Pascal's triangle: Difference between revisions

From Rosetta Code
Content added Content deleted
No edit summary
Line 791: Line 791:
}
}
</lang>
</lang>
Funtion to pretty print r rows:
Funtion to pretty print n rows:
<lang scala>
<lang scala>
def prettytri(r:Int) = (1 to r) foreach {n=>print(" "*(r-n)); tri(n) map (c=>print(c+" ")); println}
def prettytri(n:Int) = (1 to n) foreach {i=>print(" "*(n-i)); tri(i) map (c=>print(c+" ")); println}
prettytri(5)
prettytri(5)
</lang>
</lang>

Revision as of 18:01, 3 December 2009

Task
Pascal's triangle
You are encouraged to solve this task according to the task description, using any language you may know.

Pascal's triangle is an interesting math concept. Its first few rows look like this:

   1
  1 1
 1 2 1
1 3 3 1

where each element of each row is either 1 or the sum of the two elements right above it. For example, the next row would be 1 (since the first element of each row doesn't have two elements above it), 4 (1 + 3), 6 (3 + 3), 4 (3 + 1), and 1 (since the last element of each row doesn't have two elements above it). Each row n (starting with row 0 at the top) shows the coefficients of the binomial expansion of (x + y)n.

Write a function that prints out the first n rows of the triangle (with f(1) yielding the row consisting of only the element 1). This can be done either by summing elements from the previous rows or using a binary coefficient or combination function. Behavior for n <= 0 does not need to be uniform, but should be noted.

Ada

<lang ada>with Ada.Integer_Text_Io; use Ada.Integer_Text_Io; with Ada.Text_Io; use Ada.Text_Io;

procedure Pascals_Triangle is

  type Row is array(Positive range <>) of Integer;
  type Row_Access is access Row;
  type Triangle is array(Positive range <>) of Row_Access;
  function General_Triangle(Depth : Positive) return Triangle is
     Result : Triangle(1..Depth);
  begin
     for I in Result'range loop
        Result(I) := new Row(1..I);
        for J in 1..I loop
           if J = Result(I)'First or else J = Result(I)'Last then
              Result(I)(J) := 1;
           else
              Result(I)(J) := Result(I - 1)(J - 1) + Result(I - 1)(J);
           end if; 
        end loop;
     end loop;
     return Result;
  end General_Triangle;
  procedure Print(Item : Triangle) is
  begin
     for I in Item'range loop
        for J in 1..I loop
           Put(Item => Item(I)(J), Width => 3);
        end loop;
        New_Line;
     end loop;
  end Print;

begin

  Print(General_Triangle(7));

end Pascals_Triangle;</lang>

ALGOL 68

<lang algol68>PRIO MINLWB = 8, MAXUPB = 8; OP MINLWB = ([]INT a,b)INT: (LWB a<LWB b|LWB a|LWB b),

  MAXUPB = ([]INT a,b)INT: (UPB a>UPB b|UPB a|UPB b);

OP + = ([]INT a,b)[]INT:(

 [a MINLWB b:a MAXUPB b]INT out; FOR i FROM LWB out TO UPB out DO out[i]:= 0 OD;
 out[LWB a:UPB a] := a; FOR i FROM LWB b TO UPB b DO out[i]+:= b[i] OD;
 out

);

INT width = 4, stop = 9; FORMAT centre = $n((stop-UPB row+1)*width OVER 2)(q)$;

FLEX[1]INT row := 1; # example of rowing # FOR i WHILE

 printf((centre, $g(-width)$, row, $l$));
  1. WHILE # i < stop DO
 row := row[AT 1] + row[AT 2]

OD</lang> Output:

                    1
                  1   1
                1   2   1
              1   3   3   1
            1   4   6   4   1
          1   5  10  10   5   1
        1   6  15  20  15   6   1
      1   7  21  35  35  21   7   1
    1   8  28  56  70  56  28   8   1

