Partial function application: Difference between revisions

Added FreeBASIC
(Added FreeBASIC)
 
(93 intermediate revisions by 41 users not shown)
Line 1:
{{task|Programming language concepts}}
 
[[wp:Partial application|Partial function application]] is the ability to take a function of many
[[wp:Partial application|Partial function application]]   is the ability to take a function of many
parameters and apply arguments to some of the parameters to create a new
function that needs only the application of the remaining arguments to
Line 10 ⟶ 11:
: Then <code>partial(f, param1=v1)</code> returns <code>f'(param2)</code>
: And <code>f(param1=v1, param2=v2) == f'(param2=v2)</code> (for any value v2)
 
 
Note that in the partial application of a parameter, (in the above case param1), other parameters are not explicitly mentioned. This is a recurring feature of partial function application.
 
 
;Task
Line 23 ⟶ 26:
 
* Test fsf1 and fsf2 by evaluating them with s being the sequence of integers from 0 to 3 inclusive and then the sequence of even integers from 2 to 8 inclusive.
 
 
;Notes
* In partially applying the functions f1 or f2 to fs, there should be no ''explicit'' mention of any other parameters to fs, although introspection of fs within the partial applicator to find its parameters ''is'' allowed.
* This task is more about ''how'' results are generated rather than just getting results.
<br><br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F partial(f, g)
F fg(x)
R @f(@g, x)
R fg
 
F main()
F ffs(f, x)
R x.map(a -> @f(a))
F f1(a) {R a * 2}
F f2(a) {R a * a}
 
V fsf1 = partial(ffs, f1)
V fsf2 = partial(ffs, f2)
 
print(fsf1([1, 2, 3, 4]))
print(fsf2([1, 2, 3, 4]))
 
main()</syntaxhighlight>
 
{{out}}
<pre>
[2, 4, 6, 8]
[1, 4, 9, 16]
</pre>
 
=={{header|Ada}}==
Line 32 ⟶ 65:
Ada allows to define generic functions with generic parameters, which are partially applicable.
 
<langsyntaxhighlight Adalang="ada">with Ada.Text_IO;
 
procedure Partial_Function_Application is
Line 81 ⟶ 114:
Print(FSF1((2,4,6,8)));
Print(FSF2((2,4,6,8)));
end Partial_Function_Application;</langsyntaxhighlight>
 
Output:
Line 95 ⟶ 128:
{{works with|ALGOL 68G|Any - tested with release [http://sourceforge.net/projects/algol68/files/algol68g/algol68g-1.18.0/algol68g-1.18.0-9h.tiny.el5.centos.fc11.i386.rpm/download 1.18.0-9h.tiny].}}
{{wont work with|ELLA ALGOL 68|Any (with appropriate job cards) - tested with release [http://sourceforge.net/projects/algol68/files/algol68toc/algol68toc-1.8.8d/algol68toc-1.8-8d.fc9.i386.rpm/download 1.8-8d] - due to extensive use of '''format'''[ted] ''transput''.}}
<langsyntaxhighlight lang="algol68">MODE SET = FLEX[0]INT;
 
MODE F = PROC(INT)INT,
Line 122 ⟶ 155:
printf((set fmt, fsf1((2, 4, 6, 8)))); # prints (4, 8, 12, 16) #
printf((set fmt, fsf2((2, 4, 6, 8)))) # prints (4, 16, 36, 64) #
</syntaxhighlight>
</lang>
Output:
<pre>
Line 131 ⟶ 164:
</pre>
 
=={{header|BBC BASICAppleScript}}==
To derive first class functions in AppleScript, we have to lift ordinary handlers into script objects with lambda handlers.
 
<syntaxhighlight lang="applescript">-- PARTIAL APPLICATION --------------------------------------------
 
on f1(x)
x * 2
end f1
 
on f2(x)
x * x
end f2
 
on run
tell curry(map)
set fsf1 to |λ|(f1)
set fsf2 to |λ|(f2)
end tell
{fsf1's |λ|({0, 1, 2, 3}), ¬
fsf2's |λ|({0, 1, 2, 3}), ¬
fsf1's |λ|({2, 4, 6, 8}), ¬
fsf2's |λ|({2, 4, 6, 8})}
end run
 
 
-- GENERIC FUNCTIONS --------------------------------------------
 
-- curry :: (Script|Handler) -> Script
on curry(f)
script
on |λ|(a)
script
on |λ|(b)
|λ|(a, b) of mReturn(f)
end |λ|
end script
end |λ|
end script
end curry
 
-- map :: (a -> b) -> [a] -> [b]
on map(f, xs)
tell mReturn(f)
set lng to length of xs
set lst to {}
repeat with i from 1 to lng
set end of lst to |λ|(item i of xs, i, xs)
end repeat
return lst
end tell
end map
 
-- Lift 2nd class handler function into 1st class script wrapper
-- mReturn :: Handler -> Script
on mReturn(f)
if class of f is script then
f
else
script
property |λ| : f
end script
end if
end mReturn</syntaxhighlight>
{{Out}}
<pre>{{0, 2, 4, 6}, {0, 1, 4, 9}, {4, 8, 12, 16}, {4, 16, 36, 64}}</pre>
 
=={{header|BASIC}}==
==={{header|BBC BASIC}}===
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> fsf1 = FNpartial(PROCfs(), FNf1())
fsf2 = FNpartial(PROCfs(), FNf2())
Line 171 ⟶ 273:
DEF FNf1(n) = n * 2
DEF FNf2(n) = n ^ 2</langsyntaxhighlight>
'''Output:'''
<pre>
Line 184 ⟶ 286:
</pre>
 
==={{header|ClojureFreeBASIC}}===
{{trans|Lua}}
<lang Clojure>(defn fs [f s] (map f s))
<syntaxhighlight lang="vbnet">Sub map(f As Function(As Integer) As Integer, arr() As Integer, result() As Integer)
(defn f1 [x] (* 2 x))
For i As Integer = Lbound(arr) To Ubound(arr)
(defn f2 [x] (* x x))
result(i) = f(arr(i))
(def fsf1 (partial fs f1))
Next i
(def fsf2 (partial fs f2))
End Sub
 
Function timestwo(n As Integer) As Integer
(doseq [s [(range 4) (range 2 9 2)]]
Return n * 2
(println "seq: " s)
End Function
(println " fsf1: " (fsf1 s))
(println " fsf2: " (fsf2 s)))</lang>
Output:
<pre>seq: (0 1 2 3)
fsf1: (0 2 4 6)
fsf2: (0 1 4 9)
seq: (2 4 6 8)
fsf1: (4 8 12 16)
fsf2: (4 16 36 64)</pre>
 
Function squared(n As Integer) As Integer
=={{header|Common Lisp}}==
Return n ^ 2
<lang lisp>(defun fs (f s) (mapcar f s))
End Function
(defun f1 (i) (* i 2))
(defun f2 (i) (expt i 2))
 
Sub printArray(arr() As Integer)
(defun partial (func &rest args1)
For i As Integer = Lbound(arr) To Ubound(arr)
(lambda (&rest args2) (apply func (append args1 args2))))
Print arr(i);
(defvar fsf1 (partial #'fs #'f1))
If i < Ubound(arr) Then Print ",";
(defvar fsf2 (partial #'fs #'f2))
Next i
Print
End Sub
 
Dim As Integer arr1(3) = {0, 1, 2, 3}
(dolist (seq '((0 1 2 3) (2 4 6 8)))
Dim As Integer arr2(3) = {2, 4, 6, 8}
(format t "~%seq: ~A~% fsf1 seq: ~A~% fsf2 seq: ~A"
Dim As Integer result(3)
seq (funcall fsf1 seq) (funcall fsf2 seq)))</lang>
 
map(@timestwo, arr1(), result())
Output: <pre>seq: (0 1 2 3)
printArray(result())
fsf1 seq: (0 2 4 6)
 
fsf2 seq: (0 1 4 9)
map(@squared, arr1(), result())
seq: (2 4 6 8)
printArray(result())
fsf1 seq: (4 8 12 16)
 
fsf2 seq: (4 16 36 64)</pre>
map(@timestwo, arr2(), result())
printArray(result())
 
map(@squared, arr2(), result())
printArray(result())
 
Sleep</syntaxhighlight>
{{out}}
<pre>Same as Lua entry.</pre>
 
==={{header|Visual Basic .NET}}===
Functions are not curried in VB, and so this entry details the creation of functions that take a function and one or more arguments and returns a function that is the result of the partial application of the given function to those arguments.
 
This is done with two approaches: one that takes generic functions of fixed arity and returns a lambda that then calls the function, and a generalized one that allows arbitrary arity of function and arguments.
 
====First approach====
The "type-safe" approach, which has the disadvantage that a new overload of PartialApply must be created for every combination of function arity and applied argument arity.
 
