Proof: Difference between revisions

From Rosetta Code
Content added Content deleted
(→‎{{header|Tcl}}: Slightly clearer version)
Line 96: Line 96:
datatype define Int = Zero | Succ val
datatype define Int = Zero | Succ val
datatype define EO = Even | Odd
datatype define EO = Even | Odd

proc evenOdd val {
proc evenOdd val {
global environment
global environment
Line 102: Line 102:
case Zero -> { Even }
case Zero -> { Even }
case [Succ [Succ x]] -> { evenOdd $x }
case [Succ [Succ x]] -> { evenOdd $x }
case [Succ x] -> {
datatype match [evenOdd $x] {
case Even -> { Odd }
case Odd -> { Even }
case y -> { list evenOdd [Succ $x] }
}
}
case t -> {
case t -> {
set term [list evenOdd $t]
set term [list evenOdd $t]
Line 121: Line 114:
}
}
}
}

proc add {a b} {
proc add {a b} {
global environment
global environment
Line 148: Line 141:
}
}


puts "BASE CASE"
foreach c {Even Odd} {
puts "if p and q sum to an $c number then..."
puts "evenOdd Zero = [evenOdd Zero]"
set environment([list evenOdd [add p q]]) $c
puts "evenOdd \[add Zero Zero\] = [evenOdd [add Zero Zero]]"

foreach {a b} {
puts "\nITERATIVE CASE"
p q
set environment([list evenOdd p]) Even
{Succ p} q
puts "if evenOdd p = Even..."
p {Succ q}
puts "\tevenOdd \[Succ \[Succ p\]\] = [evenOdd [Succ [Succ p]]]"
{Succ p} q
unset environment
p {Succ q}
puts "if evenOdd \[add p q\] = Even..."
{Succ p} {Succ q}
set environment([list evenOdd [add p q]]) Even
{Succ {Succ p}} {Succ q}
foreach {a b} {
{Succ p} {Succ {Succ q}}
p q
{Succ {Succ p}} {Succ {Succ q}}
} {
{Succ {Succ p}} q
p {Succ {Succ q}}
puts "evenOdd \[[list add $a $b]\] = [evenOdd [add $a $b]]"
{Succ {Succ p}} {Succ {Succ q}}
}
} {
puts ""
puts "\tevenOdd \[[list add $a $b]\] = [evenOdd [add $a $b]]"
}</lang>
}</lang>
It is up to the caller to take the output of this program and interpret it as a proof.
It is up to the caller to take the output of this program and interpret it as a proof.

Revision as of 15:09, 3 August 2009

Task
Proof
You are encouraged to solve this task according to the task description, using any language you may know.

Define a type for natural numbers (0, 1, 2, 3, ...) and addition on them. Define a type of even numbers (0, 2, 4, 6, ...) then prove that the addition of any two even numbers is even.

Agda2

module Arith where


data Nat : Set where
  zero : Nat
  suc  : Nat -> Nat

_+_ : Nat -> Nat -> Nat
zero  + n = n
suc m + n = suc (m + n)


data Even : Nat -> Set where
  even_zero    : Even zero
  even_suc_suc : {n : Nat} -> Even n -> Even (suc (suc n))

_even+_ : {m n : Nat} -> Even m -> Even n -> Even (m + n)
even_zero       even+ en = en
even_suc_suc em even+ en = even_suc_suc (em even+ en)

Coq

Inductive nat : Set :=
  | O : nat
  | S : nat -> nat.

Fixpoint plus (n m:nat) {struct n} : nat :=
  match n with
    | O => m
    | S p => S (p + m)
  end

where "n + m" := (plus n m) : nat_scope.


Inductive even : nat -> Set :=
  | even_O : even O
  | even_SSn : forall n:nat,
                even n -> even (S (S n)).


Theorem even_plus_even : forall n m:nat,
  even n -> even m -> even (n + m).
Proof.
  intros n m H H0.
  
  elim H.
  trivial.
  
  intros.
  simpl.
  
  case even_SSn.
  intros.
  apply even_SSn; assumption.
  
  assumption.
Qed.

Omega

 data Even :: Nat ~> *0 where
    EZ:: Even Z
    ES:: Even n -> Even (S (S n))
 
 plus:: Nat ~> Nat ~> Nat
 {plus Z m} = m
 {plus (S n) m} = S {plus n m}
 
 even_plus:: Even m -> Even n -> Even {plus m n}
 even_plus EZ en = en
 even_plus (ES em) en = ES (even_plus em en)

Tcl

Using the datatype package from the Pattern Matching task...

Works with: Tcl version 8.5

<lang tcl>package require datatype datatype define Int = Zero | Succ val datatype define EO = Even | Odd

proc evenOdd val {

   global environment
   datatype match $val {

case Zero -> { Even } case [Succ [Succ x]] -> { evenOdd $x } case t -> { set term [list evenOdd $t] if {[info exists environment($term)]} { return $environment($term) } elseif {[info exists environment($t)]} { return [evenOdd $environment($t)] } else { return $term } }

   }

}

proc add {a b} {

   global environment
   datatype match $a {

case Zero -> { return $b } case [Succ x] -> { Succ [add $x $b] } case t -> { datatype match $b { case Zero -> { return $t } case [Succ x] -> { Succ [add $t $x] } case t2 -> { set term [list add $t $t2] if {[info exists environment($term)]} { return $environment($term) } elseif {[info exists environment($t)]} { return [add $environment($t) $t2] } elseif {[info exists environment($t2)]} { return [add $t $environment($t2)] } else { return $term } } } }

   }

}

puts "BASE CASE" puts "evenOdd Zero = [evenOdd Zero]" puts "evenOdd \[add Zero Zero\] = [evenOdd [add Zero Zero]]"

puts "\nITERATIVE CASE" set environment([list evenOdd p]) Even puts "if evenOdd p = Even..." puts "\tevenOdd \[Succ \[Succ p\]\] = [evenOdd [Succ [Succ p]]]" unset environment puts "if evenOdd \[add p q\] = Even..." set environment([list evenOdd [add p q]]) Even foreach {a b} {

   p q
   {Succ {Succ p}} q
   p {Succ {Succ q}}
   {Succ {Succ p}} {Succ {Succ q}}

} {

   puts "\tevenOdd \[[list add $a $b]\] = [evenOdd [add $a $b]]"

}</lang> It is up to the caller to take the output of this program and interpret it as a proof.

Twelf

nat : type.
z   : nat.
s   : nat -> nat.


plus   : nat -> nat -> nat -> type.
plus-z : plus z N2 N2.
plus-s : plus (s N1) N2 (s N3)
          <- plus N1 N2 N3.


%% declare totality assertion
%mode plus +N1 +N2 -N3.
%worlds () (plus _ _ _).

%% check totality assertion
%total N1 (plus N1 _ _).



even   : nat -> type.
even-z : even z.
even-s : even (s (s N))
          <- even N.


sum-evens : even N1 -> even N2 -> plus N1 N2 N3 -> even N3 -> type.
%mode sum-evens +D1 +D2 +Dplus -D3.

sez : sum-evens 
       even-z 
       (DevenN2 : even N2)
       (plus-z : plus z N2 N2)
       DevenN2.

ses : sum-evens 
       ( (even-s DevenN1') : even (s (s N1')))
       (DevenN2 : even N2)
       ( (plus-s (plus-s Dplus)) : plus (s (s N1')) N2 (s (s N3')))
       (even-s DevenN3')
       <- sum-evens DevenN1' DevenN2 Dplus DevenN3'.

%worlds () (sum-evens _ _ _ _).
%total D (sum-evens D _ _ _).