I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

Ramanujan primes

From Rosetta Code
Ramanujan primes is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

As the integers get larger, the spacing between prime numbers slowly lengthens, but the spacing between primes increases at a slower rate than the numbers themselves increase. A consequence of this difference in rates of increase is the existence of special primes, called Ramanujan primes.

The `n`th Ramanujan prime is defined to be the least integer for which there are at least n primes between x and x/2 for all x greater or equal to n.

Task
  • Generate and show the first 100 Ramanujan prime numbers.
  • Find and show the 1000th Ramanujan prime number.
Stretch task
  • Find and show the 10,000th Ramanujan prime number.
See also


C++[edit]

Translation of: Julia
#include <chrono>
#include <cmath>
#include <iomanip>
#include <iostream>
#include <numeric>
#include <vector>
 
class prime_counter {
public:
explicit prime_counter(int limit);
int prime_count(int n) const { return n < 1 ? 0 : count_.at(n); }
 
private:
std::vector<int> count_;
};
 
prime_counter::prime_counter(int limit) : count_(limit, 1) {
if (limit > 0)
count_[0] = 0;
if (limit > 1)
count_[1] = 0;
for (int i = 4; i < limit; i += 2)
count_[i] = 0;
for (int p = 3, sq = 9; sq < limit; p += 2) {
if (count_[p]) {
for (int q = sq; q < limit; q += p << 1)
count_[q] = 0;
}
sq += (p + 1) << 2;
}
std::partial_sum(count_.begin(), count_.end(), count_.begin());
}
 
int ramanujan_max(int n) {
return static_cast<int>(std::ceil(4 * n * std::log(4 * n)));
}
 
int ramanujan_prime(const prime_counter& pc, int n) {
int max = ramanujan_max(n);
for (int i = max; i >= 0; --i) {
if (pc.prime_count(i) - pc.prime_count(i / 2) < n)
return i + 1;
}
return 0;
}
 
int main() {
std::cout.imbue(std::locale(""));
auto start = std::chrono::high_resolution_clock::now();
prime_counter pc(1 + ramanujan_max(100000));
for (int i = 1; i <= 100; ++i) {
std::cout << std::setw(5) << ramanujan_prime(pc, i)
<< (i % 10 == 0 ? '\n' : ' ');
}
std::cout << '\n';
for (int n = 1000; n <= 100000; n *= 10) {
std::cout << "The " << n << "th Ramanujan prime is " << ramanujan_prime(pc, n)
<< ".\n";
}
auto end = std::chrono::high_resolution_clock::now();
std::cout << "\nElapsed time: "
<< std::chrono::duration<double>(end - start).count() * 1000
<< " milliseconds\n";
}
Output:
    2    11    17    29    41    47    59    67    71    97
  101   107   127   149   151   167   179   181   227   229
  233   239   241   263   269   281   307   311   347   349
  367   373   401   409   419   431   433   439   461   487
  491   503   569   571   587   593   599   601   607   641
  643   647   653   659   677   719   727   739   751   769
  809   821   823   827   853   857   881   937   941   947
  967   983 1,009 1,019 1,021 1,031 1,049 1,051 1,061 1,063
1,087 1,091 1,097 1,103 1,151 1,163 1,187 1,217 1,229 1,249
1,277 1,289 1,297 1,301 1,367 1,373 1,423 1,427 1,429 1,439

The 1,000th Ramanujan prime is 19,403.
The 10,000th Ramanujan prime is 242,057.
The 100,000th Ramanujan prime is 2,916,539.

Elapsed time: 46.0828 milliseconds

F#[edit]

This task uses Extensible Prime Generator (F#)

 
// Ramanujan primes. Nigel Galloway: September 7th., 2021
let fN g=if isPrime g then 1 else if g%2=1 then 0 else if isPrime(g/2) then -1 else 0
let rP p=let N,G=Array.create p 0,(Seq.item(3*p-2)(primes32()))+1 in let rec fG n g=if g=G then N else(if n<p then N.[n]<-g); fG(n+(fN g))(g+1) in fG 0 1
let n=rP 100000
n.[0..99]|>Array.iter(printf "%d "); printfn ""
[1000;10000;100000]|>List.iter(fun g->printf $"The %d{g}th Ramanujan prime is %d{n.[g-1]}\n" )
 