AutoHotkey

ahk forum: discussion <lang AutoHotkey>n := 8, p0 := "1"  ; 1+n rows of Pascal's triangle Loop %n% {

  p := "p" A_Index, %p% := v := 1, q := "p" A_Index-1
  Loop Parse, %q%, %A_Space%
     If (A_Index > 1)
        %p% .= " " v+A_LoopField, v := A_LoopField
  %p% .= " 1"

}

                        ; Triangular Formatted output

VarSetCapacity(tabs,n,Asc("`t")) t .= tabs "`t1" Loop %n% {

  t .= "`n" SubStr(tabs,A_Index)
  Loop Parse, p%A_Index%, %A_Space%
     t .= A_LoopField "`t`t"

} Gui Add, Text,, %t%  ; Show result in a GUI Gui Show Return

GuiClose:

 ExitApp</lang>

AWK

<lang awk>$ awk 'BEGIN{for(i=0;i<6;i++){c=1;r=c;for(j=0;j<i;j++){c*=(i-j)/(j+1);r=r" "c};print r}}' 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1</lang>

BASIC

Summing from Previous Rows

Works with: FreeBASIC

This implementation uses an array to store one row of the triangle. DIM initializes the array values to zero. For first row, "1" is then stored in the array. To calculate values for next row, the value in cell (i-1) is added to each cell (i). This summing is done from right to left so that it can be done on-place, without using a tmp buffer. Because of symmetry, the values can be displayed from left to right.

Space for max 5 digit numbers is reserved when formatting the display. The maximum size of triangle is 100 rows, but in practice it is limited by screen space. If the user enters value less than 1, the first row is still always displayed.

<lang freebasic>DIM i AS Integer DIM row AS Integer DIM nrows AS Integer DIM values(100) AS Integer

INPUT "Number of rows: "; nrows values(1) = 1 PRINT TAB((nrows)*3);" 1" FOR row = 2 TO nrows

   PRINT TAB((nrows-row)*3+1);
   FOR i = row TO 1 STEP -1
       values(i) = values(i) + values(i-1)
       PRINT USING "##### "; values(i);
   NEXT i
   PRINT

NEXT row</lang>

Using binary coefficients

Works with: FreeBASIC

This implementation does not need an array to store values for each row, but the calculation is slightly more complex.

If the user enters value less than 1, nothing is displayed. <lang freebasic>DIM c AS Integer DIM i AS Integer DIM row AS Integer DIM nrows AS Integer

INPUT "Number of rows: "; nrows FOR row = 0 TO nrows-1

   c = 1
   PRINT TAB((nrows-row)*3);
   FOR i = 0 TO row

PRINT USING "##### "; c;

       c = c * (row - i) / (i+1)
   NEXT i
   PRINT

NEXT row</lang>

Note: Unlike most Basic implementations, FreeBASIC requires that all variables have been declared before use (but this can be changed with compiler options).

C

Translation of: Fortran

<lang c>#include <stdio.h>

void pascaltriangle(unsigned int n) {

 unsigned int c, i, j, k;
 for(i=0; i < n; i++) {
   c = 1;
   for(j=1; j <= 2*(n-1-i); j++) printf(" ");
   for(k=0; k <= i; k++) {
     printf("%3d ", c);
     c = c * (i-k)/(k+1);
   }
   printf("\n");
 }

}

int main() {

 pascaltriangle(8);
 return 0;

}</lang>


C++

<lang cpp>#include <iostream>

  1. include <algorithm>
  2. include <vector>
  3. include <iterator>

void genPyrN(int rows) {

 if (rows < 0) return;
 // save the last row here
 std::vector<int> last(1, 1);
 std::cout << last[0] << std::endl;
 
 for (int i = 1; i <= rows; i++) {
   // work on the next row
   std::vector<int> thisRow;
   thisRow.reserve(i+1);
   thisRow.push_back(last.front()); // beginning of row
   std::transform(last.begin(), last.end()-1, last.begin()+1, std::back_inserter(thisRow), std::plus<int>()); // middle of row
   thisRow.push_back(last.back()); // end of row
   for (int j = 0; j <= i; j++)
     std::cout << thisRow[j] << " ";
   std::cout << std::endl;
   last.swap(thisRow);
 }

}</lang>

C#

Translation of: Fortran

Produces no output when n is less than or equal to zero.

