I'm working on modernizing Rosetta Code's infrastructure. Starting with communications. Please accept this time-limited open invite to RC's Slack.. --Michael Mol (talk) 20:59, 30 May 2020 (UTC)

# Numbers which binary and ternary digit sum are prime

Numbers which binary and ternary digit sum are prime is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.

Show positive integers   n   whose binary and ternary digits sum are prime,   where   n   <   200.

## 11l

Translation of: Nim
`F is_prime(a)   I a == 2      R 1B   I a < 2 | a % 2 == 0      R 0B   L(i) (3 .. Int(sqrt(a))).step(2)      I a % i == 0         R 0B   R 1B F digit_sum(=n, b)   V result = 0   L n != 0      result += n % b      n I/= b   R result V count = 0L(n) 2..199   I is_prime(digit_sum(n, 2)) &     is_prime(digit_sum(n, 3))      count++      print(‘#3’.format(n), end' I count % 16 == 0 {"\n"} E ‘ ’)print()print(‘Found ’count‘ numbers.’)`
Output:
```  5   6   7  10  11  12  13  17  18  19  21  25  28  31  33  35
36  37  41  47  49  55  59  61  65  67  69  73  79  82  84  87
91  93  97 103 107 109 115 117 121 127 129 131 133 137 143 145
151 155 157 162 167 171 173 179 181 185 191 193 199
Found 61 numbers.
```

## Action!

`INCLUDE "H6:SIEVE.ACT" BYTE Func IsPrime(INT i BYTE base BYTE ARRAY primes)  BYTE sum,d   sum=0  WHILE i#0  DO    d=i MOD base    sum==+d    i==/base  ODRETURN (primes(sum)) PROC Main()  DEFINE MAX="199"  BYTE ARRAY primes(MAX+1)  INT i,count=[0]   Put(125) PutE() ;clear the screen  Sieve(primes,MAX+1)  FOR i=1 TO MAX  DO    IF IsPrime(i,2,primes)=1 AND IsPrime(i,3,primes)=1 THEN      PrintI(i) Put(32)      count==+1    FI  OD  PrintF("%E%EThere are %I numbers",count)RETURN`
Output:
```5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97
103 107 109 115 117 121 127 129 131 133 137 143 14 5 151 155 157 162 167 171 173 179 181 185 191 193 199

There are 61 numbers
```

## ALGOL 68

`BEGIN # find numbers whose digit sums in binary and ternary are prime #    # returns the digit sum of n in base b #    PRIO DIGITSUM = 9;    OP   DIGITSUM = ( INT n, b )INT:         BEGIN            INT d sum := 0;            INT v     := ABS n;            WHILE v > 0 DO                d sum +:= v MOD b;                v  OVERAB b            OD;            d sum         END # DIGITSUM # ;    INT max number = 200;    PR read "primes.incl.a68" PR    []BOOL prime    = PRIMESIEVE 200;    INT    n count := 0;    FOR n TO UPB prime DO        INT d sum 2 = n DIGITSUM 2;        IF prime[ d sum 2 ] THEN            INT d sum 3 = n DIGITSUM 3;            IF prime[ d sum 3 ] THEN                # the base 2 and base 3 digit sums of n are both prime #                print( ( " ", whole( n, -3 ), IF prime[ n ] THEN "*" ELSE " " FI ) );                n count +:= 1;                IF n count MOD 14 = 0 THEN print( ( newline ) ) FI            FI        FI    OD;    print( ( newline ) );    print( ( "Found ", whole( n count, 0 ), " numbers whose binary and ternary digit sums are prime", newline ) );    print( ( "    those that are themselves prime are suffixed with a ""*""", newline ) )END`
Output:
```   5*   6    7*  10   11*  12   13*  17*  18   19*  21   25   28   31*
33   35   36   37*  41*  47*  49   55   59*  61*  65   67*  69   73*
79*  82   84   87   91   93   97* 103* 107* 109* 115  117  121  127*
129  131* 133  137* 143  145  151* 155  157* 162  167* 171  173* 179*
181* 185  191* 193* 199*
Found 61 numbers whose binary and ternary digit sums are prime
those that are themselves prime are suffixed with a "*"
```

## ALGOL-M

`begininteger function mod(a,b);integer a,b;mod := a-(a/b)*b; integer function digitsum(n,base);integer n,base;digitsum := if n=0 then 0 else mod(n,base)+digitsum(n/base,base); integer function isprime(n);integer n;begin    integer i;    isprime := 0;    if n < 2 then go to stop;    for i := 2 step 1 until n-1 do    begin        if mod(n,i) = 0 then go to stop;    end;    isprime := 1;stop:    i := i;end; integer i,d2,d3,n;n := 0;for i := 0 step 1 until 199 dobegin    d2 := digitsum(i,2);    d3 := digitsum(i,3);    if isprime(d2) <> 0 and isprime(d3) <> 0 then    begin        if n/10 <> (n-1)/10 then write(i) else writeon(i);        n := n + 1;    end;end;end`
Output:
```     5     6     7    10    11    12    13    17    18    19
21    25    28    31    33    35    36    37    41    47
49    55    59    61    65    67    69    73    79    82
84    87    91    93    97   103   107   109   115   117
121   127   129   131   133   137   143   145   151   155
157   162   167   171   173   179   181   185   191   193
199```

## ALGOL W

`begin % find numbers whose binary and ternary digit sums are prime %    % returns the digit sum of n in base b %    integer procedure digitSum( integer value n, base ) ;    begin        integer v, dSum;        v    := abs n;        dSum := 0;        while v > 0 do begin            dSum := dSum + v rem base;            v    :=        v div base        end while_v_gt_0 ;        dSum    end digitSum ;    integer MAX_PRIME, MAX_NUMBER;    MAX_PRIME := 199;    begin        logical array prime( 1 :: MAX_PRIME );        integer       nCount;        % sieve the primes to MAX_PRIME %        prime( 1 ) := false; prime( 2 ) := true;        for i := 3 step 2 until MAX_PRIME do prime( i ) := true;        for i := 4 step 2 until MAX_PRIME do prime( i ) := false;        for i := 3 step 2 until truncate( sqrt( MAX_PRIME ) ) do begin            integer ii; ii := i + i;            if prime( i ) then for np := i * i step ii until MAX_PRIME do prime( np ) := false        end for_i ;        % find the numbers %        nCount := 0;        for i := 1 until MAX_PRIME do begin            if prime( digitSum( i, 2 ) ) and prime( digitSum( i, 3 ) ) then begin                % have another matching number %                writeon( i_w := 3, s_w := 0, " ", i );                nCount := nCount + 1;                if nCount rem 14 = 0 then write()            end if_have_a_suitable_number        end for_i ;        write( i_w := 1, s_w := 0, "Found ", nCount, " numbers with prime binary and ternary digit sums up to ", MAX_PRIME )    endend.`
Output:
```   5   6   7  10  11  12  13  17  18  19  21  25  28  31
33  35  36  37  41  47  49  55  59  61  65  67  69  73
79  82  84  87  91  93  97 103 107 109 115 117 121 127
129 131 133 137 143 145 151 155 157 162 167 171 173 179
181 185 191 193 199
Found 61 numbers with prime binary and ternary digit sums up to 199
```

## APL

Works with: Dyalog APL
`(⊢(/⍨)(∧/((2=0+.=⍳|⊢)¨2 3(+/⊥⍣¯1)¨⊢))¨) ⍳200`
Output:
```5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199```

