Long primes: Difference between revisions

83,752 bytes added ,  4 months ago
Added Algol 68
(Added Algol 68)
 
(144 intermediate revisions by 38 users not shown)
Line 1:
{{task|Prime numbersNumbers}}
 
 
A   '''long prime'''   (theas definitiondefined thathere) will  beis useda prime number whose reciprocal   (in decimal)   has
here)a   are''period primes whose reciprocalslength''   (inof decimal)one  less than the prime havenumber.
a   ''period length''   of one less than
the prime number   (also expressed in decimal).
 
 
'''Long primes'''   are also known as:
:::*   base ten cyclic numbers
:::*   full reptend primes
:::*   golden primes
:::*   long period primes
:::*   maximal period primes
:::*   proper primes
 
 
Another definition:   primes   '''p'''   such that the decimal expansion of   '''1/p'''   has period   '''p-1''',   which is the greatest period possible for any integer.
 
 
Line 35:
;Task:
:*   Show all long primes up to   '''500'''   (preferably on one line).
:*   Show the   ''number''   of long primes up to        ''' 500'''
:*   Show the   ''number''   of long primes up to     ''' 1,000'''
:*   Show the   ''number''   of long primes up to     ''' 2,000'''
:*   Show the   ''number''   of long primes up to     ''' 4,000'''
:*   Show the   ''number''   of long primes up to     ''' 8,000'''
:*   Show the   ''number''   of long primes up to   '''16,000'''
:*   Show the   ''number''   of long primes up to   '''32,000'''
:*   Show the   ''number''   of long primes up to   '''64,000'''   (optional)
:*   Show all output here.
 
 
;;;Also see:
:*   the Wikipedia webpage:   [http[wp://wikipedia.org/wiki/Full_reptend_prime|Wikipedia: full reptend prime].]
:*   the MathWorld webpage:   [http://mathworld.wolfram.com/FullReptendPrime.html MathWorld: full reptend prime].
:*   the     [[oeis:A001913|OEIS     webpage:   [http://oeis.org/A001913 A1913].]
<br><br>
 
=={{header|11l}}==
{{trans|Python}}
 
<syntaxhighlight lang="11l">F sieve(limit)
[Int] primes
V c = [0B] * (limit + 1)
V p = 3
L
V p2 = p * p
I p2 > limit
L.break
L(i) (p2 .< limit).step(2 * p)
c[i] = 1B
L
p += 2
I !c[p]
L.break
 
L(i) (3 .< limit).step(2)
I !(c[i])
primes.append(i)
R primes
 
F findPeriod(n)
V r = 1
L(i) 1 .< n
r = (10 * r) % n
V rr = r
V period = 0
L
r = (10 * r) % n
period++
I r == rr
L.break
R period
 
V primes = sieve(64000)
[Int] longPrimes
L(prime) primes
I findPeriod(prime) == prime - 1
longPrimes.append(prime)
V numbers = [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
V count = 0
V index = 0
V totals = [0] * numbers.len
L(longPrime) longPrimes
I longPrime > numbers[index]
totals[index] = count
index++
count++
totals.last = count
print(‘The long primes up to 500 are:’)
print(String(longPrimes[0 .< totals[0]]).replace(‘,’, ‘’))
print("\nThe number of long primes up to:")
L(total) totals
print(‘ #5 is #.’.format(numbers[L.index], total))</syntaxhighlight>
 
{{out}}
<pre>
The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
</pre>
 
=={{header|ALGOL 68}}==
The PERIOD operator is translated from the C sample's find_period routine.
<syntaxhighlight lang="algol68">
BEGIN # find some long primes - primes whose reciprocol have a period of p-1 #
INT max number = 64 000;
# sieve the primes to max number #
[ 1 : max number ]BOOL is prime; FOR i TO UPB is prime DO is prime[ i ] := ODD i OD;
is prime[ 1 ] := FALSE;
is prime[ 2 ] := TRUE;
FOR s FROM 3 BY 2 TO ENTIER sqrt( max number ) DO
IF is prime[ s ] THEN
FOR p FROM s * s BY s TO UPB is prime DO is prime[ p ] := FALSE OD
FI
OD;
 