<syntaxhighlight lang="vbnet">Module PartialApplication
Function fs(Of TSource, TResult)(f As Func(Of TSource, TResult), s As IEnumerable(Of TSource)) As IEnumerable(Of TResult)
' This is exactly what Enumerable.Select does.
Return s.Select(f)
End Function
 
Function f1(x As Integer) As Integer
Return x * 2
End Function
 
Function f2(x As Integer) As Integer
Return x * x
End Function
 
' The overload that takes a binary function and partially applies to its first parameter.
Function PartialApply(Of T1, T2, TResult)(f As Func(Of T1, T2, TResult), arg As T1) As Func(Of T2, TResult)
Return Function(arg2) f(arg, arg2)
End Function
 
Sub Main()
Dim args1 As Integer() = {0, 1, 2, 3}
Dim args2 As Integer() = {2, 4, 6, 8}
 
Dim fsf1 = PartialApply(Of Func(Of Integer, Integer), IEnumerable(Of Integer), IEnumerable(Of Integer))(AddressOf fs, AddressOf f1)
Dim fsf2 = PartialApply(Of Func(Of Integer, Integer), IEnumerable(Of Integer), IEnumerable(Of Integer))(AddressOf fs, AddressOf f2)
 
Console.WriteLine("fsf1, 0-3: " & String.Join(", ", fsf1(args1)))
Console.WriteLine("fsf1, evens: " & String.Join(", ", fsf1(args2)))
Console.WriteLine("fsf2, 0-3: " & String.Join(", ", fsf2(args1)))
Console.WriteLine("fsf2, evens: " & String.Join(", ", fsf2(args2)))
End Sub
End Module</syntaxhighlight>
 
====Second approach====
f1 and f2 in the second approach will also be defined to use late binding in order to work with any argument that can be multiplied. In the interest of idiomatic VB.NET, a minimal amount of code is to have Option Strict off:
 
<syntaxhighlight lang="vbnet">Option Strict Off
 
Partial Module PartialApplicationDynamic
Function f1(x As Object) As Object
Return x * 2
End Function
 
Function f2(x As Object) As Object
Return x * x
End Function
End Module</syntaxhighlight>
 
and in a separate file,
 
<syntaxhighlight lang="vbnet">Option Strict On
 
Partial Module PartialApplicationDynamic
' Create a matching delegate type to simplify delegate creation.
Delegate Function fsDelegate(Of TSource, TResult)(f As Func(Of TSource, TResult), s As IEnumerable(Of TSource)) As IEnumerable(Of TResult)
Function fs(Of TSource, TResult)(f As Func(Of TSource, TResult), s As IEnumerable(Of TSource)) As IEnumerable(Of TResult)
' This is exactly what Enumerable.Select does.
Return s.Select(f)
End Function
 
Function ArrayConcat(Of T)(arr1 As T(), arr2 As T()) As T()
Dim result(arr1.Length + arr2.Length - 1) As T
Array.Copy(arr1, result, arr1.Length)
Array.Copy(arr2, 0, result, 1, arr2.Length)
Return result
End Function
 
' C# can define ParamArray delegates and VB can consume them, but VB cannot define them on its own.
' The argument list of calls to the resulting function thus must be wrapped in a coerced array literal.
' VB also doesn't allow Delegate as a type constraint. :(
' The function is generic solely to ease use for callers. In this case generics aren't providing any type-safety.
Function PartialApplyDynamic(Of TDelegate, TResult)(f As TDelegate, ParamArray args As Object()) As Func(Of Object(), TResult)
Dim del = CType(CObj(f), [Delegate])
Return Function(rest) CType(del.DynamicInvoke(ArrayConcat(args, rest).Cast(Of Object).ToArray()), TResult)
End Function
 
Sub Main()
Dim args1 As Object = New Object() {0, 1, 2, 3}
Dim args2 As Object = New Object() {2, 4, 6, 8}
 
Dim fsf1 = PartialApplyDynamic(Of fsDelegate(Of Object, Object), IEnumerable(Of Object))(AddressOf fs, New Func(Of Object, Object)(AddressOf f1))
Dim fsf2 = PartialApplyDynamic(Of fsDelegate(Of Object, Object), IEnumerable(Of Object))(AddressOf fs, New Func(Of Object, Object)(AddressOf f2))
 
' The braces are array literals.
Console.WriteLine("fsf1, 0-3: " & String.Join(", ", fsf1({args1})))
Console.WriteLine("fsf1, evens: " & String.Join(", ", fsf1({args2})))
Console.WriteLine("fsf2, 0-3: " & String.Join(", ", fsf2({args1})))
Console.WriteLine("fsf2, evens: " & String.Join(", ", fsf2({args2})))
End Sub
End Module</syntaxhighlight>
 
{{out|note=for both versions}}
<pre>fsf1, 0-3: 0, 2, 4, 6
fsf1, evens: 4, 8, 12, 16
fsf2, 0-3: 0, 1, 4, 9
fsf2, evens: 4, 16, 36, 64</pre>
 
=={{header|Bracmat}}==
This task is hard to solve if we use imperative/procedural style Bracmat functions. Instead, we use lambda expressions throughout the solution given below.
The the function <code>fs</code> consists of a lambda abstraction inside a lambda abstraction. In that way <code>fs</code> can take two arguments. Similarly, the function <code>partial</code>, which also needs to take two arguments, is defined using lambda abstractions.
Currying takes place by applying a two-argument function to its first argument. This happens in <code>($x)$($y)</code>.
<syntaxhighlight lang="bracmat">( (fs=/('(x./('(y.map'($x.$y))))))
& (f1=/('(x.$x*2)))
& (f2=/('(x.$x^2)))
& (partial=/('(x./('(y.($x)$($y))))))
& (!partial$!fs)$!f1:?fsf1
& (!partial$!fs)$!f2:?fsf2
& out$(!fsf1$(0 1 2 3))
& out$(!fsf2$(0 1 2 3))
& out$(!fsf1$(2 4 6 8))
& out$(!fsf2$(2 4 6 8))
);</syntaxhighlight>
Output:
<pre>0 2 4 6
0 1 4 9
4 8 12 16
4 16 36 64</pre>
 
=={{header|C}}==
Nasty hack, but the partial does return a true C function pointer, which is otherwise hard to achieve. (In case you are wondering, no, this is not a good or serious solution.) Compiled with <code>gcc -Wall -ldl</code>.
<langsyntaxhighlight Clang="c">#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
Line 283 ⟶ 515:
 
return 0;
}</langsyntaxhighlight>output<syntaxhighlight lang="text">partial square:
1
4
Line 292 ⟶ 524:
4
6
8</langsyntaxhighlight>
 
=={{header|C sharp}}==
 
===First approach===
 
A partial application function for binary functions.
 
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
 
class PartialFunctionApplication
{
static Func<T1, TResult> PartiallyApply<T1, T2, TResult>(Func<T1, T2, TResult> function, T2 argument2)
{
return argument1 => function(argument1, argument2);
}
 
static void Main()
{
var fs = (Func<IEnumerable<int>, Func<int, int>, IEnumerable<int>>)Enumerable.Select;
var f1 = (Func<int, int>)(n => n * 2);
var f2 = (Func<int, int>)(n => n * n);
var fsf1 = PartiallyApply(fs, f1);
var fsf2 = PartiallyApply(fs, f2);
 
var s = new[] { 0, 1, 2, 3 };
Console.WriteLine(string.Join(", ", fsf1(s)));
Console.WriteLine(string.Join(", ", fsf2(s)));
 
s = new[] { 2, 4, 6, 8 };
Console.WriteLine(string.Join(", ", fsf1(s)));
Console.WriteLine(string.Join(", ", fsf2(s)));
}
}</syntaxhighlight>
 
{{out}}
<pre>0, 2, 4, 6
0, 1, 4, 9
4, 8, 12, 16
4, 16, 36, 64</pre>
 
===Second approach===
 
{{trans|Visual Basic .NET|second approach}}
 
A partial application function that accepts arbitrary function and applied function arity. f1 and f2 also use late binding in this example to work with any argument that can be multiplied.
 
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
 
static class PartialApplicationDynamic
{
// Create a matching delegate type to simplify delegate creation.
delegate IEnumerable<TResult> fsDelegate<TSource, TResult>(Func<TSource, TResult> f, IEnumerable<TSource> s);
 
static IEnumerable<TResult> fs<TSource, TResult>(Func<TSource, TResult> f, IEnumerable<TSource> s) => s.Select(f);
 
static dynamic f1(dynamic x) => x * 2;
 
static dynamic f2(dynamic x) => x * x;
 
static T[] ArrayConcat<T>(T[] arr1, T[] arr2)
{
var result = new T[arr1.Length + arr2.Length];
Array.Copy(arr1, result, arr1.Length);
Array.Copy(arr2, 0, result, 1, arr2.Length);
return result;
}
 
// Use a specialized params delegate to simplify calling at the risk of inadvertent params expansion.
delegate TResult partialDelegate<TParams, TResult>(params TParams[] args);
static partialDelegate<dynamic, TResult> PartialApplyDynamic<TDelegate, TResult>(TDelegate f, params dynamic[] args) where TDelegate : Delegate
{
return rest => (TResult)f.DynamicInvoke(ArrayConcat(args, rest).Cast<dynamic>().ToArray());
}
 
static void Main()
{
// Cast to object to avoid params expansion of the arrays.
object args1 = new object[] { 0, 1, 2, 3 };
object args2 = new object[] { 2, 4, 6, 8 };
 
var fsf1 = PartialApplyDynamic<fsDelegate<dynamic, dynamic>, IEnumerable<dynamic>>(fs, new Func<dynamic, dynamic>(f1));
var fsf2 = PartialApplyDynamic<fsDelegate<dynamic, dynamic>, IEnumerable<dynamic>>(fs, new Func<dynamic, dynamic>(f2));
 