## Arturo

`loop split.every: 10     select 1..199 'n [ and? prime? sum digits.base: 2 n                            prime? sum digits.base: 3 n ] 'a ->         print map a => [pad to :string & 4]`
Output:
```   5    6    7   10   11   12   13   17   18   19
21   25   28   31   33   35   36   37   41   47
49   55   59   61   65   67   69   73   79   82
84   87   91   93   97  103  107  109  115  117
121  127  129  131  133  137  143  145  151  155
157  162  167  171  173  179  181  185  191  193
199```

## AWK

` # syntax: GAWK -f NUMBERS_WHICH_BINARY_AND_TERNARY_DIGIT_SUM_ARE_PRIME.AWK# converted from CBEGIN {    start = 0    stop = 199    for (i=start; i<=stop; i++) {      if (is_prime(sum_digits(i,2)) && is_prime(sum_digits(i,3))) {        printf("%4d%1s",i,++count%10?"":"\n")      }    }    printf("\nBinary and ternary digit sums are both prime %d-%d: %d\n",start,stop,count)    exit(0)}function sum_digits(n,base,  sum) {    do {      sum += n % base    } while (n = int(n/base))    return(sum)}function is_prime(x,  i) {    if (x <= 1) {      return(0)    }    for (i=2; i<=int(sqrt(x)); i++) {      if (x % i == 0) {        return(0)      }    }    return(1)} `
Output:
```   5    6    7   10   11   12   13   17   18   19
21   25   28   31   33   35   36   37   41   47
49   55   59   61   65   67   69   73   79   82
84   87   91   93   97  103  107  109  115  117
121  127  129  131  133  137  143  145  151  155
157  162  167  171  173  179  181  185  191  193
199
Binary and ternary digit sums are both prime 0-199: 61
```

## BASIC

None of the digit sums are higher than 9, so the easiest thing to do is to hardcode which ones are prime.

`10 DEFINT I,J,K,P20 DIM P(9): DATA 0,1,1,0,1,0,1,0,030 FOR I=1 TO 9: READ P(I): NEXT40 FOR I=0 TO 19950 J=0: K=I60 IF K>0 THEN J=J+K MOD 2: K=K\2: GOTO 60 ELSE IF P(J)=0 THEN 9070 J=0: K=I80 IF K>0 THEN J=J+K MOD 3: K=K\3: GOTO 80 ELSE IF P(J) THEN PRINT I,90 NEXT I`
Output:
``` 5             6             7             10            11
12            13            17            18            19
21            25            28            31            33
35            36            37            41            47
49            55            59            61            65
67            69            73            79            82
84            87            91            93            97
103           107           109           115           117
121           127           129           131           133
137           143           145           151           155
157           162           167           171           173
179           181           185           191           193
199```

## BCPL

`get "libhdr" let digitsum(n, base) =     n=0 -> 0, n rem base + digitsum(n/base, base) let isprime(n) = valof\$(  if n<2 then resultis false    for i=2 to n-1 do        if n rem i = 0 then resultis false    resultis true\$) let accept(n) =     isprime(digitsum(n,2)) & isprime(digitsum(n,3)) let start() be\$(  let c = 0    for i=0 to 199 do        if accept(i) do        \$(  writef("%I4",i)            c := c + 1            if c rem 10 = 0 then wrch('*N')        \$)    wrch('*N')\$)`
Output:
```   5   6   7  10  11  12  13  17  18  19
21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82
84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199```

## C

`#include <stdio.h>#include <stdint.h> /* good enough for small numbers */uint8_t prime(uint8_t n) {    uint8_t f;    if (n < 2) return 0;    for (f = 2; f < n; f++) {        if (n % f == 0) return 0;    }    return 1;} /* digit sum in given base */uint8_t digit_sum(uint8_t n, uint8_t base) {    uint8_t s = 0;    do {s += n % base;} while (n /= base);    return s;} int main() {    uint8_t n, s = 0;    for (n = 0; n < 200; n++) {        if (prime(digit_sum(n,2)) && prime(digit_sum(n,3))) {            printf("%4d",n);            if (++s>=10) {                printf("\n");                s=0;            }        }    }    printf("\n");    return 0;}`
Output:
```   5   6   7  10  11  12  13  17  18  19
21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82
84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199```