<lang csharp>using System;

namespace RosettaCode {

   class PascalsTriangle {
       public void CreateTriangle(int n) {
           if (n > 0) {
               for (int i = 0; i < n; i++) {
                   int c = 1;
                   Console.Write(" ".PadLeft(2 * (n - 1 - i)));
                   for (int k = 0; k <= i; k++) {
                       Console.Write("{0}", c.ToString().PadLeft(3));
                       c = c * (i - k) / (k + 1);
                   }
                   Console.WriteLine();
               }
           }
       }
   }

}</lang>

Clojure

For n < 1, prints nothing, always returns nil. Copied from the Common Lisp implementation below, but with local functions and explicit tail-call-optimized recursion (recur). <lang lisp>(defn pascal [n]

 (let [newrow (fn newrow [lst ret]
                  (if lst
                      (recur (rest lst)
                             (conj ret (+ (first lst) (or (second lst) 0))))
                      ret))
       genrow (fn genrow [n lst]
                  (when (< 0 n)
                    (do (println lst)
                        (recur (dec n) (conj (newrow lst []) 1)))))]
   (genrow n [1])))

(pascal 4)</lang>

Common Lisp

To evaluate, call (pascal n). For n < 1, it simply returns nil.

<lang lisp>(defun pascal (n)

  (genrow n '(1)))

(defun genrow (n l)

  (when (< 0 n)
      (print l)
      (genrow (1- n) (cons 1 (newrow l)))))

(defun newrow (l)

  (if (> 2 (length l))
     '(1)
     (cons (+ (car l) (cadr l)) (newrow (cdr l)))))</lang>

D

There is similarity between Pascal's triangle and Sierpinski triangle. Their difference are the initial line and the operation that act on the line element to produce next line. The following is a generic pascal's triangle implementation for positive number of lines output (n). <lang d>import std.stdio, std.string, std.format : fmx = format ;

string Pascal(alias dg, T, T initValue)(int n) {

 string output ;
 void append(T[] l) {
   output ~= repeat(" ", (n - l.length + 1)*2) ;
   foreach(e; l) output ~= fmx("%4s", fmx("%4s",e)) ;
   output ~= "\n" ;
 }
 if(n > 0) {
   T[][] lines = initValue ;
   append(lines[0]) ;
   for(int i = 1 ; i < n ; i++) {
     lines ~= lines[i-1] ~ initValue ; // length + 1
     for(int j = 1 ; j < lines[i-1].length ; j++)
       lines[i][j] = dg(lines[i-1][j], lines[i-1][j-1]) ;
     append(lines[i]) ;
   }
 }       
 return output ;

}

string delegate(int n) GenericPascal(alias dg, T, T initValue)(){

 mixin Pascal!(dg, T, initValue) ;
 return &Pascal ;

}

char xor(char a, char b) { return a == b ? '_' : '*' ; }

void main() {

 auto pascal     = GenericPascal!((int a, int b) { return a + b; }, int ,  1 ) ;
 auto sierpinski = GenericPascal!(xor, char, '*') ;
 foreach(i ; [1,5,9])  writef(pascal(i)) ;
 // an order 4 sierpinski triangle is a 2^4 lines generic pascal triangle with xor operation
 foreach(i ; [16]) writef(sierpinski(i)) ; 

}</lang>

E

So as not to bother with text layout, this implementation generates a HTML fragment. It uses a single mutable array, appending one 1 and adding to each value the preceding value.

<lang e>def pascalsTriangle(n, out) {

   def row := [].diverge(int)

out.print("

") for y in 1..n { out.print("") row.push(1) def skip := n - y if (skip > 0) { out.print(``)
       }
       for x => v in row {
out.print(``)
       }
       for i in (1..!y).descending() {
           row[i] += row[i - 1]
       }
out.println("") } out.print("
$v

")

}</lang>

<lang e>def out := <file:triangle.html>.textWriter() try {

   pascalsTriangle(15, out)

} finally {

   out.close()

} makeCommand("yourFavoriteWebBrowser")("triangle.html")</lang>


Factor

This implementation works by summing the previous line content. Result for n < 1 is the same as for n == 1.