Console.WriteLine("fsf1, 0-3: " + string.Join(", ", fsf1(args1)));
Console.WriteLine("fsf1, evens: " + string.Join(", ", fsf1(args2)));
Console.WriteLine("fsf2, 0-3: " + string.Join(", ", fsf2(args1)));
Console.WriteLine("fsf2, evens: " + string.Join(", ", fsf2(args2)));
}
}</syntaxhighlight>
 
{{out}}
<pre>fsf1, 0-3: 0, 2, 4, 6
fsf1, evens: 4, 8, 12, 16
fsf2, 0-3: 0, 1, 4, 9
fsf2, evens: 4, 16, 36, 64</pre>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">#include <utility> // For declval.
#include <algorithm>
#include <array>
Line 308 ⟶ 639:
Arg arg;
 
tempaltetemplate< class F_, class Arg_ >
PApply( F_&& f, Arg_&& arg )
: f(std::forward<F_>(f)), arg(std::forward<Arg_>(arg))
Line 365 ⟶ 696:
<< "\tfsf1: " << fsf1(ys) << '\n'
<< "\tfsf2: " << fsf2(ys) << '\n';
}</langsyntaxhighlight>
 
=={{header|C sharpCeylon}}==
<syntaxhighlight lang="ceylon">shared void run() {
<lang csharp>using System;
using System.Collections.Generic;
function fs(Integer f(Integer n), {Integer*} s) => s.map(f);
using System.Linq;
function f1(Integer n) => n * 2;
function f2(Integer n) => n ^ 2;
value fsCurried = curry(fs);
value fsf1 = fsCurried(f1);
value fsf2 = fsCurried(f2);
value ints = 0..3;
print("fsf1(``ints``) is ``fsf1(ints)`` and fsf2(``ints``) is ``fsf2(ints)``");
value evens = (2..8).by(2);
print("fsf1(``evens``) is ``fsf1(evens)`` and fsf2(``evens``) is ``fsf2(evens)``");
}</syntaxhighlight>
 
=={{header|Clojure}}==
class PartialFunctionApplication
<syntaxhighlight lang="clojure">(defn fs [f s] (map f s))
{
(defn f1 [x] (* 2 x))
static Func<T1, TResult> PartiallyApply<T1, T2, TResult>(Func<T1, T2, TResult> function, T2 argument2)
(defn f2 [x] (* x x))
{
(def fsf1 (partial fs f1))
return argument1 => function(argument1, argument2);
(def fsf2 (partial fs f2))
}
 
(doseq [s [(range 4) (range 2 9 2)]]
static void Main()
(println "seq: " s)
{
(println " fsf1: " (fsf1 s))
var fs = (Func<IEnumerable<int>, Func<int, int>, IEnumerable<int>>)Enumerable.Select;
(println " fsf2: " (fsf2 s)))</syntaxhighlight>
var f1 = (Func<int, int>)(n => n * 2);
var f2 = (Func<int, int>)(n => n * n);
var fsf1 = PartiallyApply(fs, f1);
var fsf2 = PartiallyApply(fs, f2);
 
var s = new[] { 0, 1, 2, 3 };
Console.WriteLine(string.Join(", ", fsf1(s)));
Console.WriteLine(string.Join(", ", fsf2(s)));
 
s = new[] { 2, 4, 6, 8 };
Console.WriteLine(string.Join(", ", fsf1(s)));
Console.WriteLine(string.Join(", ", fsf2(s)));
}
}</lang>
Output:
<pre>seq: (0, 2,1 4,2 63)
fsf1: (0, 1,2 4, 96)
fsf2: (0 1 4 9)
4, 8, 12, 16
seq: (2 4 6 8)
4, 16, 36, 64</pre>
fsf1: (4 8 12 16)
fsf2: (4 16 36 64)</pre>
 
=={{header|CoffeeScript}}==
<langsyntaxhighlight lang="coffeescript">
partial = (f, g) ->
(s) -> f(g, s)
Line 417 ⟶ 751:
console.log fsf1 seq
console.log fsf2 seq
</syntaxhighlight>
</lang>
output
<syntaxhighlight lang="text">
> coffee partials.coffee
[ 0, 2, 4, 6 ]
Line 425 ⟶ 759:
[ 4, 8, 12, 16 ]
[ 4, 16, 36, 64 ]
</syntaxhighlight>
</lang>
 
=={{header|Common Lisp}}==
<syntaxhighlight lang="lisp">(defun fs (f s)
(mapcar f s))
(defun f1 (i)
(* i 2))
(defun f2 (i)
(expt i 2))
(defun partial (func &rest args1)
(lambda (&rest args2)
(apply func (append args1 args2))))
 
(setf (symbol-function 'fsf1) (partial #'fs #'f1))
(setf (symbol-function 'fsf2) (partial #'fs #'f2))
(dolist (seq '((0 1 2 3) (2 4 6 8)))
(format t
"~%seq: ~A~% fsf1 seq: ~A~% fsf2 seq: ~A"
seq
(fsf1 seq)
(fsf2 seq)))
</syntaxhighlight>
 
Output: <pre>seq: (0 1 2 3)
fsf1 seq: (0 2 4 6)
fsf2 seq: (0 1 4 9)
seq: (2 4 6 8)
fsf1 seq: (4 8 12 16)
fsf2 seq: (4 16 36 64)</pre>
 
=={{header|D}}==
fs has a static template argument f and the runtime argument s. The template constraints of fs statically require f to be a callable with just one argument, as requested by the task.
<langsyntaxhighlight lang="d">import std.stdio, std.algorithm, std.traits;
 
auto fs(alias f)(in int[] s) pure nothrow
Line 448 ⟶ 811:
d.fsf2.writeln;
}
}</langsyntaxhighlight>
{{out}}
<pre>[0, 2, 4, 6]
Line 457 ⟶ 820:
=={{header|E}}==
 
<langsyntaxhighlight lang="e">def pa(f, args1) {
return def partial {
match [`run`, args2] {
Line 482 ⟶ 845:
println(f(s))
}
}</langsyntaxhighlight>
 
=={{header|Egison}}==
 
<langsyntaxhighlight lang="egison">
(define $fs (map $1 $2))
 
Line 499 ⟶ 862:
(test (fsf1 {2 4 6 8}))
(test (fsf2 {2 4 6 8}))
</syntaxhighlight>
</lang>
'''Output:'''
<langsyntaxhighlight lang="egison">
{0 2 4 6}
{0 1 4 9}
{4 8 12 16}
{4 16 36 64}
</syntaxhighlight>
</lang>
 
=={{Headerheader|F_Sharp|F#Elena}}==
{{trans|Smalltalk}}
ELENA 6.x :
<syntaxhighlight lang="elena">import system'collections;
import system'routines;
import extensions;
public program()
{
var partial := (afs,af => (s => afs(af, s)));
var fs := (f,s => s.selectBy::(x => f(x)).summarize(new ArrayList()).toArray());
var f1 := (x => x * 2);
var f2 := (x => x * x);
var fsf1 := partial(fs, f1);
var fsf2 := partial(fs, f2);
console.printLine(fsf1(new int[]{2,4,6,8}).toString());
console.printLine(fsf2(new int[]{2,4,6,8}).toString())
}</syntaxhighlight>
{{out}}
<pre>
4,8,12,16
4,16,36,64
</pre>
 
=={{header|F_Sharp|F#}}==
Translation of Racket
 
<langsyntaxhighlight lang="fsharp">
let fs f s = List.map f s
let f1 n = n * 2
Line 519 ⟶ 909:
let fsf2 = fs f2
 
printfn "%A" (fsf1 [0; 1; 2; 3])
printfn "%A" (fsf1 [2; 4; 6; 8])
printfn "%A" (fsf2 [0; 1; 2; 3])
printfn "%A" (fsf2 [2; 4; 6; 8])
</syntaxhighlight>
</lang>
Output:
<pre>
[0; 2; 4; 6]
[4; 8; 12; 16]
[0; 1; 4; 9]
[4; 16; 36; 64]
</pre>
 
=={{header|Factor}}==
<syntaxhighlight lang="text">USING: kernel math prettyprint sequences ;
IN: rosetta-code.partial-function-application
 
ALIAS: fs map
: f1 ( n -- m ) 2 * ;
: f2 ( n -- m ) dup * ;
: fsf1 ( s -- s' ) [ f1 ] fs ;
: fsf2 ( s -- s' ) [ f2 ] fs ;
 
{ 0 1 2 3 } [ fsf1 . ] [ fsf2 . ] bi
{ 2 4 6 8 } [ fsf1 . ] [ fsf2 . ] bi</syntaxhighlight>
{{out}}
<pre>
{ 0 2 4 6 }
{ 0 1 4 9 }
{ 4 8 12 16 }
{ 4 16 36 64 }
</pre>
 
=={{header|FunL}}==
<syntaxhighlight lang="funl">fs = map
f1 = (* 2)
f2 = (^ 2)
 
fsf1 = fs.curry( f1 )
fsf2 = fs.curry( f2 )
 
println( fsf1(0..3) )
println( fsf2(0..3) )
println( fsf1(2..8 by 2) )
println( fsf2(2..8 by 2) )</syntaxhighlight>
 
{{out}}
 
<pre>
[0, 2, 4, 6]
[0, 1, 4, 9]
[4, 8, 12, 16]
[4, 16, 36, 64]
</pre>
 
=={{header|Go}}==
{{works with|Go|1.1}} (The first way shown uses [http://golang.org/ref/spec#Method_values Method values] which were added in Go 1.1. The second uses a function returning a function which was always possible.)
[http://play.golang.org/p/fbmK4qfFZr Run this in the Go playground].
<syntaxhighlight lang="go">package main
 
import "fmt"
 
