Peano curve

From Rosetta Code
Peano curve is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.


Task

Produce a graphical or ASCII-art representation of a Peano curve of at least order 3.

C[edit]

Adaptation of the C program in the Breinholt-Schierz paper , requires the WinBGIm library.

 
/*Abhishek Ghosh, 14th September 2018*/
 
#include <graphics.h>
#include <math.h>
 
void Peano(int x, int y, int lg, int i1, int i2) {
 
if (lg == 1) {
lineto(3*x,3*y);
return;
}
 
lg = lg/3;
Peano(x+(2*i1*lg), y+(2*i1*lg), lg, i1, i2);
Peano(x+((i1-i2+1)*lg), y+((i1+i2)*lg), lg, i1, 1-i2);
Peano(x+lg, y+lg, lg, i1, 1-i2);
Peano(x+((i1+i2)*lg), y+((i1-i2+1)*lg), lg, 1-i1, 1-i2);
Peano(x+(2*i2*lg), y+(2*(1-i2)*lg), lg, i1, i2);
Peano(x+((1+i2-i1)*lg), y+((2-i1-i2)*lg), lg, i1, i2);
Peano(x+(2*(1-i1)*lg), y+(2*(1-i1)*lg), lg, i1, i2);
Peano(x+((2-i1-i2)*lg), y+((1+i2-i1)*lg), lg, 1-i1, i2);
Peano(x+(2*(1-i2)*lg), y+(2*i2*lg), lg, 1-i1, i2);
}
 
int main(void) {
 
initwindow(1000,1000,"Peano, Peano");
 
Peano(0, 0, 1000, 0, 0); /* Start Peano recursion. */
 
getch();
cleardevice();
 
return 0;
}
 

Go[edit]

Library: Go Graphics


The following is based on the recursive algorithm and C code in this paper scaled up to 81 x 81 points. The image produced is a variant known as a Peano-Meander curve (see Figure 1(b) here).

package main
 
import "github.com/fogleman/gg"
 
var points []gg.Point
 
const width = 81
 
func peano(x, y, lg, i1, i2 int) {
if lg == 1 {
px := float64(width-x) * 10
py := float64(width-y) * 10
points = append(points, gg.Point{px, py})
return
}
lg /= 3
peano(x+2*i1*lg, y+2*i1*lg, lg, i1, i2)
peano(x+(i1-i2+1)*lg, y+(i1+i2)*lg, lg, i1, 1-i2)
peano(x+lg, y+lg, lg, i1, 1-i2)
peano(x+(i1+i2)*lg, y+(i1-i2+1)*lg, lg, 1-i1, 1-i2)
peano(x+2*i2*lg, y+2*(1-i2)*lg, lg, i1, i2)
peano(x+(1+i2-i1)*lg, y+(2-i1-i2)*lg, lg, i1, i2)
peano(x+2*(1-i1)*lg, y+2*(1-i1)*lg, lg, i1, i2)
peano(x+(2-i1-i2)*lg, y+(1+i2-i1)*lg, lg, 1-i1, i2)
peano(x+2*(1-i2)*lg, y+2*i2*lg, lg, 1-i1, i2)
}
 
func main() {
peano(0, 0, width, 0, 0)
dc := gg.NewContext(820, 820)
dc.SetRGB(1, 1, 1) // White background
dc.Clear()
for _, p := range points {
dc.LineTo(p.X, p.Y)
}
dc.SetRGB(1, 0, 1) // Magenta curve
dc.SetLineWidth(1)
dc.Stroke()
dc.SavePNG("peano.png")
}

IS-BASIC[edit]

100 PROGRAM "PeanoC.bas"
110 OPTION ANGLE DEGREES
120 SET VIDEO MODE 5:SET VIDEO COLOR 0:SET VIDEO X 40:SET VIDEO Y 27
130 OPEN #101:"video:"
140 DISPLAY #101:AT 1 FROM 1 TO 27
150 PLOT 280,240,ANGLE 90;
160 CALL PEANO(28,90,6)
170 DEF PEANO(D,A,LEV)
180 IF LEV=0 THEN EXIT DEF
190 PLOT RIGHT A;
200 CALL PEANO(D,-A,LEV-1)
210 PLOT FORWARD D;
220 CALL PEANO(D,A,LEV-1)
230 PLOT FORWARD D;
240 CALL PEANO(D,-A,LEV-1)
250 PLOT LEFT A;
260 END DEF

Perl 6[edit]

Works with: Rakudo version 2018.06
use SVG;
 
role Lindenmayer {
has %.rules;
method succ {
self.comb.map( { %!rules{$^c} // $c } ).join but Lindenmayer(%!rules)
}
}
 
my $peano = 'L' but Lindenmayer( { 'L' => 'LFRFL-F-RFLFR+F+LFRFL', 'R' => 'RFLFR+F+LFRFL-F-RFLFR' } );
 
$peano++ xx 4;
my @points = (10, 10);
 
for $peano.comb {
state ($x, $y) = @points[0,1];
state $d = 0 + 8i;
when 'F' { @points.append: ($x += $d.re).round(1), ($y += $d.im).round(1) }
when /< + - >/ { $d *= "{$_}1i" }
default { }
}
 
say SVG.serialize(
svg => [
:660width, :660height, :style<stroke:lime>,
:rect[:width<100%>, :height<100%>, :fill<black>],
:polyline[ :points(@points.join: ','), :fill<black> ],
],
);

See: Peano curve (SVG image)

zkl[edit]

Using a Lindenmayer system and turtle graphics & turned 90°:

lsystem("L",					// axiom
Dictionary("L","LFRFL-F-RFLFR+F+LFRFL", "R","RFLFR+F+LFRFL-F-RFLFR"), # rules
"+-F", 4) // constants, order
: turtle(_);
 
fcn lsystem(axiom,rules,consts,n){ // Lindenmayer system --> string
foreach k in (consts){ rules.add(k,k) }
buf1,buf2 := Data(Void,axiom).howza(3), Data().howza(3); // characters
do(n){
buf1.pump(buf2.clear(), rules.get);
t:=buf1; buf1=buf2; buf2=t; // swap buffers
}
buf1.text // n=4 --> 16,401 characters
}

Using Image Magick and the PPM class from http://rosettacode.org/wiki/Bitmap/Bresenham%27s_line_algorithm#zkl

fcn turtle(koch){
const D=10.0;
dir,angle, x,y := 0.0, (90.0).toRad(), 20.0, 830.0; // turtle; x,y are float
img,color := PPM(850,850), 0x00ff00;
foreach c in (koch){
switch(c){
case("F"){ // draw forward
dx,dy := D.toRectangular(dir);
tx,ty := x,y; x,y = (x+dx),(y+dy);
img.line(tx.toInt(),ty.toInt(), x.toInt(),y.toInt(), color);
}
case("-"){ dir-=angle } // turn right
case("+"){ dir+=angle } // turn left
}
}
img.writeJPGFile("peanoCurve.zkl.jpg");
}
Output:

Image at Peano curve