## CLU

`prime = proc (n: int) returns (bool)    if n<2 then return(false) end    for i: int in int\$from_to(2, n-1) do        if n//i=0 then return(false) end    end    return(true)end prime digit_sum = proc (n, base: int) returns (int)    sum: int := 0    while n>0 do        sum := sum + n//base        n := n/base    end    return(sum)end digit_sum start_up = proc ()    po: stream := stream\$primary_output()    n: int := 0    for i: int in int\$from_to(2, 199) do        s2: int := digit_sum(i,2)        s3: int := digit_sum(i,3)        if prime(s2) cand prime(s3) then            stream\$putright(po, int\$unparse(i), 4)            n := n + 1            if n // 20 = 0 then stream\$putl(po, "") end        end    endend start_up`
Output:
```   5   6   7  10  11  12  13  17  18  19  21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82  84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193
199```

## Cowgol

`include "cowgol.coh"; sub prime(n: uint8): (p: uint8) is      p := 0;    if n >= 2 then        var f: uint8 := 2;        while f < n loop            if n % f == 0 then                return;            end if;            f := f + 1;        end loop;        p := 1;    end if;end sub; sub digit_sum(n: uint8, base: uint8): (sum: uint8) is    sum := 0;    while n > 0 loop        sum := sum + n % base;        n := n / base;    end loop;end sub; var n: uint8 := 0;while n < 200 loop;    if prime(digit_sum(n,2)) != 0 and prime(digit_sum(n,3)) != 0 then        print_i8(n);        print_nl();    end if;    n := n + 1;end loop;`
Output:
```5
6
7
10
11
12
13
17
18
19
21
25
28
31
33
35
36
37
41
47
49
55
59
61
65
67
69
73
79
82
84
87
91
93
97
103
107
109
115
117
121
127
129
131
133
137
143
145
151
155
157
162
167
171
173
179
181
185
191
193
199```

## F#

This task uses Extensible Prime Generator (F#)

` // binary and ternary digit sums are prime: Nigel Galloway. April 16th., 2021let fN2,fN3=let rec fG n g=function l when l<n->l+g |l->fG n (g+l%n)(l/n) in (fG 2 0, fG 3 0){0..200}|>Seq.filter(fun n->isPrime(fN2 n) && isPrime(fN3 n))|>Seq.iter(printf "%d "); printfn "" `
Output:
```5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117 121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199
Real: 00:00:00.005
```

## Factor

Works with: Factor version 0.99 2021-02-05
`USING: combinators combinators.short-circuit formatting io listslists.lazy math math.parser math.primes sequences ; : dsum ( n base -- sum ) >base [ digit> ] map-sum ;: dprime? ( n base -- ? ) dsum prime? ;: 23prime? ( n -- ? ) { [ 2 dprime? ] [ 3 dprime? ] } 1&& ;: l23primes ( -- list ) 1 lfrom [ 23prime? ] lfilter ; : 23prime. ( n -- )    {        [ ]        [ >bin ]        [ 2 dsum ]        [ 3 >base ]        [ 3 dsum ]    } cleave    "%-8d %-9s %-6d %-7s %d\n" printf ; "Base 10  Base 2    (sum)  Base 3  (sum)" printl23primes [ 200 < ] lwhile [ 23prime. ] leach`
Output:
```Base 10  Base 2    (sum)  Base 3  (sum)
5        101       2      12      3
6        110       2      20      2
7        111       3      21      3
10       1010      2      101     2
11       1011      3      102     3
12       1100      2      110     2
13       1101      3      111     3
17       10001     2      122     5
18       10010     2      200     2
19       10011     3      201     3
21       10101     3      210     3
25       11001     3      221     5
28       11100     3      1001    2
31       11111     5      1011    3
33       100001    2      1020    3
35       100011    3      1022    5
36       100100    2      1100    2
37       100101    3      1101    3
41       101001    3      1112    5
47       101111    5      1202    5
49       110001    3      1211    5
55       110111    5      2001    3
59       111011    5      2012    5
61       111101    5      2021    5
65       1000001   2      2102    5
67       1000011   3      2111    5
69       1000101   3      2120    5
73       1001001   3      2201    5
79       1001111   5      2221    7
82       1010010   3      10001   2
84       1010100   3      10010   2
87       1010111   5      10020   3
91       1011011   5      10101   3
93       1011101   5      10110   3
97       1100001   3      10121   5
103      1100111   5      10211   5
107      1101011   5      10222   7
109      1101101   5      11001   3
115      1110011   5      11021   5
117      1110101   5      11100   3
121      1111001   5      11111   5
127      1111111   7      11201   5
129      10000001  2      11210   5
131      10000011  3      11212   7
133      10000101  3      11221   7
137      10001001  3      12002   5
143      10001111  5      12022   7
145      10010001  3      12101   5
151      10010111  5      12121   7
155      10011011  5      12202   7
157      10011101  5      12211   7
162      10100010  3      20000   2
167      10100111  5      20012   5
171      10101011  5      20100   3
173      10101101  5      20102   5
179      10110011  5      20122   7
181      10110101  5      20201   5
185      10111001  5      20212   7
191      10111111  7      21002   5
193      11000001  3      21011   5
199      11000111  5      21101   5
```

## Fermat

`Function Digsum(n, b) =    digsum := 0;    while n>0 do        digsum := digsum + n|b;        n:=n\b;    od;    digsum.; for p=1 to 200 do    if Isprime(Digsum(p,3)) and Isprime(Digsum(p,2)) then       !(p,'  ');       nadd := nadd+1;    fi od;`
Output:
`5   6   7   10   11   12   13   17   18   19   21   25   28   31   33   35   36   37   41   47   49   55   59   61   65   67   69   73   79   82   84   87   91   93   97   103   107   109   115   117   121   127   129   131   133   137   143   145   151   155   157   162   167   171   173   179   181   185   191   193   199`