// Using a method bound to a function type:
 
// fn is a simple function taking an integer and returning another.
type fn func(int) int
 
// fs applies fn to each argument returning all results.
func (f fn) fs(s ...int) (r []int) {
for _, i := range s {
r = append(r, f(i))
}
return r
}
 
// Two simple functions for demonstration.
func f1(i int) int { return i * 2 }
func f2(i int) int { return i * i }
 
// Another way:
 
// addn returns a function that adds n to a sequence of numbers
func addn(n int) func(...int) []int {
return func(s ...int) []int {
var r []int
for _, i := range s {
r = append(r, n+i)
}
return r
}
}
 
func main() {
// Turning a method into a function bound to it's reciever:
fsf1 := fn(f1).fs
fsf2 := fn(f2).fs
// Or using a function that returns a function:
fsf3 := addn(100)
 
s := []int{0, 1, 2, 3}
fmt.Println("For s =", s)
fmt.Println(" fsf1:", fsf1(s...)) // Called with a slice
fmt.Println(" fsf2:", fsf2(0, 1, 2, 3)) // ... or with individual arguments
fmt.Println(" fsf3:", fsf3(0, 1, 2, 3))
fmt.Println(" fsf2(fsf1):", fsf2(fsf1(s...)...))
 
s = []int{2, 4, 6, 8}
fmt.Println("For s =", s)
fmt.Println(" fsf1:", fsf1(2, 4, 6, 8))
fmt.Println(" fsf2:", fsf2(s...))
fmt.Println(" fsf3:", fsf3(s...))
fmt.Println(" fsf3(fsf1):", fsf3(fsf1(s...)...))
}</syntaxhighlight>
{{out}}
<pre>For s = [0 1 2 3]
fsf1: [0 2 4 6]
fsf2: [0 1 4 9]
fsf3: [100 101 102 103]
fsf2(fsf1): [0 4 16 36]
For s = [2 4 6 8]
fsf1: [4 8 12 16]
fsf2: [4 16 36 64]
fsf3: [102 104 106 108]
fsf3(fsf1): [104 108 112 116]</pre>
 
=={{header|Groovy}}==
<syntaxhighlight lang="groovy">def fs = { fn, values -> values.collect { fn(it) } }
def f1 = { v -> v * 2 }
def f2 = { v -> v ** 2 }
def fsf1 = fs.curry(f1)
def fsf2 = fs.curry(f2)</syntaxhighlight>
Testing:
<syntaxhighlight lang="groovy">[(0..3), (2..8).step(2)].each { seq ->
println "fsf1$seq = ${fsf1(seq)}"
println "fsf2$seq = ${fsf2(seq)}"
}</syntaxhighlight>
Output:
<pre>fsf1[0, 1, 2, 3] = [0, 2, 4, 6]
fsf2[0, 1, 2, 3] = [0, 1, 4, 9]
fsf1[2, 4, 6, 8] = [4, 8, 12, 16]
fsf2[2, 4, 6, 8] = [4, 16, 36, 64]</pre>
 
=={{header|Haskell}}==
Haskell functions are curried. i.e. All functions actually take exactly one argument. Functions of multiple arguments are simply functions that take the first argument, which returns another function to take the remaining arguments, etc. Therefore, partial function application is trivial. Not giving a multi-argument function all of its arguments will simply return a function that takes the remaining arguments.
<syntaxhighlight lang ="haskell">fs f s = map f s
f1 value = value (* 2)
f2 value = value (^ 2)
 
fsf1 = fs f1
Line 539 ⟶ 1,065:
print $ fsf2 [0, 1, 2, 3] -- prints [0, 1, 4, 9]
print $ fsf1 [2, 4, 6, 8] -- prints [4, 8, 12, 16]
print $ fsf2 [2, 4, 6, 8] -- prints [4, 16, 36, 64]</langsyntaxhighlight>
 
=={{header|Icon}} and {{header|Unicon}}==
<langsyntaxhighlight Iconlang="icon">link printf
 
procedure main()
Line 580 ⟶ 1,106:
every (s := "[ ") ||:= !L || " "
return s || "]"
end</langsyntaxhighlight>
 
{{libheader|Icon Programming Library}}
Line 597 ⟶ 1,123:
Given:
 
<langsyntaxhighlight lang="j">fs=:1 :'u"0 y'
f1=:*&2
f2=:^&2
fsf1=:f1 fs
fsf2=:f2 fs</langsyntaxhighlight>
 
The required examples might look like this:
 
<langsyntaxhighlight lang="j"> fsf1 i.4
0 2 4 6
fsf2 i.4
Line 612 ⟶ 1,138:
4 8 12 16
fsf2 fsf1 1+i.4
4 16 36 64</langsyntaxhighlight>
 
That said, note that much of this is unnecessary, since f1 and f2 already work the same way on list arguments.
 
<langsyntaxhighlight lang="j"> f1 i.4
0 2 4 6
f2 i.4
Line 623 ⟶ 1,149:
2 4 6 8
f2 f1 1+i.4
4 16 36 64</langsyntaxhighlight>
 
That said, note that if we complicated the definitions of f1 and f2, so that they would not work on lists, the fs approach would still work:
Line 629 ⟶ 1,155:
In other words, given:
 
<langsyntaxhighlight lang="j">crippled=:1 :0
assert.1=#y
u y
Line 637 ⟶ 1,163:
F2=: f2 crippled
fsF1=: F1 fs
fsF2=: F2 fs</langsyntaxhighlight>
 
the system behaves like this:
 
<langsyntaxhighlight lang="j"> F1 i.4
|assertion failure: F1
| 1=#y
fsF1 i.4
0 2 4 6
NB. and so on...</langsyntaxhighlight>
 
=={{header|Java}}==
To solve this task, I wrote <tt>fs()</tt> as a curried method. I changed the syntax from <tt>fs(arg1, arg2)</tt> to <tt>fs(arg1).call(arg2)</tt>. Now I can use <tt>fs(arg1)</tt> as partial application.
 
<langsyntaxhighlight lang="java">import java.util.Arrays;
 
public class PartialApplication {
Line 713 ⟶ 1,239:
}
}
}</langsyntaxhighlight>
 
The aforementioned code, lambda-ized in Java 8.
 
<langsyntaxhighlight lang="java5">import java.util.Arrays;
import java.util.function.BiFunction;
import java.util.function.Function;
Line 784 ⟶ 1,310:
;
}
}</langsyntaxhighlight>
 
Compilation and output for both versions: <pre>$ javac PartialApplication.java
Line 794 ⟶ 1,320:
fsf1(array): [4, 8, 12, 16]
fsf2(array): [4, 16, 36, 64]</pre>
 
=={{header|JavaScript}}==
===ES5===
Higher order functions are part of the core architecture of JavaScript.
 
(No special libraries are required for the creation or application of partial functions)
 
<syntaxhighlight lang="javascript">var f1 = function (x) { return x * 2; },
f2 = function (x) { return x * x; },
 
fs = function (f, s) {
return function (s) {
return s.map(f);
}
},
 
fsf1 = fs(f1),
fsf2 = fs(f2);
 
// Test
[
fsf1([0, 1, 2, 3]),
fsf2([0, 1, 2, 3]),
fsf1([2, 4, 6, 8]),
fsf2([2, 4, 6, 8])
]</syntaxhighlight>
 
Output:
 
<pre>[[0, 2, 4, 6], [0, 1, 4, 9], [4, 8, 12, 16], [4, 16, 36, 64]]</pre>
 
For additional flexibility ( allowing for an arbitrary number of arguments in applications of a partially applied function, and dropping the square brackets from the function calls in the tests above ) we can make use of the array-like ''arguments'' object, which is a property of any JavaScript function.
 
<syntaxhighlight lang="javascript">var f1 = function (x) { return x * 2; },
f2 = function (x) { return x * x; },
 
fs = function (f) {
return function () {
return Array.prototype.slice.call(
arguments
).map(f);
}
},
 
fsf1 = fs(f1),
fsf2 = fs(f2);
 
// Test alternative approach, with arbitrary numbers of arguments
[
fsf1(0, 1, 2, 3, 4),
fsf2(0, 1, 2),
fsf1(2, 4, 6, 8, 10, 12),
fsf2(2, 4, 6, 8)
]</syntaxhighlight>
 
Output:
 
<pre>[[0, 2, 4, 6, 8], [0, 1, 4], [4, 8, 12, 16, 20, 24], [4, 16, 36, 64]]</pre>
 
===ES6===
====Simple curry====
<syntaxhighlight lang="javascript">(() => {
'use strict';
 
// GENERIC FUNCTIONS ------------------------------------------------------
 
// curry :: ((a, b) -> c) -> a -> b -> c
const curry = f => a => b => f(a, b);
 
// map :: (a -> b) -> [a] -> [b]
const map = curry((f, xs) => xs.map(f));
 
 
// PARTIAL APPLICATION ----------------------------------------------------
 
const
f1 = x => x * 2,
f2 = x => x * x,
 
fs = map,
 
fsf1 = fs(f1),
fsf2 = fs(f2);
 