Output:
2 11 17 29 41 47 59 67 71 97 101 107 127 149 151 167 179 181 227 229 233 239 241 263 269 281 307 311 347 349 367 373 401 409 419 431 433 439 461 487 491 503 569 571 587 593 599 601 607 641 643 647 653 659 677 719 727 739 751 769 809 821 823 827 853 857 881 937 941 947 967 983 1009 1019 1021 1031 1049 1051 1061 1063 1087 1091 1097 1103 1151 1163 1187 1217 1229 1249 1277 1289 1297 1301 1367 1373 1423 1427 1429 1439 
The 1000th Ramanujan prime is 19403
The 10000th Ramanujan prime is 242057
The 100000th Ramanujan prime is 2916539

Go[edit]

Translation of: C++
Library: Go-rcu


This takes about 40 ms to find the 100,000th Ramanujan prime on my machine. The millionth takes about 520 ms.

package main
 
import (
"fmt"
"math"
"rcu"
"time"
)
 
var count []int
 
func primeCounter(limit int) {
count = make([]int, limit)
for i := 0; i < limit; i++ {
count[i] = 1
}
if limit > 0 {
count[0] = 0
}
if limit > 1 {
count[1] = 0
}
for i := 4; i < limit; i += 2 {
count[i] = 0
}
for p, sq := 3, 9; sq < limit; p += 2 {
if count[p] != 0 {
for q := sq; q < limit; q += p << 1 {
count[q] = 0
}
}
sq += (p + 1) << 2
}
sum := 0
for i := 0; i < limit; i++ {
sum += count[i]
count[i] = sum
}
}
 
func primeCount(n int) int {
if n < 1 {
return 0
}
return count[n]
}
 
func ramanujanMax(n int) int {
fn := float64(n)
return int(math.Ceil(4 * fn * math.Log(4*fn)))
}
 
func ramanujanPrime(n int) int {
if n == 1 {
return 2
}
for i := ramanujanMax(n); i >= 2*n; i-- {
if i%2 == 1 {
continue
}
if primeCount(i)-primeCount(i/2) < n {
return i + 1
}
}
return 0
}
 
func main() {
start := time.Now()
primeCounter(1 + ramanujanMax(1e6))
fmt.Println("The first 100 Ramanujan primes are:")
rams := make([]int, 100)
for n := 0; n < 100; n++ {
rams[n] = ramanujanPrime(n + 1)
}
for i, r := range rams {
fmt.Printf("%5s ", rcu.Commatize(r))
if (i+1)%10 == 0 {
fmt.Println()
}
}
 
fmt.Printf("\nThe 1,000th Ramanujan prime is %6s\n", rcu.Commatize(ramanujanPrime(1000)))
 
fmt.Printf("\nThe 10,000th Ramanujan prime is %7s\n", rcu.Commatize(ramanujanPrime(10000)))
 
fmt.Printf("\nThe 100,000th Ramanujan prime is %6s\n", rcu.Commatize(ramanujanPrime(100000)))
 
fmt.Printf("\nThe 1,000,000th Ramanujan prime is %7s\n", rcu.Commatize(ramanujanPrime(1000000)))
 
fmt.Println("\nTook", time.Since(start))
}
Output:
The first 100 Ramanujan primes are:
    2    11    17    29    41    47    59    67    71    97 
  101   107   127   149   151   167   179   181   227   229 
  233   239   241   263   269   281   307   311   347   349 
  367   373   401   409   419   431   433   439   461   487 
  491   503   569   571   587   593   599   601   607   641 
  643   647   653   659   677   719   727   739   751   769 
  809   821   823   827   853   857   881   937   941   947 
  967   983 1,009 1,019 1,021 1,031 1,049 1,051 1,061 1,063 
1,087 1,091 1,097 1,103 1,151 1,163 1,187 1,217 1,229 1,249 
1,277 1,289 1,297 1,301 1,367 1,373 1,423 1,427 1,429 1,439 

The 1,000th Ramanujan prime is 19,403

The 10,000th Ramanujan prime is 242,057

The 100,000th Ramanujan prime is 2,916,539

The 1,000,000th Ramanujan prime is 34,072,993

Took 519.655163ms

Java[edit]