## FOCAL

`01.10 S P(2)=1;S P(3)=1;S P(5)=1;S P(7)=101.20 S V=1001.30 F N=0,199;D 301.40 T !01.50 Q 02.10 S A=002.20 S M=N02.30 S T=FITR(M/B)02.40 S A=A+M-T*B02.50 S M=T02.60 I (-M)2.3 03.10 S B=2;D 2;S X=A03.20 S B=3;D 2;S Y=A03.30 I (-P(X)*P(Y))3.4;R03.40 T %4,N03.50 S V=V-103.60 I (-V)3.7;T !;S V=1003.70 R`
Output:
```=    5=    6=    7=   10=   11=   12=   13=   17=   18=   19
=   21=   25=   28=   31=   33=   35=   36=   37=   41=   47
=   49=   55=   59=   61=   65=   67=   69=   73=   79=   82
=   84=   87=   91=   93=   97=  103=  107=  109=  115=  117
=  121=  127=  129=  131=  133=  137=  143=  145=  151=  155
=  157=  162=  167=  171=  173=  179=  181=  185=  191=  193
=  199```

## Fōrmulæ

Fōrmulæ programs are not textual, visualization/edition of programs is done showing/manipulating structures but not text. Moreover, there can be multiple visual representations of the same program. Even though it is possible to have textual representation —i.e. XML, JSON— they are intended for storage and transfer purposes more than visualization and edition.

Programs in Fōrmulæ are created/edited online in its website, However they run on execution servers. By default remote servers are used, but they are limited in memory and processing power, since they are intended for demonstration and casual use. A local server can be downloaded and installed, it has no limitations (it runs in your own computer). Because of that, example programs can be fully visualized and edited, but some of them will not run if they require a moderate or heavy computation/memory resources, and no local server is being used.

## FreeBASIC

`#include"isprime.bas" function digsum( byval n as uinteger, b as const uinteger ) as uinteger    'finds the digit sum of n in base b    dim as uinteger sum = 0    while n        sum+=n mod b        n\=b    wend    return sumend function for n as uinteger = 1 to 200    if isprime(digsum(n,2)) and isprime(digsum(n,3)) then print n;"  ";next n : print`
Output:
`5  6  7  10  11  12  13  17  18  19  21  25  28  31  33  35  36  37  41  47  49  55  59  61  65  67  69  73  79  82  84  87  91  93  97  103  107  109  115  117  121  127  129  131  133  137  143  145  151  155  157  162  167  171  173  179  181  185  191  193  199`

## Go

Translation of: Wren
Library: Go-rcu
`package main import (    "fmt"    "rcu") func main() {    var numbers []int    for i := 2; i < 200; i++ {        bds := rcu.DigitSum(i, 2)        if rcu.IsPrime(bds) {            tds := rcu.DigitSum(i, 3)            if rcu.IsPrime(tds) {                numbers = append(numbers, i)            }        }    }    fmt.Println("Numbers < 200 whose binary and ternary digit sums are prime:")    for i, n := range numbers {        fmt.Printf("%4d", n)        if (i+1)%14 == 0 {            fmt.Println()        }    }    fmt.Printf("\n\n%d such numbers found\n", len(numbers))}`
Output:
```Numbers < 200 whose binary and ternary digit sums are prime:
5   6   7  10  11  12  13  17  18  19  21  25  28  31
33  35  36  37  41  47  49  55  59  61  65  67  69  73
79  82  84  87  91  93  97 103 107 109 115 117 121 127
129 131 133 137 143 145 151 155 157 162 167 171 173 179
181 185 191 193 199

61 such numbers found
```

## GW-BASIC

`10 FOR N = 2 TO 20020 B = 230 GOSUB 220 : GOSUB 11040 IF Q = 0 THEN GOTO 8050 B = 360 GOSUB 220: GOSUB 11070 IF Q = 1 THEN PRINT N;"  ";80 NEXT N90 PRINT100 END110 REM tests if a number is prime120 Q=0130 IF P=3 THEN Q=1:RETURN140 IF P=1 THEN Q=0:RETURN150 IF P=2 THEN Q=1:RETURN160 I=1170 I=I+1180 IF INT(P/I)*I = P THEN RETURN190 IF I*I<=P THEN GOTO 170200 Q = 1210 RETURN220 REM finds the digit sum of N in base B, returns P230 P = 0240 XN = N250 IF XN = 0 THEN RETURN260 P = P + XN MOD B270 XN = XN\B280 GOTO 250`
Output:
` 5    6    7    10    11    12    13    17    18    19    21    25    28    31    33    35    36    37    41    47    49    55    59    61    65    67    69    73    79    82    84    87    91    93    97    103    107    109    115    117    121    127    129    131    133    137    143    145    151    155    157    162    167    171    173    179    181    185    191    193    199`

`import Data.Bifunctor (first)import Data.List.Split (chunksOf)import Data.Numbers.Primes (isPrime) --------- BINARY AND TERNARY DIGIT SUMS BOTH PRIME ------- digitSumsPrime :: Int -> [Int] -> BooldigitSumsPrime n = all (isPrime . digitSum n) digitSum :: Int -> Int -> IntdigitSum n base = go n  where    go 0 = 0    go n = uncurry (+) (first go \$ quotRem n base) --------------------------- TEST -------------------------main :: IO ()main =  putStrLn \$    show (length xs)      <> " matches in [1..199]\n\n"      <> table xs  where    xs =      [1 .. 199]        >>= \x -> [show x | digitSumsPrime x [2, 3]] ------------------------- DISPLAY ----------------------- table :: [String] -> Stringtable xs =  let w = length (last xs)   in unlines \$        unwords          <\$> chunksOf            10            (justifyRight w ' ' <\$> xs) justifyRight :: Int -> Char -> String -> StringjustifyRight n c = (drop . length) <*> (replicate n c <>)`
```61 matches in [1..199]

5   6   7  10  11  12  13  17  18  19
21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82
84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199```

## J

`((1*./@p:2 3+/@(#.^:_1)"0])"0#]) i.200`
Output:
`5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117 121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199`

## Julia

`using Primes btsumsareprime(n) = isprime(sum(digits(n, base=2))) && isprime(sum(digits(n, base=3))) foreach(p -> print(rpad(p[2], 4), p[1] % 20 == 0 ? "\n" : ""), enumerate(filter(btsumsareprime, 1:199))) `
Output:
```5   6   7   10  11  12  13  17  18  19  21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82  84  87  91  93  97  103 107 109 115 117
121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193
199
```