// TEST -------------------------------------------------------------------
return [
fsf1([0, 1, 2, 3]),
fsf2([0, 1, 2, 3]),
 
fsf1([2, 4, 6, 8]),
fsf2([2, 4, 6, 8])
];
})();</syntaxhighlight>
{{Out}}
<pre>[[0, 2, 4, 6], [0, 1, 4, 9], [4, 8, 12, 16], [4, 16, 36, 64]]</pre>
====Generic curry====
The simple version of the higher-order '''curry''' function above works only on functions with two arguments. For more flexibility, we can generalise it to a form which curries functions with an arbitrary number of arguments:
 
<syntaxhighlight lang="javascript">(() => {
'use strict';
 
// GENERIC FUNCTIONS ------------------------------------------------------
 
// 2 or more arguments
// curry :: Function -> Function
const curry = (f, ...args) => {
const go = xs => xs.length >= f.length ? (f.apply(null, xs)) :
function () {
return go(xs.concat(Array.from(arguments)));
};
return go([].slice.call(args, 1));
};
 
// map :: (a -> b) -> [a] -> [b]
const map = curry((f, xs) => xs.map(f));
 
// PARTIAL APPLICATION ----------------------------------------------------
const
f1 = x => x * 2,
f2 = x => x * x,
 
fs = map,
 
fsf1 = fs(f1),
fsf2 = fs(f2);
 
// TEST -------------------------------------------------------------------
return [
fsf1([0, 1, 2, 3]),
fsf2([0, 1, 2, 3]),
 
fsf1([2, 4, 6, 8]),
fsf2([2, 4, 6, 8])
];
})();</syntaxhighlight>
{{Out}}
<pre>[[0, 2, 4, 6], [0, 1, 4, 9], [4, 8, 12, 16], [4, 16, 36, 64]]</pre>
 
=={{header|jq}}==
{{works with|jq}}
'''Works with gojq, the Go implementation of jq'''
<syntaxhighlight lang="jq"># fs(f, s) takes a function, f, of one value and a sequence of values s,
# and returns an ordered sequence of the result of applying function f to every value of s in turn.
 
def fs(f; s): s | f;
 
# f1 takes a value and returns it multiplied by 2:
def f1: 2 * .;
 
# f2 takes a value and returns it squared:
def f2: . * .;
 
# Partially apply f1 to fs to form function fsf1(s):
def fsf1(s): fs(f1;s);
 
# Partially apply f2 to fs to form function fsf2(s)
def fsf2(s): fs(f2; s);
 
# Test fsf1 and fsf2 by evaluating them with s being the sequence of integers from 0 to 3 inclusive ...
 
"fsf1",
[fsf1(range(0;4))],
"fsf2",
[fsf2(range(0;4))],
 
# and then the sequence of even integers from 2 to 8 inclusive:
 
"fsf1",
[fsf1(range(2;9;2))],
"fsf2",
[fsf2(range(2;9;2))]</syntaxhighlight>
{{out}}
<pre>
fsf1
[0,2,4,6]
fsf2
[0,1,4,9]
fsf1
[4,8,12,16]
fsf2
[4,16,36,64]
</pre>
 
 
=={{header|Julia}}==
<syntaxhighlight lang="julia">
fs(f, s) = map(f, s)
f1(x) = 2x
f2(x) = x^2
fsf1(s) = fs(f1, s)
fsf2(s) = fs(f2, s)
 
s1 = [0, 1, 2 ,3]
s2 = [2, 4, 6, 8]
println("fsf1 of s1 is $(fsf1(s1))")
println("fsf2 of s1 is $(fsf2(s1))")
println("fsf1 of s2 is $(fsf1(s2))")
println("fsf2 of s2 is $(fsf2(s2))")
</syntaxhighlight>
{{output}}<pre>
fsf1 of s1 is [0, 2, 4, 6]
fsf2 of s1 is [0, 1, 4, 9]
fsf1 of s2 is [4, 8, 12, 16]
fsf2 of s2 is [4, 16, 36, 64]
</pre>
 
=={{header|Kotlin}}==
<syntaxhighlight lang="scala">// version 1.1.2
 
typealias Func = (Int) -> Int
typealias FuncS = (Func, List<Int>) -> List<Int>
 
fun fs(f: Func, seq: List<Int>) = seq.map { f(it) }
 
fun partial(fs: FuncS, f: Func) = { seq: List<Int> -> fs(f, seq) }
 
fun f1(n: Int) = 2 * n
 
fun f2(n: Int) = n * n
 
fun main(args: Array<String>) {
val fsf1 = partial(::fs, ::f1)
val fsf2 = partial(::fs, ::f2)
val seqs = listOf(
listOf(0, 1, 2, 3),
listOf(2, 4, 6, 8)
)
for (seq in seqs) {
println(fs(::f1, seq)) // normal
println(fsf1(seq)) // partial
println(fs(::f2, seq)) // normal
println(fsf2(seq)) // partial
println()
}
}</syntaxhighlight>
 
{{out}}
<pre>
[0, 2, 4, 6]
[0, 2, 4, 6]
[0, 1, 4, 9]
[0, 1, 4, 9]
 
[4, 8, 12, 16]
[4, 8, 12, 16]
[4, 16, 36, 64]
[4, 16, 36, 64]
</pre>
 
=={{header|Lambdatalk}}==
 
{lambda talk} doesn't know closures but accepts de facto partial application. Not giving a multi-argument function all of its arguments will simply return a function that takes the remaining arguments.
<syntaxhighlight lang="scheme">
1) just define function as usual:
{def add {lambda {:a :b :c} {+ :a :b :c}}} -> add
 
2) and use it:
{add 1 2 3} -> 6
{{add 1} 2 3} -> 6
{{add 1 2} 3} -> 6
{{{add 1} 2} 3} -> 6
 
3) application:
{def fs {lambda {:f} map :f}}
{def f1 {lambda {:x} {* :x 2}}}
{def f2 {lambda {:x} {pow :x 2}}}
{def fsf1 {fs f1}}
{def fsf2 {fs f2}}
 
{{fsf1} 0 1 2 3}
{{fsf2} 0 1 2 3}
{{fsf1} 2 4 6 8}
{{fsf2} 2 4 6 8}
 
Output:
0 2 4 6
0 1 4 9
4 8 12 16
4 16 36 64
</syntaxhighlight>
 
=={{header|LFE}}==
 
There is no partial in Erlang, so in LFE we use a closure.
 
Here is the code, made more general to account for different arrities (note that to copy and paste into the LFE REPL, you'll need to leave out the docstring):
<syntaxhighlight lang="lisp">
(defun partial
"The partial function is arity 2 where the first parameter must be a
function and the second parameter may either be a single item or a list of
items.
 
When funcall is called against the result of the partial call, a second
parameter is applied to the partial function. This parameter too may be
either a single item or a list of items."
((func args-1) (when (is_list args-1))
(match-lambda
((args-2) (when (is_list args-2))
(apply func (++ args-1 args-2)))
((arg-2)
(apply func (++ args-1 `(,arg-2))))))
((func arg-1)
(match-lambda
((args-2) (when (is_list args-2))
(apply func (++ `(,arg-1) args-2)))
((arg-2)
(funcall func arg-1 arg-2)))))
</syntaxhighlight>
 
Here is the problem set:
<syntaxhighlight lang="lisp">
(defun fs (f s) (lists:map f s))
(defun f1 (i) (* i 2))
(defun f2 (i) (math:pow i 2))
 
(set fsf1 (partial #'fs/2 #'f1/1))
(set fsf2 (partial #'fs/2 #'f2/1))
(set seq1 '((0 1 2 3)))
(set seq2 '((2 4 6 8)))
 
> (funcall fsf1 seq1)
(0 2 4 6)
> (funcall fsf2 seq1)
(0.0 1.0 4.0 9.0)
> (funcall fsf1 seq2)
(4 8 12 16)
> (funcall fsf2 seq2)
(4.0 16.0 36.0 64.0)
 
</syntaxhighlight>
 
=={{header|Logtalk}}==
Using Logtalk's built-in and library meta-predicates:
<langsyntaxhighlight lang="logtalk">
:- object(partial_functions).
 
Line 829 ⟶ 1,686:
 
:- end_object.
</syntaxhighlight>
</lang>
Output:
<langsyntaxhighlight lang="text">
| ?- partial_functions::show.
[0,1,2,3] -> fs(f1) -> [0,2,4,6]
Line 838 ⟶ 1,695:
[2,4,6,8] -> fs(f2) -> [4,16,36,64]
yes
</syntaxhighlight>
</lang>
 
=={{header|MathematicaLua}}==
 
<lang Mathematica>fs[f_, s_] := Map[f, s]
<syntaxhighlight lang="lua">function map(f, ...)
local t = {}
for k, v in ipairs(...) do
t[#t+1] = f(v)
end
return t
end
 
function timestwo(n)
return n * 2
end
 
function squared(n)
return n ^ 2
end
 
function partial(f, arg)
return function(...)
return f(arg, ...)
end
end
 
timestwo_s = partial(map, timestwo)
squared_s = partial(map, squared)
 
print(table.concat(timestwo_s{0, 1, 2, 3}, ', '))
print(table.concat(squared_s{0, 1, 2, 3}, ', '))
print(table.concat(timestwo_s{2, 4, 6, 8}, ', '))
print(table.concat(squared_s{2, 4, 6, 8}, ', '))</syntaxhighlight>
 
'''Output:'''
 
0, 2, 4, 6
0, 1, 4, 9
4, 8, 12, 16
4, 16, 36, 64
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">fs[f_, s_] := Map[f, s]
f1 [n_] := n*2
f2 [n_] := n^2
fsf1[s_] := fs[f1, s]
fsf2[s_] := fs[f2, s]</langsyntaxhighlight>
Example usage:
<pre>fsf1[{0, 1, 2, 3}]
Line 857 ⟶ 1,753:
 
=={{header|Mercury}}==
<langsyntaxhighlight lang="mercury">:- module partial_function_application.
:- interface.
 