<lang factor>USING: grouping kernel math sequences ;

(pascal) ( seq -- newseq )
   dup peek 0 prefix 0 suffix 2 <clumps> [ sum ] map suffix ;
pascal ( n -- seq )
   1 - { { 1 } } swap [ (pascal) ] times ;</lang>

It works as:

<lang factor>5 pascal . { { 1 } { 1 1 } { 1 2 1 } { 1 3 3 1 } { 1 4 6 4 1 } }</lang>

Forth

<lang forth>: init ( n -- )

 here swap cells erase  1 here ! ;
.line ( n -- )
 cr here swap 0 do dup @ . cell+ loop drop ;
next ( n -- )
 here swap 1- cells here + do
   i @ i cell+ +!
 -1 cells +loop ;
pascal ( n -- )
     dup init   1  .line
 1 ?do i next i 1+ .line loop ;</lang>

Fortran

Works with: Fortran version 90 and later

Prints nothing for n<=0. Output formatting breaks down for n>20 <lang fortran>PROGRAM Pascals_Triangle

 CALL Print_Triangle(8)

END PROGRAM Pascals_Triangle

SUBROUTINE Print_Triangle(n)

 IMPLICIT NONE
 INTEGER, INTENT(IN) :: n
 INTEGER :: c, i, j, k, spaces
 DO i = 0, n-1
    c = 1
    spaces = 3 * (n - 1 - i)
    DO j = 1, spaces
       WRITE(*,"(A)", ADVANCE="NO") " "
    END DO
    DO k = 0, i
       WRITE(*,"(I6)", ADVANCE="NO") c
       c = c * (i - k) / (k + 1)
    END DO
    WRITE(*,*)
 END DO

END SUBROUTINE Print_Triangle</lang>

Groovy

Recursive

In the spirit of the Haskell "think in whole lists" solution here is a list-driven, minimalist solution: <lang groovy>def pascal = { n -> (n <= 1) ? [1] : GroovyCollections.transpose([[0] + pascal(n - 1), pascal(n - 1) + [0]]).collect { it.sum() } }</lang> However, this solution is horribly inefficient (O(n**2)). It slowly grinds to a halt on a reasonably powerful PC after about line 25 of the triangle.

Test program: <lang groovy>def count = 15 (1..count).each { n ->

   printf ("%2d:", n); (0..(count-n)).each { print "    " }; pascal(n).each{ printf("%6d  ", it) }; println ""

}</lang>

Output:

 1:                                                                 1  
 2:                                                             1       1  
 3:                                                         1       2       1  
 4:                                                     1       3       3       1  
 5:                                                 1       4       6       4       1  
 6:                                             1       5      10      10       5       1  
 7:                                         1       6      15      20      15       6       1  
 8:                                     1       7      21      35      35      21       7       1  
 9:                                 1       8      28      56      70      56      28       8       1  
10:                             1       9      36      84     126     126      84      36       9       1  
11:                         1      10      45     120     210     252     210     120      45      10       1  
12:                     1      11      55     165     330     462     462     330     165      55      11       1  
13:                 1      12      66     220     495     792     924     792     495     220      66      12       1  
14:             1      13      78     286     715    1287    1716    1716    1287     715     286      78      13       1  
15:         1      14      91     364    1001    2002    3003    3432    3003    2002    1001     364      91      14       1  

Haskell

An approach using the "think in whole lists" principle: Each row in the triangle can be calculated from the previous row by adding a shifted version of itself to it, keeping the ones at the ends. The Prelude function zipWith can be used to add two lists, but it won't keep the old values when one list is shorter. So we need a similar function