`            NORMAL MODE IS INTEGER             INTERNAL FUNCTION(P)            ENTRY TO PRIME.            WHENEVER P.L.2, FUNCTION RETURN 0B            THROUGH TEST, FOR DV=2, 1, DV.G.SQRT.(P)TEST        WHENEVER P-P/DV*DV.E.0, FUNCTION RETURN 0B            FUNCTION RETURN 1B            END OF FUNCTION             INTERNAL FUNCTION(N,BASE)            ENTRY TO DGTSUM.            SUM = 0            DN = NDIGIT       NX = DN/BASE            SUM = SUM + DN-NX*BASE            DN = NX            WHENEVER DN.G.0, TRANSFER TO DIGIT            FUNCTION RETURN SUM            END OF FUNCTION             THROUGH NBR, FOR I=0, 1, I.GE.200            WHENEVER PRIME.(DGTSUM.(I,2)) .AND. PRIME.(DGTSUM.(I,3))                PRINT FORMAT FMT, I            END OF CONDITIONALNBR         CONTINUE             VECTOR VALUES FMT = \$I3*\$            END OF PROGRAM `
Output:
```  5
6
7
10
11
12
13
17
18
19
21
25
28
31
33
35
36
37
41
47
49
55
59
61
65
67
69
73
79
82
84
87
91
93
97
103
107
109
115
117
121
127
129
131
133
137
143
145
151
155
157
162
167
171
173
179
181
185
191
193
199```

## Mathematica / Wolfram Language

`Partition[  Select[   [email protected]    200, (PrimeQ[[email protected][#, 2]] &&       PrimeQ[[email protected][#, 3]]) &], UpTo[8]] // TableForm`
Output:
```
5	6	7	10	11	12	13	17
18	19	21	25	28	31	33	35
36	37	41	47	49	55	59	61
65	67	69	73	79	82	84	87
91	93	97	103	107	109	115	117
121	127	129	131	133	137	143	145
151	155	157	162	167	171	173	179
181	185	191	193	199

```

## Nim

`import strutils func isPrime(n: Positive): bool =  if n == 1: return false  if n mod 2 == 0: return n == 2  if n mod 3 == 0: return n == 3  var d = 5  while d * d <= n:    if n mod d == 0: return false    inc d, 2    if n mod d == 0: return false    inc d, 4  return true func digitSum(n, b: Natural): int =  var n = n  while n != 0:    result += n mod b    n = n div b var count = 0for n in 2..<200:  if digitSum(n, 2).isPrime and digitSum(n, 3).isPrime:    inc count    stdout.write (\$n).align(3), if count mod 16 == 0: '\n' else: ' 'echo()echo "Found ", count, " numbers."`
Output:
```  5   6   7  10  11  12  13  17  18  19  21  25  28  31  33  35
36  37  41  47  49  55  59  61  65  67  69  73  79  82  84  87
91  93  97 103 107 109 115 117 121 127 129 131 133 137 143 145
151 155 157 162 167 171 173 179 181 185 191 193 199
Found 61 numbers.```

## Perl

Library: ntheory
`use strict;use warnings;use feature 'say';use List::Util 'sum';use ntheory <is_prime todigitstring>; sub test_digits { 0 != is_prime sum split '', todigitstring(shift, shift) } my @p;test_digits(\$_,2) and test_digits(\$_,3) and push @p, \$_ for 1..199;say my \$result = @p . " matching numbers:\n" .  (sprintf "@{['%4d' x @p]}", @p) =~ s/(.{40})/\$1\n/gr;`
Output:
```61 matching numbers:
5   6   7  10  11  12  13  17  18  19
21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82
84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199```

## Phix

```function to_base(atom n, integer base)
string result = ""
while true do
result &= remainder(n,base)
n = floor(n/base)
if n=0 then exit end if
end while
return result
end function

function prime23(integer n)
return is_prime(sum(to_base(n,2)))
and is_prime(sum(to_base(n,3)))
end function

sequence res = filter(tagset(199),prime23)
printf(1,"%d numbers found: %V\n",{length(res),shorten(res,"",5)})
```
Output:
```61 numbers found: {5,6,7,10,11,"...",181,185,191,193,199}
```

## PL/M

`100H:/* CP/M CALLS */BDOS: PROCEDURE (FN, ARG); DECLARE FN BYTE, ARG ADDRESS; GO TO 5; END BDOS;EXIT: PROCEDURE; CALL BDOS(0,0); END EXIT;PRINT: PROCEDURE (S); DECLARE S ADDRESS; CALL BDOS(9,S); END PRINT; /* PRINT NUMBER */PRINT\$NUMBER: PROCEDURE (N);    DECLARE S (8) BYTE INITIAL ('.....',13,10,'\$');    DECLARE (N, P) ADDRESS, C BASED P BYTE;    P = .S(5);DIGIT:    P = P - 1;    C = N MOD 10 + '0';    N = N / 10;    IF N > 0 THEN GO TO DIGIT;    CALL PRINT(P);END PRINT\$NUMBER; /* SIMPLE PRIMALITY TEST */PRIME: PROCEDURE (N) BYTE;    DECLARE (N, I) BYTE;    IF N < 2 THEN RETURN 0;    DO I=2 TO N-1;        IF N MOD I = 0 THEN RETURN 0;    END;    RETURN 1;END PRIME; /* SUM OF DIGITS */DIGIT\$SUM: PROCEDURE (N, BASE) BYTE;    DECLARE (N, BASE, SUM) BYTE;    SUM = 0;    DO WHILE N > 0;        SUM = SUM + N MOD BASE;        N = N / BASE;    END;    RETURN SUM;END DIGIT\$SUM; /* TEST NUMBERS 0 .. 199 */DECLARE I BYTE;DO I=0 TO 199;    IF PRIME(DIGIT\$SUM(I,2)) AND PRIME(DIGIT\$SUM(I,3)) THEN        CALL PRINT\$NUMBER(I);END; CALL EXIT;EOF`
Output:
```5
6
7
10
11
12
13
17
18
19
21
25
28
31
33
35
36
37
41
47
49
55
59
61
65
67
69
73
79
82
84
87
91
93
97
103
107
109
115
117
121
127
129
131
133
137
143
145
151
155
157
162
167
171
173
179
181
185
191
193
199```

## Plain English

`To run:Start up.Loop.If a counter is past 200, break.If the counter has prime digit sums in binary and ternary, write the counter then " " on the console without advancing.Repeat.Wait for the escape key.Shut down. A sum is a number. A base is a number. To find a digit sum of a number given a base:Privatize the number.Loop.Divide the number by the base giving a quotient and a remainder.Add the remainder to the digit sum.Put the quotient into the number.If the number is 0, exit.Repeat. To decide if a number has prime digit sums in binary and ternary:Find a digit sum of the number given 2.If the digit sum is not prime, say no.Find another digit sum of the number given 3.If the other digit sum is not prime, say no.Say yes.`
Output:
```5 6 7 10 11 12 13 17 18 19 21 25 28 31 33 35 36 37 41 47 49 55 59 61 65 67 69 73 79 82 84 87 91 93 97 103 107 109 115 117 121 127 129 131 133 137 143 145 151 155 157 162 167 171 173 179 181 185 191 193 199
```

## Polyglot:PL/I and PL/M

Works with: 8080 PL/M Compiler
... under CP/M (or an emulator)

Should work with many PL/I implementations.
The PL/I include file "pg.inc" can be found on the Polyglot:PL/I and PL/M page. Note the use of text in column 81 onwards to hide the PL/I specifics from the PL/M compiler.