Line 892 ⟶ 1,788:
:- func fsf2 = (func(list(int)) = list(int)).
 
fsf2 = fs(f2).</langsyntaxhighlight>
 
=={{header|min}}==
{{works with|min|0.19.3}}
<syntaxhighlight lang="min">'map :fs
(dup +) :f1
(dup *) :f2
('f1 fs) :fsf1
('f2 fs) :fsf2
 
(0 1 2 3) fsf1 puts!
(0 1 2 3) fsf2 puts!
(2 4 6 8) fsf1 puts!
(2 4 6 8) fsf2 puts!</syntaxhighlight>
{{out}}
<pre>
(0 2 4 6)
(0 1 4 9)
(4 8 12 16)
(4 16 36 64)
</pre>
 
=={{header|Nemerle}}==
<langsyntaxhighlight Nemerlelang="nemerle">using System;
using System.Console;
 
Line 939 ⟶ 1,855:
}
}</langsyntaxhighlight>
 
=={{header|Nim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">import sequtils
 
type
 
Func = proc(n: int): int
FuncS = proc(f: Func; s: seq[int]): seq[int]
 
proc fs(f: Func; s: seq[int]): seq[int] = s.map(f)
 
proc partial(fs: FuncS; f: Func): auto =
result = proc(s: seq[int]): seq[int] = fs(f, s)
 
proc f1(n: int): int = 2 * n
proc f2(n: int): int = n * n
 
when isMainModule:
 
const Seqs = @[@[0, 1, 2, 3], @[2, 4, 6, 8]]
 
let fsf1 = partial(fs, f1)
let fsf2 = partial(fs, f2)
 
for s in Seqs:
echo fs(f1, s) # Normal.
echo fsf1(s) # Partial.
echo fs(f2, s) # Normal.
echo fsf2(s) # Partial.
echo ""</syntaxhighlight>
 
{{out}}
<pre>@[0, 2, 4, 6]
@[0, 2, 4, 6]
@[0, 1, 4, 9]
@[0, 1, 4, 9]
 
@[4, 8, 12, 16]
@[4, 8, 12, 16]
@[4, 16, 36, 64]
@[4, 16, 36, 64]</pre>
 
=={{header|OCaml}}==
OCaml functions are curried. i.e. All functions actually take exactly one argument. Functions of multiple arguments are simply functions that take the first argument, which returns another function to take the remaining arguments, etc. Therefore, partial function application is trivial. Not giving a multi-argument function all of its arguments will simply return a function that takes the remaining arguments.
<langsyntaxhighlight lang="ocaml">#
let fs f s = List.map f s
let f1 value = value * 2
Line 964 ⟶ 1,922:
- : int list = [4; 8; 12; 16]
# fsf2 [2; 4; 6; 8];;
- : int list = [4; 16; 36; 64]</langsyntaxhighlight>
 
=={{header|Oforth}}==
 
<syntaxhighlight lang="oforth">: fs(s, f) f s map ;
: f1 2 * ;
: f2 sq ;
 
#f1 #fs curry => fsf1
#f2 #fs curry => fsf2</syntaxhighlight>
 
{{out}}
<pre>
>[ 0, 1, 2, 3 ] fsf1 .
[0, 2, 4, 6] ok
>[ 0, 1, 2, 3 ] fsf2 .
[0, 1, 4, 9] ok
>[ 2, 4, 6, 8 ] fsf1 .
[4, 8, 12, 16] ok
>[ 2, 4, 6, 8 ] fsf2 .
[4, 16, 36, 64] ok
</pre>
 
=={{header|Order}}==
Much like Haskell and ML, not giving a multi-argument function all of its arguments returns a function that will accept the rest.
<langsyntaxhighlight lang="c">#include <order/interpreter.h>
 
#define ORDER_PP_DEF_8fs ORDER_PP_FN( 8fn(8F, 8S, 8seq_map(8F, 8S)) )
Line 983 ⟶ 1,962:
8print(8ap(8G, 8seq(0, 1, 2, 3)) 8comma 8space),
8print(8ap(8F, 8seq(2, 4, 6, 8)) 8comma 8space),
8print(8ap(8G, 8seq(2, 4, 6, 8))))) )</langsyntaxhighlight>
{{out}}
<pre>(0)(2)(4)(6), (0)(1)(4)(9), (4)(8)(12)(16), (4)(16)(36)(64)</pre>
This example highlights two related syntactic limitations: only a statically-defined function (using <code>#define ORDER_PP_DEF_</code> etc.) can have a multi-character name, so variables - i.e. the result of expressions - are limited to <code>8A</code>-<code>8Z</code>; and similarly only statically-defined functions can be applied using the C-like <code>8name(args)</code> syntax: variables or expression results must be applied using the <code>8ap</code> operator (which is semantically identical, but not quite as pretty).
 
=={{header|PARI/GP}}==
This pure-GP solution cheats slightly, since GP lacks variadic arguments and reflection.
<syntaxhighlight lang="parigp">fs=apply;
f1(x)=2*x;
f2(x)=x^2;
fsf1=any->=fs(f1,any);
fsf2=any->=fs(f2,any);
fsf1([0..3])
fsf1(2([1..4])
fsf2([0..3])
fsf2(2([1..4])</syntaxhighlight>
 
PARI can do true partial function application, along the lines of [[#C|C]]; see also the <code>E*</code> parser code.
 
=={{header|Perl}}==
Note: this is written according to my understanding of the task spec and the discussion page; it doesn't seem a concensusconsensus was reached regarding what counts as a "partial" yet.
<langsyntaxhighlight Perllang="perl">sub fs :prototype(&) {
my $func = shift;
sub { map $func->($_), @_ }
}
 
sub double :prototype($) { shift() * 2 }
sub square :prototype($) { shift() ** 2 }
 
my $fs_double = fs(\&double);
Line 1,007 ⟶ 2,000:
@s = (2, 4, 6, 8);
print "fs_double(@s): @{[ $fs_double->(@s) ]}\n";
print "fs_square(@s): @{[ $fs_square->(@s) ]}\n";</langsyntaxhighlight>
Output: <pre>fs_double(0 1 2 3): 0 2 4 6
fs_square(0 1 2 3): 0 1 4 9
Line 1,013 ⟶ 2,006:
fs_square(2 4 6 8): 4 16 36 64</pre>
 
=={{header|Perl 6Phix}}==
Phix does not explicitly support this, but you can easily emulate it
All Code objects have the .assuming method, which partially applies its arguments. For both type safety reasons and parsing sanity reasons we do not believe in implicit partial application by leaving out arguments. Also, people can understand "assuming" without being steeped in FP culture.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang perl6>sub fs ( Code $f, @s ) { @s.map: { .$f } }
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
 
<span style="color: #008080;">function</span> <span style="color: #000000;">fs</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
sub f1 ( $n ) { $n * 2 }
<span style="color: #004080;">sequence</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">))</span>
sub f2 ( $n ) { $n ** 2 }
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
 
<span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])</span>
my &fsf1 := &fs.assuming: f => &f1;
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
my &fsf2 := &fs.assuming: f => &f2;
<span style="color: #008080;">return</span> <span style="color: #000000;">r</span>
 
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
for [1..3], [2, *+2 ... 8] X &fsf1, &fsf2 -> $s, $f {
say ~ $f.($s);
<span style="color: #008080;">function</span> <span style="color: #000000;">p_apply</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">args</span><span style="color: #0000FF;">)</span>
}</lang>
<span style="color: #004080;">integer</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">f1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">f2</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">f</span>
 
<span style="color: #008080;">return</span> <span style="color: #000000;">f1</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">args</span><span style="color: #0000FF;">)</span>
Output:<pre>2 4 6
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
1 4 9
4 8 12 16
<span style="color: #008080;">function</span> <span style="color: #000000;">f1</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
4 16 36 64</pre>
<span style="color: #008080;">return</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">+</span><span style="color: #000000;">i</span>
Here we partially apply the function using named arguments, but positional notation is also supported. (Named arguments are more general in the sense that they do not require you to curry your arguments from left-to-right.)
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
 