<lang haskell>zapWith :: (a -> a -> a) -> [a] -> [a] -> [a] zapWith f xs [] = xs zapWith f [] ys = ys zapWith f (x:xs) (y:ys) = f x y : zapWith f xs ys</lang>

Now we can shift a list and add it to itself, extending it by keeping the ends:

<lang haskell>extendWith f [] = [] extendWith f xs@(x:ys) = x : zapWith f xs ys</lang>

And for the whole (infinite) triangle, we just iterate this operation, starting with the first row:

<lang haskell>pascal = iterate (extendWith (+)) [1]</lang>

For the first n rows, we just take the first n elements from this list, as in

<lang haskell>*Main> take 6 pascal [[1],[1,1],[1,2,1],[1,3,3,1],[1,4,6,4,1],[1,5,10,10,5,1]]</lang>

A shorter approach, plagiarized from [1] <lang haskell>-- generate next row from current row nextRow row = zipWith (+) ([0] ++ row) (row ++ [0])

-- returns the first n rows pascal = iterate nextRow [1]</lang>

J

solution

<lang j>!/~@i. N</lang>

explanation

Of course, the triangle itself is simply the table of number-of-combinations, for the first N non-negative integers.

That is, C(n,k) for all n,k ∈ [0 .. n). J's notation for C(n,k) is k ! n (mnemonic: combinations are closely related to factorials, which are denoted by ! in math).

So, for example, the number of ways to choose a poker hand (5 cards from the deck of 52): <lang j>5!52

2598960</lang>

So ! is the mathematical choose function. What of /~@i.? Well, you can think of /~ as "table of" and @i. "the first N non-negative integers (i.e. 0 .. N-1)".

So, for example, here's the multiplication table you had to memorize in first grade: <lang j>*/~@i. 10

0 0  0  0  0  0  0  0  0  0
0 1  2  3  4  5  6  7  8  9
0 2  4  6  8 10 12 14 16 18
0 3  6  9 12 15 18 21 24 27
0 4  8 12 16 20 24 28 32 36
0 5 10 15 20 25 30 35 40 45
0 6 12 18 24 30 36 42 48 54
0 7 14 21 28 35 42 49 56 63
0 8 16 24 32 40 48 56 64 72
0 9 18 27 36 45 54 63 72 81</lang>

and here's the addition table for 0 to 4 <lang j>+/~@i. 4 0 1 2 3 1 2 3 4 2 3 4 5 3 4 5 6</lang>

Similarly, !/~@i. is the number-of-combinations table, or the "choose" table: <lang j>!/~@i. 5 1 1 1 1 1 0 1 2 3 4 0 0 1 3 6 0 0 0 1 4 0 0 0 0 1</lang>

Of course, to format it nicely, you need to do a little more work: <lang j>([:'0'&=`(,:&' ')} -@|. |."_1 [: ":@|: !/~)@i. 5

    1    
   1 1   
  1 2 1  
 1 3 3 1 
1 4 6 4 1</lang>

(I won't bother explaining the formatting.)

IDL

<lang IDL>Pro Pascal, n

n is the number of lines of the triangle to be displayed
r=[1]
print, r
 for i=0, (n-2) do begin
   pascalrow,r
 endfor

End

Pro PascalRow, r

 for i=0,(n_elements(r)-2) do begin 
   r[i]=r[i]+r[i+1]
 endfor

r= [1, r] print, r

End</lang>

Java

Summing from Previous Rows

Works with: Java version 1.5+

<lang java>import java.util.ArrayList; ...//class definition, etc. public static void genPyrN(int rows){ if(rows < 0) return; //save the last row here ArrayList<Integer> last = new ArrayList<Integer>(); last.add(1); System.out.println(last); for(int i= 1;i <= rows;++i){ //work on the next row ArrayList<Integer> thisRow= new ArrayList<Integer>(); thisRow.add(last.get(0)); //beginning for(int j= 1;j < i;++j){//loop the number of elements in this row //sum from the last row thisRow.add(last.get(j - 1) + last.get(j)); } thisRow.add(last.get(i)); //end last= thisRow;//save this row System.out.println(thisRow); } }</lang>