`/* FIND NUMBERS WHOSE DIGIT SUM SQUARED AND CUBED IS PRIME */prime_digit_sums_100H: procedure options                                        (main); /* PL/I DEFINITIONS                                                             */%include 'pg.inc';/* PL/M DEFINITIONS: CP/M BDOS SYSTEM CALL AND CONSOLE I/O ROUTINES, ETC. */    /*   DECLARE BINARY LITERALLY 'ADDRESS', CHARACTER LITERALLY 'BYTE';   DECLARE FIXED  LITERALLY ' ',       BIT       LITERALLY 'BYTE';   DECLARE STATIC LITERALLY ' ',       RETURNS   LITERALLY ' ';   DECLARE FALSE  LITERALLY '0',       TRUE      LITERALLY '1';   DECLARE HBOUND LITERALLY 'LAST',    SADDR     LITERALLY '.';   BDOSF: PROCEDURE( FN, ARG )BYTE;                               DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END;    BDOS: PROCEDURE( FN, ARG ); DECLARE FN BYTE, ARG ADDRESS; GOTO 5;   END;   PRCHAR:   PROCEDURE( C );   DECLARE C BYTE;      CALL BDOS( 2, C ); END;   PRSTRING: PROCEDURE( S );   DECLARE S ADDRESS;   CALL BDOS( 9, S ); END;   PRNL:     PROCEDURE;        CALL PRCHAR( 0DH ); CALL PRCHAR( 0AH ); END;   PRNUMBER: PROCEDURE( N );      DECLARE N ADDRESS;      DECLARE V ADDRESS, N\$STR( 6 ) BYTE, W BYTE;      N\$STR( W := LAST( N\$STR ) ) = '\$';      N\$STR( W := W - 1 ) = '0' + ( ( V := N ) MOD 10 );      DO WHILE( ( V := V / 10 ) > 0 );         N\$STR( W := W - 1 ) = '0' + ( V MOD 10 );      END;       CALL BDOS( 9, .N\$STR( W ) );   END PRNUMBER;   MODF: PROCEDURE( A, B )ADDRESS;      DECLARE ( A, B )ADDRESS;      RETURN( A MOD B );   END MODF;/* END LANGUAGE DEFINITIONS */    /* TASK */    DIGITSUM: PROCEDURE( N, BASE )RETURNS /* RETURNS THE DIGIT SUM OF N    */    (                           FIXED BINARY          /* IN THE SPECIFIED BASE */    )                           ;      DECLARE ( N, BASE )  FIXED BINARY;      DECLARE ( SUM, V )   FIXED BINARY;      SUM = MODF( N, BASE );      V   = N / BASE;      DO WHILE( V > 0 );         SUM = SUM + MODF( V, BASE );         V   = V / BASE;      END;      RETURN( SUM );   END DIGITSUM ;    ISPRIME: PROCEDURE( N )RETURNS /* RETURNS TRUE  IF N IS PRIME, */            (                          BIT             /* FALSE OTHERWISE      */            )                          ;      DECLARE N           FIXED BINARY;      DECLARE I           FIXED BINARY;      DECLARE RESULT      BIT;      IF      N < 2            THEN RESULT = FALSE;      ELSE IF N = 2            THEN RESULT = TRUE;      ELSE IF MODF( N, 2 ) = 0 THEN RESULT = FALSE;      ELSE DO;         RESULT = TRUE;         I      = 3;         DO WHILE( RESULT &                                                     /*                          AND /* */ ( I * I ) <= N );            RESULT = MODF( N, I ) > 0;            I      = I + 2;         END;      END;      RETURN( RESULT );   END ISPRIME ;    DECLARE ( I, PCOUNT ) FIXED BINARY;    PCOUNT = 0;   DO I = 1 TO 199;      IF ISPRIME( DIGITSUM( I, 2 ) ) THEN DO;         IF ISPRIME( DIGITSUM( I, 3 ) ) THEN DO;            CALL PRCHAR( ' ' );            IF I <  10 THEN CALL PRCHAR( ' ' );            IF I < 100 THEN CALL PRCHAR( ' ' );            CALL PRNUMBER( I );            PCOUNT = PCOUNT + 1;            IF PCOUNT > 9 THEN DO;               PCOUNT = 0;               CALL PRNL;            END;         END;      END;   END; EOF: end prime_digit_sums_100H;`
Output:
```   5   6   7  10  11  12  13  17  18  19
21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82
84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199
```

## Python

`'''Binary and Ternary digit sums both prime'''  # digitSumsPrime :: Int -> [Int] -> Booldef digitSumsPrime(n):    '''True if the digits of n in each       given base have prime sums.    '''    def go(bases):        return all(            isPrime(digitSum(b)(n))            for b in bases        )    return go  # digitSum :: Int -> Int -> Intdef digitSum(base):    '''The sum of the digits of n in a given base.    '''    def go(n):        q, r = divmod(n, base)        return go(q) + r if n else 0    return go  # ------------------------- TEST -------------------------# main :: IO ()def main():    '''Matching integers in the range [1..199]'''    xs = [        str(n) for n in range(1, 200)        if digitSumsPrime(n)([2, 3])    ]    print(f'{len(xs)} matches in [1..199]\n')    print(table(10)(xs))  # ----------------------- GENERIC ------------------------ # chunksOf :: Int -> [a] -> [[a]]def chunksOf(n):    '''A series of lists of length n, subdividing the       contents of xs. Where the length of xs is not evenly       divible, the final list will be shorter than n.    '''    def go(xs):        return (            xs[i:n + i] for i in range(0, len(xs), n)        ) if 0 < n else None    return go  # isPrime :: Int -> Booldef isPrime(n):    '''True if n is prime.'''    if n in (2, 3):        return True    if 2 > n or 0 == n % 2:        return False    if 9 > n:        return True    if 0 == n % 3:        return False     def p(x):        return 0 == n % x or 0 == n % (2 + x)     return not any(map(p, range(5, 1 + int(n ** 0.5), 6)))  # table :: Int -> [String] -> Stringdef table(n):    '''A list of strings formatted as       rows of n (right justified) columns.    '''    def go(xs):        w = len(xs[-1])        return '\n'.join(            ' '.join(row) for row in chunksOf(n)([                s.rjust(w, ' ') for s in xs            ])        )    return go  # MAIN ---if __name__ == '__main__':    main() `
```61 matches in [1..199]

5   6   7  10  11  12  13  17  18  19
21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82
84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199```

## Raku

`say (^200).grep(-> \$n {all (2,3).map({\$n.base(\$_).comb.sum.is-prime}) }).batch(10)».fmt('%3d').join: "\n";`
Output:
```  5   6   7  10  11  12  13  17  18  19
21  25  28  31  33  35  36  37  41  47
49  55  59  61  65  67  69  73  79  82
84  87  91  93  97 103 107 109 115 117
121 127 129 131 133 137 143 145 151 155
157 162 167 171 173 179 181 185 191 193
199```