The <tt>*+2</tt> is also a form of partial application in Perl&nbsp;6. In this case we partially apply the <tt>infix:<+></tt> function with a second argument of 2. That is, the star (known as the "whatever" star) indicates which argument <em>not</em> to apply. The explicit star allows us to avoid syntactic ambiguity in whether to expect a term or an infix operator; such self-clocking code contributes to better error messages when things go wrong.
<span style="color: #008080;">function</span> <span style="color: #000000;">f2</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">*</span><span style="color: #000000;">i</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%v\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">p_apply</span><span style="color: #0000FF;">({</span><span style="color: #000000;">fs</span><span style="color: #0000FF;">,</span><span style="color: #000000;">f1</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">})})</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%v\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">p_apply</span><span style="color: #0000FF;">({</span><span style="color: #000000;">fs</span><span style="color: #0000FF;">,</span><span style="color: #000000;">f2</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">})})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
{0,2,4,6}
{0,1,4,9}
</pre>
Should you want to supply partial arguments:
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">fs</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">,</span> <span style="color: #004080;">sequence</span> <span style="color: #000000;">s</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">sequence</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">repeat</span><span style="color: #0000FF;">(</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">))</span>
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">s</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
<span style="color: #000000;">r</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">rid</span><span style="color: #0000FF;">(</span><span style="color: #000000;">j</span><span style="color: #0000FF;">,</span><span style="color: #000000;">s</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">])</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">r</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">p_apply</span><span style="color: #0000FF;">(</span><span style="color: #004080;">sequence</span> <span style="color: #000000;">ffa</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">args</span><span style="color: #0000FF;">)</span>
<span style="color: #004080;">integer</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">f1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">f2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">j</span><span style="color: #0000FF;">}</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">ffa</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">f1</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">j</span><span style="color: #0000FF;">,</span><span style="color: #000000;">args</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #008080;">function</span> <span style="color: #000000;">f3</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">,</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">return</span> <span style="color: #000000;">j</span><span style="color: #0000FF;">+</span><span style="color: #000000;">i</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%v\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">p_apply</span><span style="color: #0000FF;">({</span><span style="color: #000000;">fs</span><span style="color: #0000FF;">,</span><span style="color: #000000;">f3</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">},{</span><span style="color: #000000;">0</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3</span><span style="color: #0000FF;">})})</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
{1,2,3,4}
</pre>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(def 'fs mapcar)
(de f1 (N) (* 2 N))
(de f2 (N) (* N N))
Line 1,049 ⟶ 2,080:
(for S '((0 1 2 3) (2 4 6 8))
(println (fsf1 S))
(println (fsf2 S)) )</langsyntaxhighlight>
Output:
<pre>(0 2 4 6)
Line 1,058 ⟶ 2,089:
=={{header|Prolog}}==
Works with SWI-Prolog.
<langsyntaxhighlight Prologlang="prolog">fs(P, S, S1) :-
maplist(P, S, S1).
 
Line 1,083 ⟶ 2,114:
call(FSF1,S2, S21), format('~w : ~w ==> ~w~n',[FSF2, S2, S21]),
call(FSF2,S2, S22), format('~w : ~w ==> ~w~n',[FSF1, S2, S22]).
</syntaxhighlight>
</lang>
Output :
<pre>?- fs.
Line 1,093 ⟶ 2,124:
 
=={{header|Python}}==
<langsyntaxhighlight lang="python">from functools import partial
 
def fs(f, s): return [f(value) for value in s]
Line 1,110 ⟶ 2,141:
s = [2, 4, 6, 8]
assert fs(f1, s) == fsf1(s) # == [4, 8, 12, 16]
assert fs(f2, s) == fsf2(s) # == [4, 16, 36, 64]</langsyntaxhighlight>
 
The program runs without triggering the assertions.
 
Explicitly spelling out the partial function without hiding behind a library:<langsyntaxhighlight Pythonlang="python">def partial(f, g):
def fg(*x): return f(g, *x)
return fg
Line 1,126 ⟶ 2,157:
 
print fsf1(1, 2, 3, 4)
print fsf2(1, 2, 3, 4)</langsyntaxhighlight>
 
=={{header|Quackery}}==
 
(It would be more natural in Quackery to take the arguments to ''fs'' in the order ''s f''. This code complies with the requirements of the task. To make it idiomatic, omit all but the second ''swap''.)
<syntaxhighlight lang="quackery"> [ [] unrot
swap nested
' join nested
join nested
' witheach nested
swap join
do ] is fs ( f s --> [ )
[ 2 * ] is f1 ( n --> n )
[ 2 ** ] is f2 ( n --> n )
[ ' f1 swap fs ] is fsf1 ( s --> [ )
[ ' f2 swap fs ] is fsf2 ( s --> [ )
' [ 0 1 2 3 ] fsf1 echo cr
' [ 0 1 2 3 ] fsf2 echo cr
' [ 2 4 6 8 ] fsf1 echo cr
' [ 2 4 6 8 ] fsf2 echo cr
( ... or, using Quackery's partial applicator "witheach",
which applies the word or nest following it to each
item in a nest on the top of the stack ... )
cr
' [ [ 0 1 2 3 ] [ 2 4 6 8 ] ]
witheach
[ dup ' [ fsf1 fsf2 ]
witheach [ do echo cr ] ]</syntaxhighlight>
 
{{Out}}
 
<pre>[ 0 2 4 6 ]
[ 0 1 4 9 ]
[ 4 8 12 16 ]
[ 4 16 36 64 ]
 
[ 0 2 4 6 ]
[ 0 1 4 9 ]
[ 4 8 12 16 ]
[ 4 16 36 64 ]</pre>
 
=={{header|R}}==
 
<langsyntaxhighlight Rlang="r">partially.apply <- function(f, ...) {
capture <- list(...)
function(...) {
Line 1,147 ⟶ 2,225:
fsf2(0:3)
fsf1(seq(2,8,2))
fsf2(seq(2,8,2))</langsyntaxhighlight>
 
=={{header|Racket}}==
 
<langsyntaxhighlight lang="racket">
#lang racket
 
Line 1,165 ⟶ 2,243:
(fsf2 '(0 1 2 3))
(fsf2 '(2 4 6 8))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
(formerly Perl 6)
{{works with|rakudo|2015-09-25}}
All Code objects have the .assuming method, which partially applies its arguments. For both type safety reasons and parsing sanity reasons we do not believe in implicit partial application by leaving out arguments. Also, people can understand "assuming" without being steeped in FP culture.
<syntaxhighlight lang="raku" line>sub fs ( Code $f, @s ) { @s.map: { .$f } }
sub f1 ( $n ) { $n * 2 }
sub f2 ( $n ) { $n ** 2 }
my &fsf1 := &fs.assuming(&f1);
my &fsf2 := &fs.assuming(&f2);
for [1..3], [2, 4 ... 8] X &fsf1, &fsf2 -> ($s, $f) {
say $f.($s);
}</syntaxhighlight>
 
Output:<pre>(2 4 6)
(1 4 9)
(4 8 12 16)
(4 16 36 64)</pre>
The <tt>*+2</tt> is also a form of partial application in Raku. In this case we partially apply the <tt>infix:<+></tt> function with a second argument of 2. That is, the star (known as the "whatever" star) indicates which argument <em>not</em> to apply. In contrast to languages that keep some arguments unbound by leaving holes, the explicit star in Raku allows us to avoid syntactic ambiguity in whether to expect a term or an infix operator; such self-clocking code contributes to better error messages when things go wrong.
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">/*REXX program demonstrates a method of a partial function application. */
s=; do a=0 to 3 /*build 1st series, of some low integers.*/
s=strip(s a) /*append to the integer to the S list*/
end /*a*/
 
call fs 'f1',s; say 'for f1: series=' s", result=" result
call fs 'f2',s; say 'for f2: series=' s", result=" result
 
s=; do b=2 to 8 by 2 /*build 2nd series, low even intsintegers. */
s=strip(s b) /*append to the integer to the S list*/
end /*b*/
 
call fs 'f1',s; say 'for f1: series=' s", result=" result
call fs 'f2',s; say 'for f2: series=' s", result=" result
exit /*stick a fork in it, we're all done. */
/*────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────F1 subroutine───────────────────────*/
f1: return arg(1)* 2
/*──────────────────────────────────F2 subroutine───────────────────────*/
f2: return arg(1)**2
/*────────────────────────────────────────────────────────────────────────────*/
/*──────────────────────────────────FS subroutine───────────────────────*/
fs: procedure; arg f,s; $=; do j=1 for words(s); z=word(s,j)
interpret '$=$' f"("z')'
end /*j*/
return strip($)</langsyntaxhighlight>
'''output'''
<pre>
Line 1,198 ⟶ 2,297:
for f1, series= 2 4 6 8, result= 4 8 12 16
for f2, series= 2 4 6 8, result= 4 16 36 64
</pre>
 
=={{header|RPL}}==
<code>fs(f,s)</code> is a built-in function in RPL named <code>DOLIST </code>
« 2 * » '<span style="color:blue">F1</span>' STO
« SQ » '<span style="color:blue">F2</span>' STO
« 1 '<span style="color:blue">F1</span>' DOLIST » '<span style="color:blue">FSF1</span>' STO
« 1 '<span style="color:blue">F2</span>' DOLIST » '<span style="color:blue">FSF2</span>' STO
 
{ 0 1 2 3 } <span style="color:blue">FSF1</span>
{ 0 1 2 3 } <span style="color:blue">FSF2</span>
{ 2 4 6 8 } <span style="color:blue">FSF1</span>
{ 2 4 6 8 } <span style="color:blue">FSF2</span>
{{out}}
<pre>
4: { 0 2 4 6 }
3! { 0 1 4 9 }
2: { 4 8 12 16 }
1: { 4 16 36 64 }
</pre>
 
Line 1,204 ⟶ 2,325:
 
{{works with|Ruby|1.9}}
<langsyntaxhighlight lang="ruby">fs = proc { |f, s| s.map &f }
f1 = proc { |n| n * 2 }
f2 = proc { |n| n ** 2 }
Line 1,213 ⟶ 2,334:
p fsf1[e]
p fsf2[e]
end</langsyntaxhighlight>
 