Combinations

This method is limited to 21 rows because of the limits of long. Calling pas with an argument of 22 or above will cause intermediate math to wrap around and give false answers. <lang java>public class Pas{ public static void main(String[] args){ //usage pas(20); }

public static void pas(int rows){ for(int i = 0; i < rows; i++){ for(int j = 0; j <= i; j++){ System.out.print(ncr(i, j) + " "); } System.out.println(); } }

public static long ncr(int n, int r){ return fact(n) / (fact(r) * fact(n - r)); }

public static long fact(int n){ long ans = 1; for(int i = 2; i <= n; i++){ ans *= i; } return ans; } }</lang>

<lang logo>to pascal :n

 if :n = 1 [output [1]]
 localmake "a pascal :n-1
 output (sentence first :a (map "sum butfirst :a butlast :a) last :a)

end

for [i 1 10] [print pascal :i]</lang>

Metafont

(The formatting starts to be less clear when numbers start to have more than two digits)

<lang metafont>vardef bincoeff(expr n, k) = save ?; ? := (1 for i=(max(k,n-k)+1) upto n: * i endfor )

    / (1 for i=2 upto min(k, n-k): * i endfor); ?

enddef;

def pascaltr expr c =

 string s_;
 for i := 0 upto (c-1):
   s_ := "" for k=0 upto (c-i): & "  " endfor;
   s_ := s_ for k=0 upto i: & decimal(bincoeff(i,k))
            & "  " if bincoeff(i,k)<9: & " " fi endfor;
   message s_;
 endfor

enddef;

pascaltr(4); end</lang>

Nial

Like J

(pascal.nial) <lang nial>factorial is recur [ 0 =, 1 first, pass, product, -1 +] combination is fork [ > [first, second], 0 first,

  / [factorial second, * [factorial - [second, first], factorial first] ]

] pascal is transpose each combination cart [pass, pass] tell</lang> Using it <lang nial>|loaddefs 'pascal.nial' |pascal 5</lang>

OCaml

<lang ocaml>(* generate next row from current row *) let next_row row =

 List.map2 (+) ([0] @ row) (row @ [0])

(* returns the first n rows *) let pascal n =

 let rec loop i row =
   if i = n then []
   else row :: loop (i+1) (next_row row)
 in loop 0 [1]</lang>

Octave

<lang octave>function pascaltriangle(h)

 for i = 0:h-1
   for k = 0:h-i
     printf("  ");
   endfor
   for j = 0:i
     printf("%3d ", bincoeff(i, j));
   endfor
   printf("\n");
 endfor

endfunction

pascaltriangle(4);</lang>

Perl

<lang perl>sub pascal

  1. Prints out $n rows of Pascal's triangle. It returns undef for
  2. failure and 1 for success.
 {my $n = shift;
  $n < 1 and return undef;
  print "1\n";
  $n == 1 and return 1;
  my @last = (1);
  foreach my $row (1 .. $n - 1)
     {my @this = map {$last[$_] + $last[$_ + 1]} 0 .. $row - 2;
      @last = (1, @this, 1);
      print join(' ', @last), "\n";}
  return 1;}</lang>

Python

<lang python>def pascal(n):

  """Prints out n rows of Pascal's triangle.
  It returns False for failure and True for success."""
  row = [1,]
  k = [0,]
  for x in range(max(n,0)):
     print row
     row=[l+r for l,r in zip(row+k,k+row)]
  return n>=1</lang>

R

Translation of: Octave

<lang R>pascalTriangle <- function(h) {

 for(i in 0:(h-1)) {
   s <- ""
   for(k in 0:(h-i)) s <- paste(s, "  ", sep="")
   for(j in 0:i) {
     s <- paste(s, sprintf("%3d ", choose(i, j)), sep="")
   }
   print(s)
 }

}</lang>

RapidQ

Summing from Previous Rows

Translation of: BASIC

The main difference to BASIC implementation is the output formatting. RapidQ does not support PRINT USING. Instead, function FORMAT$() is used. TAB() is not supported, so SPACE$() was used instead.