Translation of: C++
import java.text.NumberFormat;
import java.util.Arrays;
 
public class RamanujanPrimes {
public static void main(String[] args) {
NumberFormat nf = NumberFormat.getInstance();
long start = System.nanoTime();
System.out.println("First 100 Ramanujan primes:");
PrimeCounter pc = new PrimeCounter(1 + ramanujanMax(100000));
for (int i = 1; i <= 100; ++i) {
int p = ramanujanPrime(pc, i);
System.out.printf("%5s%c", nf.format(p), i % 10 == 0 ? '\n' : ' ');
}
System.out.println();
for (int i = 1000; i <= 100000; i *= 10) {
int p = ramanujanPrime(pc, i);
System.out.printf("The %sth Ramanujan prime is %s.\n",
nf.format(i), nf.format(p));
}
long end = System.nanoTime();
System.out.printf("\nElapsed time: %.1f milliseconds\n", (end - start) / 1e6);
}
 
private static int ramanujanMax(int n) {
return (int)Math.ceil(4 * n * Math.log(4 * n));
}
 
private static int ramanujanPrime(PrimeCounter pc, int n) {
for (int i = ramanujanMax(n); i >= 0; --i) {
if (pc.primeCount(i) - pc.primeCount(i / 2) < n)
return i + 1;
}
return 0;
}
 
private static class PrimeCounter {
private PrimeCounter(int limit) {
count = new int[limit];
Arrays.fill(count, 1);
if (limit > 0)
count[0] = 0;
if (limit > 1)
count[1] = 0;
for (int i = 4; i < limit; i += 2)
count[i] = 0;
for (int p = 3, sq = 9; sq < limit; p += 2) {
if (count[p] != 0) {
for (int q = sq; q < limit; q += p << 1)
count[q] = 0;
}
sq += (p + 1) << 2;
}
Arrays.parallelPrefix(count, (x, y) -> x + y);
}
 
private int primeCount(int n) {
return n < 1 ? 0 : count[n];
}
 
private int[] count;
}
}
Output:
First 100 Ramanujan primes:
    2    11    17    29    41    47    59    67    71    97
  101   107   127   149   151   167   179   181   227   229
  233   239   241   263   269   281   307   311   347   349
  367   373   401   409   419   431   433   439   461   487
  491   503   569   571   587   593   599   601   607   641
  643   647   653   659   677   719   727   739   751   769
  809   821   823   827   853   857   881   937   941   947
  967   983 1,009 1,019 1,021 1,031 1,049 1,051 1,061 1,063
1,087 1,091 1,097 1,103 1,151 1,163 1,187 1,217 1,229 1,249
1,277 1,289 1,297 1,301 1,367 1,373 1,423 1,427 1,429 1,439

The 1,000th Ramanujan prime is 19,403.
The 10,000th Ramanujan prime is 242,057.
The 100,000th Ramanujan prime is 2,916,539.

Elapsed time: 187.2 milliseconds

Julia[edit]

using Primes
 
@time let
MASK = primesmask(625000)
PIVEC = accumulate(+, MASK)
PI(n) = n < 1 ? 0 : PIVEC[n]
 
function Ramanujan_prime(n)
maxposs = Int(ceil(4n * (log(4n) / log(2))))
for i in maxposs:-1:1
PI(i) - PI(i ÷ 2) < n && return i + 1
end
return 0
end
 
for i in 1:100
print(lpad(Ramanujan_prime(i), 5), i % 20 == 0 ? "\n" : "")
end
 
println("\nThe 1000th Ramanujan prime is ", Ramanujan_prime(1000))
println("\nThe 10,000th Ramanujan prime is ", Ramanujan_prime(10000))
end
 
Output:
    2   11   17   29   41   47   59   67   71   97  101  107  127  149  151  167  179  181  227  229
  233  239  241  263  269  281  307  311  347  349  367  373  401  409  419  431  433  439  461  487
  491  503  569  571  587  593  599  601  607  641  643  647  653  659  677  719  727  739  751  769
  809  821  823  827  853  857  881  937  941  947  967  983 1009 1019 1021 1031 1049 1051 1061 1063
 1087 1091 1097 1103 1151 1163 1187 1217 1229 1249 1277 1289 1297 1301 1367 1373 1423 1427 1429 1439

The 1000th Ramanujan prime is 19403

The 10,000th Ramanujan prime is 242057
  0.272471 seconds (625.44 k allocations: 38.734 MiB, 33.07% compilation time)

Nim[edit]

Translation of: C++

I compiled using command nim c -d:release -d:lto --gc:arc ramanujan_primes.nim, i.e. with runtime checks on, link time optimization and using Arc garbage collector. To find the 100_000th Ramanujan prime, the program runs in about 100 ms on my laptop (i5-8250U CPU @ 1.60GHz, 8 GB Ram, Linux Manjaro).

