Proof: Difference between revisions

From Rosetta Code
Content added Content deleted
Line 150: Line 150:
EZ:: Even Z
EZ:: Even Z
ES:: Even n -> Even (S (S n))
ES:: Even n -> Even (S (S n))

plus:: Nat ~> Nat ~> Nat
plus:: Nat ~> Nat ~> Nat
{plus Z m} = m
{plus Z m} = m
{plus (S n) m} = S {plus n m}
{plus (S n) m} = S {plus n m}

even_plus:: Even m -> Even n -> Even {plus m n}
even_plus:: Even m -> Even n -> Even {plus m n}
even_plus EZ en = en
even_plus EZ en = en
even_plus (ES em) en = ES (even_plus em en)
even_plus (ES em) en = ES (even_plus em en)




=={{header|Agda2}}==
=={{header|Agda2}}==

Revision as of 01:56, 6 January 2008

Task
Proof
You are encouraged to solve this task according to the task description, using any language you may know.

Template:Dependant Types

Task

Define a type for natural numbers (0, 1, 2, 3, ...) and addition on them. Define a type of even numbers (0, 2, 4, 6, ...) then prove that the addition of any two even numbers is even.

Examples

Ada

Natural is a pre-defined subtype for Ada.

package Evens is
   type Even_Number is private;
   function "+"(Left, Right : Even_Number) return Even_Number;
   function "-"(Left, Right : Even_Number) return Even_Number;
   function "*"(Left, Right : Even_Number) return Even_Number;
   function "/"(Left, Right : Even_Number) return Natural;
   function Image(Item : Even_Number) return String;
   function To_Even(Item : Natural) return Even_Number;
   function To_Natural(Item : Even_Number) return Natural;
   Constraint_Error : exception;
private
   type Even_Number is record
      Value : Natural := 0;
   end record;
end Evens;
package body Evens is

   ---------
   -- "+" --
   ---------

   function "+" (Left, Right : Even_Number) return Even_Number is
      Temp : Even_Number;
   begin
      Temp.Value := Left.Value + Right.Value;
      return Temp;
   end "+"; 

   ---------
   -- "-" --
   ---------

   function "-" (Left, Right : Even_Number) return Even_Number is
      Temp : Even_Number;
   begin
      if Right.Value > Left.Value then
         raise Constraint_Error;
      end if;
      Temp.Value := Left.Value - Right.Value;
      return Temp;
   end "-";

   ---------
   -- "*" --
   ---------

   function "*" (Left, Right : Even_Number) return Even_Number is
      Temp : Even_Number;
   begin
      Temp.Value := Left.Value * Right.Value;
      return Temp;
   end "*";

   ---------
   -- "/" --
   ---------

   function "/" (Left, Right : Even_Number) return Natural is
      Temp : Natural := Left.Value / Right.Value;
   begin
      return Temp;
   end "/"; 

   -----------
   -- Image --
   ----------- 

   function Image (Item : Even_Number) return String is
   begin
      return Natural'Image(Item.Value);
   end Image;

   -------------
   -- To_Even --
   -------------

   function To_Even (Item : Natural) return Even_Number is
      Temp : Even_Number;
   begin
      if Item mod 2 /= 0 then
         raise Constraint_Error;
      end if;
      Temp.Value := Item;
      return Temp;
   end To_Even;

   ----------------
   -- To_Natural --
   ----------------

   function To_Natural (Item : Even_Number) return Natural is
   begin
      return Item.Value;
   end To_Natural; 

end Evens;

Coq

Inductive nat : Set :=
  | O : nat
  | S : nat -> nat.

Fixpoint plus (n m:nat) {struct n} : nat :=
  match n with
    | O => m
    | S p => S (p + m)
  end

where "n + m" := (plus n m) : nat_scope.


Inductive even : nat -> Set :=
  | even_O : even O
  | even_SSn : forall n:nat,
                even n -> even (S (S n)).


Theorem even_plus_even : forall n m:nat,
  even n -> even m -> even (n + m).
Proof.
  intros n m H H0.
  
  elim H.
  trivial.
  
  intros.
  simpl.
  
  case even_SSn.
  intros.
  apply even_SSn; assumption.
  
  assumption.
Qed.


Omega

   data Even :: Nat ~> *0 where
      EZ:: Even Z
      ES:: Even n -> Even (S (S n))
   
   plus:: Nat ~> Nat ~> Nat
   {plus Z m} = m
   {plus (S n) m} = S {plus n m}
   
   even_plus:: Even m -> Even n -> Even {plus m n}
   even_plus EZ en = en
   even_plus (ES em) en = ES (even_plus em en)

Agda2

module Arith where


data Nat : Set where
  zero : Nat
  suc  : Nat -> Nat

_+_ : Nat -> Nat -> Nat
zero  + n = n
suc m + n = suc (m + n)


data Even : Nat -> Set where
  even_zero    : Even zero
  even_suc_suc : {n : Nat} -> Even n -> Even (suc (suc n))

_even+_ : {m n : Nat} -> Even m -> Even n -> Even (m + n)
even_zero       even+ en = en
even_suc_suc em even+ en = even_suc_suc (em even+ en)


Twelf

nat : type.
z   : nat.
s   : nat -> nat.


plus   : nat -> nat -> nat -> type.
plus-z : plus z N2 N2.
plus-s : plus (s N1) N2 (s N3)
          <- plus N1 N2 N3.


%% declare totality assertion
%mode plus +N1 +N2 -N3.
%worlds () (plus _ _ _).

%% check totality assertion
%total N1 (plus N1 _ _).



even   : nat -> type.
even-z : even z.
even-s : even (s (s N))
          <- even N.


sum-evens : even N1 -> even N2 -> plus N1 N2 N3 -> even N3 -> type.
%mode sum-evens +D1 +D2 +Dplus -D3.

sez : sum-evens 
       even-z 
       (DevenN2 : even N2)
       (plus-z : plus z N2 N2)
       DevenN2.

ses : sum-evens 
       ( (even-s DevenN1') : even (s (s N1')))
       (DevenN2 : even N2)
       ( (plus-s (plus-s Dplus)) : plus (s (s N1')) N2 (s (s N3')))
       (even-s DevenN3')
       <- sum-evens DevenN1' DevenN2 Dplus DevenN3'.

%worlds () (sum-evens _ _ _ _).
%total D (sum-evens D _ _ _).