Another difference is that in RapidQ, DIM does not clear array values to zero. But if dimensioning is done with DEF..., you can give the initial values in curly braces. If less values are given than there are elements in the array, the remaining positions are initialized to zero. RapidQ does not require simple variables to be declared before use.

<lang rapidq>DEFINT values(100) = {0,1}

INPUT "Number of rows: "; nrows PRINT SPACE$((nrows)*3);" 1" FOR row = 2 TO nrows

   PRINT SPACE$((nrows-row)*3+1);
   FOR i = row TO 1 STEP -1
       values(i) = values(i) + values(i-1)
       PRINT FORMAT$("%5d ", values(i));
   NEXT i
   PRINT

NEXT row</lang>

Using binary coefficients

Translation of: BASIC

<lang rapidq>INPUT "Number of rows: "; nrows FOR row = 0 TO nrows-1

   c = 1
   PRINT SPACE$((nrows-row)*3);
   FOR i = 0 TO row
       PRINT FORMAT$("%5d ", c);
       c = c * (row - i) / (i+1)
   NEXT i
   PRINT

NEXT row</lang>

Ruby

<lang ruby>def pascal(n = 1)

 return if n < 1
 # set up a new array of arrays with the first value
 p = 1
   
 # for n - 1 number of times,
 (n - 1).times do |i|
   # inject a new array starting with [1]
   p << p[i].inject([1]) do |result, elem|
     
     # if we've reached the end, tack on a 1.
     # else, tack on current elem + previous elem
     if p[i].length == result.length
       result << 1
     else
       result << elem + p[i][result.length]
     end
   end
 end
 
 # and return the triangle.
 p
 

end</lang>

Scala

Simple recursive row definition: <lang scala> def tri(row:Int):List[Int] = { row match {

 case 1 => List(1)
 case n:Int => List(1) ::: ((tri(n-1) zip tri(n-1).tail) map {case (a,b) => a+b}) ::: List(1)
 }

} </lang> Funtion to pretty print n rows: <lang scala> def prettytri(n:Int) = (1 to n) foreach {i=>print(" "*(n-i)); tri(i) map (c=>print(c+" ")); println} prettytri(5) </lang> Outputs:

    1 
   1 1 
  1 2 1 
 1 3 3 1 
1 4 6 4 1 

Seed7

<lang seed7>$ include "seed7_05.s7i";

const proc: main is func

 local
   var integer: numRows is 0;
   var array integer: values is [] (0, 1);
   var integer: row is 0;
   var integer: index is 0;
 begin
   write("Number of rows: ");
   readln(numRows);
   writeln("1" lpad succ(numRows) * 3);
   for row range 2 to numRows do
     write("" lpad (numRows - row) * 3);
     values &:= [] 0;
     for index range succ(row) downto 2 do
       values[index] +:= values[pred(index)];
       write(" " <& values[index] lpad 5);
     end for;
     writeln;
   end for;
 end func;</lang>

Tcl

Summing from Previous Rows

<lang tcl>proc pascal_iterative n {

   if {$n < 1} {error "undefined behaviour for n < 1"}
   set row [list 1]
   lappend rows $row    
   set i 1
   while {[incr i] <= $n} {
       set prev $row
       set row [list 1]
       for {set j 1} {$j < [llength $prev]} {incr j} {
           lappend row [expr {[lindex $prev [expr {$j - 1}]] + [lindex $prev $j]}]
       }
       lappend row 1
       lappend rows $row
   }
   return $rows

}

puts [join [pascal_iterative 6] \n]</lang>

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1

Using binary coefficients

Translation of: BASIC

<lang tcl>proc pascal_coefficients n {

   if {$n < 1} {error "undefined behaviour for n < 1"}
   for {set i 0} {$i < $n} {incr i} {
       set c 1
       set row [list $c]
       for {set j 0} {$j < $i} {incr j} {
           set c [expr {$c * ($i - $j) / ($j + 1)}]
           lappend row $c
       }
       lappend rows $row
   }
   return $rows

}

puts [join [pascal_coefficients 6] \n]</lang>

Combinations

Translation of: Java

, however thanks to Tcl 8.5's arbitrary precision integer arithmetic, this solution is not limited to a couple of dozen rows. Uses a caching factorial calculator to improve performance.