## REXX

`/*REXX program finds and displays integers whose base 2 and base 3 digit sums are prime.*/parse arg n cols .                               /*obtain optional argument from the CL.*/if    n=='' |    n==","  then    n=  200         /*Not specified?  Then use the default.*/if cols=='' | cols==","  then cols=   10         /* "      "         "   "   "     "    */call genP                                        /*build array of semaphores for primes.*/w= 10                                            /*width of a number in any column.     */title= ' positive integers whose binary and ternary digit sums are prime, N  < ' commas(n)if cols>0 then say ' index │'center(title, 1 + cols*(w+1)     )      /*maybe show title.*/if cols>0 then say '───────┼'center(""   , 1 + cols*(w+1), '─')      /*maybe show  sep. */found= 0;                   idx= 1               /*initialize # of finds and the index. */\$=                                               /*a list of  numbers  found  (so far). */   do j=1  for n-1                               /*find #s whose B2 & B3 sums are prime.*/   b2= sumDig( tBase(j, 2) );   if \!.b2  then iterate   /*convert to base2, sum digits.*/      /* ◄■■■■■■■■ a filter. */   b3= sumDig( tBase(j, 3) );   if \!.b3  then iterate   /*   "     " base3   "    "    */      /* ◄■■■■■■■■ a filter. */   found= found + 1                              /*bump the number of  found integers.  */   if cols<1            then iterate             /*Only showing the summary?  Then skip.*/   \$= \$  right( commas(j), w)                    /*add a commatized integer ───► \$ list.*/   if found//cols\==0   then iterate             /*have we populated a line of output?  */   say center(idx, 7)'│'  substr(\$, 2);   \$=     /*display what we have so far  (cols). */   idx= idx + cols                               /*bump the  index  count for the output*/   end   /*j*/ if \$\==''  then say center(idx, 7)"│"  substr(\$, 2)  /*possible display residual output.*/if cols>0  then say '───────┴'center(""   , 1 + cols*(w+1), '─')     /*show foot sep ?  */saysay 'Found '       commas(found)      title                          /*show summary.    */exit 0                                           /*stick a fork in it,  we're all done. *//*──────────────────────────────────────────────────────────────────────────────────────*/commas: parse arg ?;  do jc=length(?)-3  to 1  by -3; ?=insert(',', ?, jc); end;  return ?sumDig: procedure; parse arg x 1 s 2;do j=2 for length(x)-1;s=s+substr(x,j,1);end;return s/*──────────────────────────────────────────────────────────────────────────────────────*/genP:   @= 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71 73 79 83 89 97 101 103        !.=0;        do p=1  for words(@);   _= word(@, p);   !._= 1;   end;      return/*──────────────────────────────────────────────────────────────────────────────────────*/tBase:  procedure; parse arg x,toBase;      y=;       \$= 0123456789                     do  while x>=toBase;   y= substr(\$, x//toBase+1, 1)y;   x= x % toBase                     end   /*while*/        return substr(\$, x+1, 1)y`
output   when using the default inputs:
``` index │                   positive integers whose binary and ternary digit sums are prime, N  <  200
───────┼───────────────────────────────────────────────────────────────────────────────────────────────────────────────
1   │          5          6          7         10         11         12         13         17         18         19
11   │         21         25         28         31         33         35         36         37         41         47
21   │         49         55         59         61         65         67         69         73         79         82
31   │         84         87         91         93         97        103        107        109        115        117
41   │        121        127        129        131        133        137        143        145        151        155
51   │        157        162        167        171        173        179        181        185        191        193
61   │        199
───────┴───────────────────────────────────────────────────────────────────────────────────────────────────────────────

Found  61  positive integers whose binary and ternary digit sums are prime, N  <  200
```