Output
Line 1,222 ⟶ 2,343:
 
=={{header|Scala}}==
<syntaxhighlight lang="scala">def fs[X](f:X=>X)(s:Seq[X]) = s map f
Needing attention<br>
def f1(x:Int) = x * 2
[[Category:Scala examples needing attention]]
def f2(x:Int) = x * x
<strike>Scala does not have partial function application as defined, but comes close if we ignore the restriction that others parameters not be explicitely referred to. </strike>
<lang Scala>def fs(f:Int=>Int, s:List[Int])=s map f
def f1(x:Int)=x*2
def f2(x:Int)=x*x
def fsf1=fs(f1,_:List[Int])
def fsf2=fs(f2,_:List[Int])
 
def fsf[X](f:X=>X) = fs(f) _
println(fsf1(List(0,1,2,3)))
val fsf1 = fsf(f1) // or without the fsf intermediary: val fsf1 = fs(f1) _
println(fsf1(List(2,4,6,8)))
val fsf2 = fsf(f2) // or without the fsf intermediary: val fsf2 = fs(f2) _
println(fsf2(List(0,1,2,3)))
 
println(fsf2(List(2,4,6,8)))</lang>
assert(fsf1(List(0,1,2,3)) == List(0,2,4,6))
assert(fsf2(List(0,1,2,3)) == List(0,1,4,9))</syntaxhighlight>
 
=={{header|Sidef}}==
{{trans|Perl}}
<syntaxhighlight lang="ruby">func fs(f) {
func(*args) {
args.map {f(_)}
}
}
 
func double(n) { n * 2 };
func square(n) { n ** 2 };
 
var fs_double = fs(double);
var fs_square = fs(square);
 
var s = (0 .. 3);
say "fs_double(#{s}): #{fs_double(s...)}";
say "fs_square(#{s}): #{fs_square(s...)}";
 
s = [2, 4, 6, 8];
say "fs_double(#{s}): #{fs_double(s...)}";
say "fs_square(#{s}): #{fs_square(s...)}";</syntaxhighlight>
{{out}}
<pre>
fs_double(0 1 2 3): 0 2 4 6
fs_square(0 1 2 3): 0 1 4 9
fs_double(2 4 6 8): 4 8 12 16
fs_square(2 4 6 8): 4 16 36 64
</pre>
 
=={{header|Smalltalk}}==
{{works with|Pharo|1.3-13315}}
<langsyntaxhighlight lang="smalltalk">
| f1 f2 fs fsf1 fsf2 partial |
 
Line 1,259 ⟶ 2,405:
fsf2 value: #(2 4 6 8).
" #(4 16 36 64)"
</syntaxhighlight>
</lang>
 
=={{header|Tcl}}==
{{works with|Tcl|8.6}}
<langsyntaxhighlight lang="tcl">package require Tcl 8.6
proc partial {f1 f2} {
variable ctr
Line 1,271 ⟶ 2,417:
}
}} $f1 $f2
}</langsyntaxhighlight>
Demonstration:
<langsyntaxhighlight lang="tcl">proc fs {f s} {
set r {}
foreach n $s {
Line 1,287 ⟶ 2,433:
puts "$s ==f1==> [$fsf1 $s]"
puts "$s ==f2==> [$fsf2 $s]"
}</langsyntaxhighlight>
Output:
<pre>
Line 1,298 ⟶ 2,444:
=={{header|TXR}}==
 
Partial application is built in via the <code>op</code> operator, so there is no need to create all these named functions, which defeats the purpose and beauty of partial application: which is to partially apply arguments to functions in an anonymous, implicit way, possibly in multiple places in a single expression.
 
Indeed, functional language purists would probably say that even the explicit <code>op</code> operator spoils it, somewhat.
 
<langsyntaxhighlight lang="sh">$ txr -p "(mapcar (op mapcar (op * 2)) (list (range 10 3) (range 2 68 2)))"
((0 2 4 6) (4 8 12 16))
 
$ txr -p "(mapcar (op mapcar (op * @1 @1)) (list (range 10 3) (range 2 68 2)))"
((0 1 4 9) (4 16 36 64))</langsyntaxhighlight>
 
Note how in the above, '''no''' function arguments are explicitly mentioned at all except the necessary reference <code>@1</code> to an argument whose existence is implicit.
Now, without further ado, we murder the concept of partial application to meet the task requirements:
 
Now, without further ado, we surrender the concept of partial application to meet the task requirements:
<lang sh>$ txr -e "(progn
 
<syntaxhighlight lang="sh">$ txr -e "(progn
(defun fs (fun seq) (mapcar fun seq))
(defun f1 (num) (* 2 num))
Line 1,317 ⟶ 2,465:
(defvar fsf2 (op fs f2))
 
(print [fs fsf1 '((0 1 2 3) (2 4 6 8))]) (put-line \"\")
(print [fs fsf2 '((0 1 2 3) (2 4 6 8))]) (put-line \"\"))"
((0 2 4 6) (4 8 12 16))
((0 1 4 9) (4 16 36 64))</langsyntaxhighlight>
 
=={{header|Wren}}==
<syntaxhighlight lang="wren">var fs = Fn.new { |f, s| s.map { |e| f.call(e) }.toList }
var f1 = Fn.new { |n| 2 * n }
var f2 = Fn.new { |n| n * n }
 
var partial = Fn.new { |f, g| Fn.new { |x| f.call(g, x) } }
 
var ss = [[0, 1, 2, 3], [2, 4, 6, 8]]
for (s in ss) {
var fsf1 = partial.call(fs, f1)
var fsf2 = partial.call(fs, f2)
System.print(fsf1.call(s))
System.print(fsf2.call(s))
System.print()
}</syntaxhighlight>
 
{{out}}
<pre>
[0, 2, 4, 6]
[0, 1, 4, 9]
 
[4, 8, 12, 16]
[4, 16, 36, 64]
</pre>
 
=={{header|zkl}}==
<syntaxhighlight lang="zkl">fcn fs(f,s){s.apply(f)} fcn f1(n){n*2} fcn f2(n){n*n}
var fsf1=fs.fp(f1), fsf2=fs.fp(f2);
fsf1([0..3]); //-->L(0,2,4,6)
fsf2([2..8,2]); //-->L(4,16,36,64)</syntaxhighlight>
 
 
=={{header|Z80 Assembly}}==
First, the implementation of the functions.
<syntaxhighlight lang="z80">func_fs:
;input
;hl = function to call
;ix = data range to operate over
;de = output area
;b = length of data range
 
push bc
ld (smc_fs+1),hl
ld a,(ix+0)
smc_fs:
call 0 ;overwritten with the function address passed in HL
 
ld (de),a
inc ix
inc de
pop bc
djnz func_fs
ret
 
f: ;dummy function - returns input as-is
ret
 
f1:
;returns A times 2
sla a
ret
 
f2:
;returns A squared
ld b,a
jp square_small
;ret
 
data1:
db 0,1,2,3
 
data2
db 2,4,6,8
 
output:
ds 4
 
;these libraries allow us to write the output to the screen
read "\SrcCPC\winape_monitor.asm"
read "\SrcCPC\winape_stringop.asm"
read "\SrcCPC\winape_showhex.asm"
 
square_small:
;returns a*a into a
LD C,B
mul8_small:
;multiplies two 8-bit regs, product is also 8 bit.
;no overflow protection!
;computes A = c * b
ld a,c
or a
ret z
djnz skip_return_C
;ADVANCED TRICKERY:
; we need to decrement B anyway.
; also if B = 1, then A = C.
; C is already in A, which we need for the multiplication regardless.
; This does the job for us in one instruction!
; Most DJNZs are backward but this one is FORWARD!
ret
skip_return_C:
add C
djnz skip_return_C
ret</syntaxhighlight>
 
{{out}}
 
And this is the unit test showing the results. Output is in hexadecimal but is otherwise correct.
<syntaxhighlight lang="z80">;;;;;;;;;;;;;;;;;;; HEADER ;;;;;;;;;;;;;;;;;;;
read "\SrcCPC\winape_macros.asm"
read "\SrcCPC\MemoryMap.asm"
read "\SrcALL\winapeBuildCompat.asm"
;;;;;;;;;;;;;;;;;;; PROGRAM ;;;;;;;;;;;;;;;;;;;
 
org &1000
 
ld hl,f1
ld ix,data1
ld de,output
ld b,4
call func_fs ;execute f1f(s) on data set 1
 
 
call monitor_memdump ;display the output
db 4
dw output
 
call newline
 
ld hl,f1
ld ix,data2
ld de,output
ld b,4
call func_fs ;;execute f1f(s) on data set 2
 
 
call monitor_memdump ;display the output
db 4
dw output
 
call newline
 
ld hl,f2
ld ix,data1
ld de,output
ld b,4
call func_fs
 
 
call monitor_memdump
db 4
dw output
 
call newline
 
ld hl,f2
ld ix,data2
ld de,output
ld b,4
call func_fs
 
 
call monitor_memdump
db 4
dw output
 
ret ;return to basic</syntaxhighlight>
 
<pre>;107D = address of output data buffer
107D:
00 02 04 06 ....
 
107D:
04 08 0C 10 ....
 
107D:
00 01 04 09 ....
 
107D:
04 10 24 40 ..$@</pre>
 
{{omit from|Euphoria}}
{{omit from|Go|No way to define one function in terms of another.}}
 
[[Category:Functions and subroutines]]
2,130

edits