<lang tcl>package require Tcl 8.5

proc pascal_combinations n {

   if {$n < 1} {error "undefined behaviour for n < 1"}
   for {set i 0} {$i < $n} {incr i} {
       set row [list]
       for {set j 0} {$j <= $i} {incr j} {
           lappend row [C $i $j]
       }
       lappend rows $row
   }
   return $rows

}

proc C {n k} {

   expr {[ifact $n] / ([ifact $k] * [ifact [expr {$n - $k}]])}

}

set fact_cache {1 1} proc ifact n {

   global fact_cache
   if {$n < [llength $fact_cache]} {
       return [lindex $fact_cache $n]
   }
   set i [expr {[llength $fact_cache] - 1}]
   set sum [lindex $fact_cache $i]
   while {$i < $n} {
       incr i
       set sum [expr {$sum * $i}]
       lappend fact_cache $sum
   }
   return $sum

}

puts [join [pascal_combinations 6] \n]</lang>

Comparing Performance

<lang tcl>set n 100 puts "calculate $n rows:" foreach proc {pascal_iterative pascal_coefficients pascal_combinations} {

   puts "$proc: [time [list $proc $n] 100]"

}</lang> outputs

calculate 100 rows:
pascal_iterative: 2800.14 microseconds per iteration
pascal_coefficients: 8760.98 microseconds per iteration
pascal_combinations: 38176.66 microseconds per iteration

Ursala

Zero maps to the empty list. Negatives are inexpressible. This solution uses a library function for binomial coefficients. <lang Ursala>#import std

  1. import nat

pascal = choose**ziDS+ iota*t+ iota+ successor</lang> This solution uses direct summation. The algorithm is to insert zero at the head of a list (initially the unit list <1>), zip it with its reversal, map the sum over the list of pairs, iterate n times, and return the trace. <lang Ursala>#import std

  1. import nat

pascal "n" = (next"n" sum*NiCixp) <1></lang> test program: <lang Ursala>#cast %nLL

example = pascal 10</lang> output:

<
   <1>,
   <1,1>,
   <1,2,1>,
   <1,3,3,1>,
   <1,4,6,4,1>,
   <1,5,10,10,5,1>,
   <1,6,15,20,15,6,1>,
   <1,7,21,35,35,21,7,1>,
   <1,8,28,56,70,56,28,8,1>,
   <1,9,36,84,126,126,84,36,9,1>>

Vedit macro language

Summing from Previous Rows

Translation of: BASIC

Vedit macro language does not have actual arrays (edit buffers are normally used for storing larger amounts of data). However, a numeric register can be used as index to access another numeric register. For example, if #99 contains value 2, then #@99 accesses contents of numeric register #2.

<lang vedit>#100 = Get_Num("Number of rows: ", STATLINE)

  1. 0=0; #1=1

Ins_Char(' ', COUNT, #100*3-2) Num_Ins(1) for (#99 = 2; #99 <= #100; #99++) {

   Ins_Char(' ', COUNT, (#100-#99)*3)
   #@99 = 0
   for (#98 = #99; #98 > 0; #98--) {

#97 = #98-1 #@98 += #@97 Num_Ins(#@98, COUNT, 6)

   }
   Ins_Newline

}</lang>

Using binary coefficients

Translation of: BASIC

<lang vedit>#1 = Get_Num("Number of rows: ", STATLINE) for (#2 = 0; #2 < #1; #2++) {

   #3 = 1
   Ins_Char(' ', COUNT, (#1-#2-1)*3)
   for (#4 = 0; #4 <= #2; #4++) {

Num_Ins(#3, COUNT, 6) #3 = #3 * (#2-#4) / (#4+1)

   }
   Ins_Newline

}</lang>