7.5  7.5 7.5  10 10  10 0  7.5 0.1}
   {5 8}     {0 0  2.5 2.5  0 10  2.5 7.5  7.5 7.5  10 10  10 0  7.5 0.1}
   {2 2}     {0 0  2.5 2.5  0 10  2.5 7.5  7.5 7.5  10 10  10 0  7.5 0.1}
   {0 0}     {0 0  2.5 2.5  0 10  2.5 7.5  7.5 7.5  10 10  10 0  7.5 0.1}
   {10 10}   {0 0  2.5 2.5  0 10  2.5 7.5  7.5 7.5  10 10  10 0  7.5 0.1}
   {2.5 2.5} {0 0  2.5 2.5  0 10  2.5 7.5  7.5 7.5  10 10  10 0  7.5 0.1}
   {-5 5} {3 0 7 0 10 5 7 10 3 10 0 5 }

} {

   puts "$point in $poly = [point_in_polygon $point $poly]"

}</lang>