import math, sequtils, strutils, times
 
let t0 = now()
 
type PrimeCounter = seq[int]
 
proc initPrimeCounter(limit: Positive): PrimeCounter =
doAssert limit > 1
result = repeat(1, limit)
result[0] = 0
result[1] = 0
for i in countup(4, limit - 1, 2): result[i] = 0
var p = 3
var p2 = 9
while p2 < limit:
if result[p] != 0:
for q in countup(p2, limit - 1, p shl 1):
result[q] = 0
p2 += (p + 1) shl 2
if p2 >= limit: break
inc p, 2
# Compute partial sums in place.
var sum = 0
for item in result.mitems:
sum += item
item = sum
 
func ramanujanMax(n: int): int {.inline.} = int(ceil(4 * n.toFloat * ln(4 * n.toFloat)))
 
proc ramanujanPrime(pi: PrimeCounter; n: int): int =
if n == 1: return 2
var max = ramanujanMax(n)
if (max and 1) == 1: dec max
for i in countdown(max, 2, 2):
if pi[i] - pi[i div 2] < n:
return i + 1
 
let pi = initPrimeCounter(1 + ramanujanMax(100_000))
 
for n in 1..100:
stdout.write ($ramanujanPrime(pi, n)).align(4), if n mod 20 == 0: '\n' else: ' '
 
echo "\nThe 1000th Ramanujan prime is ", ramanujanPrime(pi, 1_000)
echo "The 10_000th Ramanujan prime is ", ramanujanPrime(pi, 10_000)
echo "The 100_000th Ramanujan prime is ", ramanujanPrime(pi, 100_000)
 
echo "\nElapsed time: ", (now() - t0).inMilliseconds, " ms"
Output:
   2   11   17   29   41   47   59   67   71   97  101  107  127  149  151  167  179  181  227  229
 233  239  241  263  269  281  307  311  347  349  367  373  401  409  419  431  433  439  461  487
 491  503  569  571  587  593  599  601  607  641  643  647  653  659  677  719  727  739  751  769
 809  821  823  827  853  857  881  937  941  947  967  983 1009 1019 1021 1031 1049 1051 1061 1063
1087 1091 1097 1103 1151 1163 1187 1217 1229 1249 1277 1289 1297 1301 1367 1373 1423 1427 1429 1439

The 1000th Ramanujan prime is 19403
The 10_000th Ramanujan prime is 242057
The 100_000th Ramanujan prime is 2916539

Elapsed time: 99 ms

Perl[edit]

Translation of: Raku
Library: ntheory
use strict;
use warnings;
use ntheory 'primes';
 
sub count {
my($n,$p) = @_;
my $c = -1;
do { $c++ } until $$p[$c] > $n;
return $c;
}
 
my(@rp,@mem);
my $primes = primes( 100_000_000 );
 
sub r_prime {
my $n = shift;
for my $x ( reverse 1 .. int 4*$n * log(4*$n) / log 2 ) {
my $y = int $x / 2;
return 1 + $x if ($mem[$x] //= count($x,$primes)) - ($mem[$y] //= count($y,$primes)) < $n
}
}
 
push @rp, r_prime($_) for 1..100;
print "First 100:\n" . (sprintf "@{['%5d' x 100]}", @rp) =~ s/(.{100})/$1\n/gr;
 
print "\n\n 1000th: " . r_prime( 1000) . "\n";
print "\n10000th: " . r_prime(10000) . "\n"; # faster with 'ntheory' function 'ramanujan_primes'
Output:
First 100:
    2   11   17   29   41   47   59   67   71   97  101  107  127  149  151  167  179  181  227  229
  233  239  241  263  269  281  307  311  347  349  367  373  401  409  419  431  433  439  461  487
  491  503  569  571  587  593  599  601  607  641  643  647  653  659  677  719  727  739  751  769
  809  821  823  827  853  857  881  937  941  947  967  983 1009 1019 1021 1031 1049 1051 1061 1063
 1087 1091 1097 1103 1151 1163 1187 1217 1229 1249 1277 1289 1297 1301 1367 1373 1423 1427 1429 1439

 1000th: 19403
10000th: 242057

Phix[edit]

Translation of: Go
Library: Phix/online

You can run this online here.