## Ring

` load "stdlib.ring" see "working..." + nlsee "Numbers < 200 whose binary and ternary digit sums are prime:" + nl decList = [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15]baseList = ["0","1","2","3","4","5","6","7","8","9","A","B","C","D","E","F"] num = 0limit = 200 for n = 1 to limit    strBin = decimaltobase(n,2)    strTer = decimaltobase(n,3)    sumBin = 0    for m = 1 to len(strBin)        sumBin = sumBin + number(strBin[m])    next    sumTer = 0    for m = 1 to len(strTer)        sumTer = sumTer + number(strTer[m])    next    if isprime(sumBin) and isprime(sumTer)       num = num + 1       see "" + num + ". {" + n + "," + strBin + ":" + sumBin + "," + strTer + ":" + sumTer + "}" + nl    oknext see "Found " + num + " such numbers" + nlsee "done..." + nl func decimaltobase(nr,base)     binList = []      binary = 0     remainder = 1     while(nr != 0)          remainder = nr % base          ind = find(decList,remainder)          rem = baseList[ind]          add(binList,rem)          nr = floor(nr/base)      end     binlist = reverse(binList)     binList = list2str(binList)     binList = substr(binList,nl,"")       return binList `
Output:
```working...
Numbers < 200 whose binary and ternary digit sums are prime:
1. {5,101:2,12:3}
2. {6,110:2,20:2}
3. {7,111:3,21:3}
4. {10,1010:2,101:2}
5. {11,1011:3,102:3}
6. {12,1100:2,110:2}
7. {13,1101:3,111:3}
8. {17,10001:2,122:5}
9. {18,10010:2,200:2}
10. {19,10011:3,201:3}
11. {21,10101:3,210:3}
12. {25,11001:3,221:5}
13. {28,11100:3,1001:2}
14. {31,11111:5,1011:3}
15. {33,100001:2,1020:3}
16. {35,100011:3,1022:5}
17. {36,100100:2,1100:2}
18. {37,100101:3,1101:3}
19. {41,101001:3,1112:5}
20. {47,101111:5,1202:5}
21. {49,110001:3,1211:5}
22. {55,110111:5,2001:3}
23. {59,111011:5,2012:5}
24. {61,111101:5,2021:5}
25. {65,1000001:2,2102:5}
26. {67,1000011:3,2111:5}
27. {69,1000101:3,2120:5}
28. {73,1001001:3,2201:5}
29. {79,1001111:5,2221:7}
30. {82,1010010:3,10001:2}
31. {84,1010100:3,10010:2}
32. {87,1010111:5,10020:3}
33. {91,1011011:5,10101:3}
34. {93,1011101:5,10110:3}
35. {97,1100001:3,10121:5}
36. {103,1100111:5,10211:5}
37. {107,1101011:5,10222:7}
38. {109,1101101:5,11001:3}
39. {115,1110011:5,11021:5}
40. {117,1110101:5,11100:3}
41. {121,1111001:5,11111:5}
42. {127,1111111:7,11201:5}
43. {129,10000001:2,11210:5}
44. {131,10000011:3,11212:7}
45. {133,10000101:3,11221:7}
46. {137,10001001:3,12002:5}
47. {143,10001111:5,12022:7}
48. {145,10010001:3,12101:5}
49. {151,10010111:5,12121:7}
50. {155,10011011:5,12202:7}
51. {157,10011101:5,12211:7}
52. {162,10100010:3,20000:2}
53. {167,10100111:5,20012:5}
54. {171,10101011:5,20100:3}
55. {173,10101101:5,20102:5}
56. {179,10110011:5,20122:7}
57. {181,10110101:5,20201:5}
58. {185,10111001:5,20212:7}
59. {191,10111111:7,21002:5}
60. {193,11000001:3,21011:5}
61. {199,11000111:5,21101:5}
Found 61 such numbers
done...
```

## Sidef

`1..^200 -> grep {|n| [2,3].all { n.sumdigits(_).is_prime } }`
Output:
```[5, 6, 7, 10, 11, 12, 13, 17, 18, 19, 21, 25, 28, 31, 33, 35, 36, 37, 41, 47, 49, 55, 59, 61, 65, 67, 69, 73, 79, 82, 84, 87, 91, 93, 97, 103, 107, 109, 115, 117, 121, 127, 129, 131, 133, 137, 143, 145, 151, 155, 157, 162, 167, 171, 173, 179, 181, 185, 191, 193, 199]
```

## Tiny BASIC

This isn't a very interesting problem. The most illustrative part of this solution is that it only uses four variables; several have multiple purposes. Efficiency is important when the language has only 26 variable names in total.

`    REM B      digital base input to sumdig, also output of primality routine    REM N      input to sumdig routine    REM P      input to primality routine, output of sumdig routine    REM T      temp variable in sumdig routine, loop var in prime routine     LET N = 1 20 LET N = N + 1    LET B = 2    GOSUB 200    GOSUB 100    IF B = 0 THEN GOTO 30    LET B = 3    GOSUB 200    GOSUB 100    IF B = 1 THEN PRINT N  30 IF N < 200 THEN GOTO 20    END 100 REM PRIMALITY BY TRIAL DIVISION    LET B = 0    IF P = 1 THEN RETURN    LET B = 1    IF P = 2 THEN RETURN    LET T = 2110 IF (P/T)*T = P THEN LET B = 0    IF B = 0 THEN RETURN    LET T = T + 1    IF T*T <= P THEN GOTO 110    RETURN 200 REM digital sum of N in base B    LET T = N    LET P = 0210 IF T = 0 THEN RETURN    LET P = P + T - (T/B)*B    LET T = T/B    GOTO 210 `

## Wren

Library: Wren-math
Library: Wren-fmt
Library: Wren-seq
`import "/math" for Intimport "/fmt" for Fmtimport "/seq" for Lst var numbers = []for (i in 2..199) {    var bds = Int.digitSum(i, 2)    if (Int.isPrime(bds)) {        var tds = Int.digitSum(i, 3)        if (Int.isPrime(tds)) numbers.add(i)    }}System.print("Numbers < 200 whose binary and ternary digit sums are prime:")for (chunk in Lst.chunks(numbers, 14)) Fmt.print("\$4d", chunk)System.print("\nFound %(numbers.count) such numbers.")`
Output:
```Numbers < 200 whose binary and ternary digit sums are prime:
5    6    7   10   11   12   13   17   18   19   21   25   28   31
33   35   36   37   41   47   49   55   59   61   65   67   69   73
79   82   84   87   91   93   97  103  107  109  115  117  121  127
129  131  133  137  143  145  151  155  157  162  167  171  173  179
181  185  191  193  199

Found 61 such numbers.
```

## XPL0

`func IsPrime(N);        \Return 'true' if N is a prime numberint  N, I;[if N <= 1 then return false;for I:= 2 to sqrt(N) do    if rem(N/I) = 0 then return false;return true;]; func SumDigits(N, Base); \Return sum of digits in N for Baseint     N, Base, Sum;[Sum:= 0;repeat  N:= N/Base;        Sum:= Sum + rem(0);until   N=0;return Sum;]; int Count, N;[Count:= 0;for N:= 0 to 200-1 do    if IsPrime(SumDigits(N,2)) & IsPrime(SumDigits(N,3)) then        [IntOut(0, N);        Count:= Count+1;        if rem(Count/10) = 0 then CrLf(0) else ChOut(0, 9\tab\);        ];CrLf(0);IntOut(0, Count);Text(0, " such numbers found below 200.");]`
Output:
```5       6       7       10      11      12      13      17      18      19
21      25      28      31      33      35      36      37      41      47
49      55      59      61      65      67      69      73      79      82
84      87      91      93      97      103     107     109     115     117
121     127     129     131     133     137     143     145     151     155
157     162     167     171     173     179     181     185     191     193
199
61 such numbers found below 200.
```