with javascript_semantics
sequence pi = {}
 
procedure primeCounter(integer limit)
    pi = repeat(1,limit)
    if limit > 1 then
        pi[1] = 0
        for i=4 to limit by 2 do
            pi[i] = 0
        end for
        integer p = 3, sq = 9
        while sq<=limit do
            if pi[p]!=0 then
                for q=sq to limit by p*2 do
                    pi[q] = 0
                end for
            end if
            sq += (p + 1)*4
            p += 2
        end while
        atom total = 0
        for i=2 to limit do
            total += pi[i]
            pi[i] = total
        end for
    end if
end procedure
 
function ramanujanMax(integer n)
    return floor(4*n*log(4*n))
end function
 
function ramanujanPrime(integer n)
    if n=1 then return 2 end if
    integer maxposs = ramanujanMax(n)
    for i=maxposs-odd(maxposs) to 1 by -2 do
        if pi[i]-pi[floor(i/2)] < n then
            return i + 1
        end if
    end for
    return 0
end function
 
atom t0 = time()
integer lim = iff(platform()=JS?5:6)
primeCounter(ramanujanMax(power(10,lim)))
sequence r = apply(tagset(100),ramanujanPrime)
printf(1,"%s\n",join_by(apply(true,sprintf,{{"%5d"},r}),1,20,""))
for p=3 to lim do
    integer n = power(10,p)
    printf(1,"The %,dth Ramanujan prime is %,d\n", {n,ramanujanPrime(n)})
end for
Output:
    2   11   17   29   41   47   59   67   71   97  101  107  127  149  151  167  179  181  227  229
  233  239  241  263  269  281  307  311  347  349  367  373  401  409  419  431  433  439  461  487
  491  503  569  571  587  593  599  601  607  641  643  647  653  659  677  719  727  739  751  769
  809  821  823  827  853  857  881  937  941  947  967  983 1009 1019 1021 1031 1049 1051 1061 1063
 1087 1091 1097 1103 1151 1163 1187 1217 1229 1249 1277 1289 1297 1301 1367 1373 1423 1427 1429 1439

The 1,000th Ramanujan prime is 19,403
The 10,000th Ramanujan prime is 242,057
The 100,000th Ramanujan prime is 2,916,539
The 1,000,000th Ramanujan prime is 34,072,993
"2.7s"

The last line is omitted under pwa/p2js since the primeCounter array is too much for Javascript to handle.

Raku[edit]

All timings are purely informational. Will vary by system specs and load.

Pure Raku[edit]

use Math::Primesieve;
use Lingua::EN::Numbers;
 
my $primes = Math::Primesieve.new;
 
my @mem;
 
sub ramanujan-prime (\n) {
1 + (1..(4×n × (4×n).log / 2.log).floor).first: :end, -> \x {
my \y = x div 2;
((@mem[x] //= $primes.count(x)) - (@mem[y] //= $primes.count(y))) < n
}
}
 
say 'First 100:';
say (1..100).map( &ramanujan-prime ).batch(10)».&comma».fmt("%6s").join: "\n";
say "\n 1,000th: { comma 1000.&ramanujan-prime }";
say "10,000th: { comma 10000.&ramanujan-prime }";
say (now - INIT now).fmt('%.3f') ~ ' seconds';
Output:
First 100:
     2     11     17     29     41     47     59     67     71     97
   101    107    127    149    151    167    179    181    227    229
   233    239    241    263    269    281    307    311    347    349
   367    373    401    409    419    431    433    439    461    487
   491    503    569    571    587    593    599    601    607    641
   643    647    653    659    677    719    727    739    751    769
   809    821    823    827    853    857    881    937    941    947
   967    983  1,009  1,019  1,021  1,031  1,049  1,051  1,061  1,063
 1,087  1,091  1,097  1,103  1,151  1,163  1,187  1,217  1,229  1,249
 1,277  1,289  1,297  1,301  1,367  1,373  1,423  1,427  1,429  1,439

 1,000th: 19,403
10,000th: 242,057
18.405 seconds

ntheory library[edit]

use ntheory:from<Perl5> <ramanujan_primes nth_ramanujan_prime>;
use Lingua::EN::Numbers;
 
say 'First 100:';
say ramanujan_primes( nth_ramanujan_prime(100) ).batch(10)».&comma».fmt("%6s").join: "\n";
 
for (2..12).map: {exp $_, 10} -> $limit {
say "\n{tc ordinal $limit}: { comma nth_ramanujan_prime($limit) }";
}
 
say (now - INIT now).fmt('%.3f') ~ ' seconds';
Output:
First 100:
     2     11     17     29     41     47     59     67     71     97
   101    107    127    149    151    167    179    181    227    229
   233    239    241    263    269    281    307    311    347    349
   367    373    401    409    419    431    433    439    461    487
   491    503    569    571    587    593    599    601    607    641
   643    647    653    659    677    719    727    739    751    769
   809    821    823    827    853    857    881    937    941    947
   967    983  1,009  1,019  1,021  1,031  1,049  1,051  1,061  1,063
 1,087  1,091  1,097  1,103  1,151  1,163  1,187  1,217  1,229  1,249
 1,277  1,289  1,297  1,301  1,367  1,373  1,423  1,427  1,429  1,439

One hundredth: 1,439

One thousandth: 19,403

Ten thousandth: 242,057

One hundred thousandth: 2,916,539

One millionth: 34,072,993

Ten millionth: 389,433,437

One hundred millionth: 4,378,259,731

One billionth: 48,597,112,639

Ten billionth: 533,902,884,973

One hundred billionth: 5,816,713,968,619

One trillionth: 62,929,891,461,461
15.572 seconds

Wren[edit]

Translation of: C++
Library: Wren-trait
Library: Wren-seq
Library: Wren-fmt


This takes about 1.1 seconds to find the 100,000th Ramanujan prime on my machine. The millionth takes 13.2 seconds.

import "/trait" for Stepped
import "/seq" for Lst
import "/fmt" for Fmt
 
var count
 
var primeCounter = Fn.new { |limit|
count = List.filled(limit, 1)
if (limit > 0) count[0] = 0
if (limit > 1) count[1] = 0
for (i in Stepped.new(4...limit, 2)) count[i] = 0
var p = 3
var sq = 9
while (sq < limit) {
if (count[p] != 0) {
var q = sq
while (q < limit) {
count[q] = 0
q = q + p * 2
}
}
sq = sq + (p + 1) * 4
p = p + 2
}
var sum = 0
for (i in 0...limit) {
sum = sum + count[i]
count[i] = sum
}
}
 
var primeCount = Fn.new { |n| (n < 1) ? 0 : count[n] }
 
var ramanujanMax = Fn.new { |n| (4 * n * (4*n).log).ceil }
 
var ramanujanPrime = Fn.new { |n|
if (n == 1) return 2
for (i in ramanujanMax.call(n)..2*n) {
if (i % 2 == 1) continue
if (primeCount.call(i) - primeCount.call((i/2).floor) < n) return i + 1
}
return 0
}
 
primeCounter.call(1 + ramanujanMax.call(1e6))
System.print("The first 100 Ramanujan primes are:")
var rams = (1..100).map { |n| ramanujanPrime.call(n) }.toList
for (chunk in Lst.chunks(rams, 10)) Fmt.print("$,5d", chunk)
 
Fmt.print("\nThe 1,000th Ramanujan prime is $,6d", ramanujanPrime.call(1000))
 
Fmt.print("\nThe 10,000th Ramanujan prime is $,7d", ramanujanPrime.call(10000))
 
Fmt.print("\nThe 100,000th Ramanujan prime is $,9d", ramanujanPrime.call(100000))
 
Fmt.print("\nThe 1,000,000th Ramanujan prime is $,10d", ramanujanPrime.call(1000000))
Output:
The first 100 Ramanujan primes are:
    2    11    17    29    41    47    59    67    71    97
  101   107   127   149   151   167   179   181   227   229
  233   239   241   263   269   281   307   311   347   349
  367   373   401   409   419   431   433   439   461   487
  491   503   569   571   587   593   599   601   607   641
  643   647   653   659   677   719   727   739   751   769
  809   821   823   827   853   857   881   937   941   947
  967   983 1,009 1,019 1,021 1,031 1,049 1,051 1,061 1,063
1,087 1,091 1,097 1,103 1,151 1,163 1,187 1,217 1,229 1,249
1,277 1,289 1,297 1,301 1,367 1,373 1,423 1,427 1,429 1,439

The 1,000th Ramanujan prime is 19,403

The 10,000th Ramanujan prime is 242,057

The 100,000th Ramanujan prime is 2,916,539

The 1,000,000th Ramanujan prime is 34,072,993