OP PERIOD = ( INT n )INT: # returns the period of the reciprocal of n #
BEGIN
INT r := 1;
FOR i TO n + 1 DO
r *:= 10 MODAB n
OD;
INT rr = r;
INT period := 0;
WHILE r *:= 10 MODAB n;
period +:= 1;
r /= rr
DO SKIP OD;
period
END # PERIOD # ;
 
print( ( "Long primes upto 500:", newline, " " ) );
INT lp count := 0;
FOR p FROM 3 TO 500 DO
IF is prime[ p ] THEN
IF PERIOD p = p - 1 THEN
print( ( " ", whole( p, 0 ) ) );
lp count +:= 1
FI
FI
OD;
print( ( newline ) );
INT limit := 500;
FOR p FROM 500 WHILE limit <= 64 000 DO
IF p = limit THEN
print( ( "Long primes up to: ", whole( p, -5 ), ": ", whole( lp count, 0 ), newline ) );
limit *:= 2
FI;
IF is prime[ p ] THEN
IF PERIOD p = p - 1 THEN
lp count +:= 1
FI
FI
OD
 
END
</syntaxhighlight>
{{out}}
<pre>
Long primes upto 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Long primes up to: 500: 35
Long primes up to: 1000: 60
Long primes up to: 2000: 116
Long primes up to: 4000: 218
Long primes up to: 8000: 390
Long primes up to: 16000: 716
Long primes up to: 32000: 1300
Long primes up to: 64000: 2430
</pre>
 
=={{header|AppleScript}}==
The isLongPrime(n) handler here is a translation of the faster [https://www.rosettacode.org/wiki/Long_primes#Phix Phix] one.
 
<syntaxhighlight lang="applescript">on sieveOfEratosthenes(limit)
script o
property numberList : {missing value}
end script
repeat with n from 2 to limit
set end of o's numberList to n
end repeat
repeat with n from 2 to (limit ^ 0.5 div 1)
if (item n of o's numberList is n) then
repeat with multiple from (n * n) to limit by n
set item multiple of o's numberList to missing value
end repeat
end if
end repeat
return o's numberList's numbers
end sieveOfEratosthenes
 
on factors(n)
set output to {}
if (n < 0) then set n to -n
set sqrt to n ^ 0.5
set limit to sqrt div 1
if (limit = sqrt) then
set end of output to limit
set limit to limit - 1
end if
repeat with i from limit to 1 by -1
if (n mod i is 0) then
set beginning of output to i
set end of output to n div i
end if
end repeat
return output
end factors
 
on isLongPrime(n)
if (n < 3) then return false
script o
property f : factors(n - 1)
end script
set counter to 0
repeat with fi in o's f
set fi to fi's contents
set e to 1
set base to 10
repeat until (fi = 0)
if (fi mod 2 = 1) then set e to e * base mod n
set base to base * base mod n
set fi to fi div 2
end repeat
if (e = 1) then
set counter to counter + 1
if (counter > 1) then exit repeat
end if
end repeat
return (counter = 1)
end isLongPrime
 
-- Task code:
on longPrimesTask()
script o
-- The isLongPrime() handler above returns the correct result for any number
-- passed to it, but feeeding it only primes in the first place speeds things up.
property primes : sieveOfEratosthenes(64000)
property longs : {}
end script
set output to {}
set counter to 0
set mileposts to {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000}
set m to 1
set nextMilepost to beginning of mileposts
set astid to AppleScript's text item delimiters
repeat with p in o's primes
set p to p's contents
if (isLongPrime(p)) then
-- p being odd, it's never exactly one of the even mileposts.
if (p < 500) then
set end of o's longs to p
else if (p > nextMilepost) then
if (nextMilepost = 500) then
set AppleScript's text item delimiters to space
set end of output to "Long primes up to 500:"
set end of output to o's longs as text
end if
set end of output to "Number of long primes up to " & nextMilepost & ": " & counter
set m to m + 1
set nextMilepost to item m of mileposts
end if
set counter to counter + 1
end if
end repeat
set end of output to "Number of long primes up to " & nextMilepost & ": " & counter
set AppleScript's text item delimiters to linefeed
set output to output as text
set AppleScript's text item delimiters to astid
return output
end longPrimesTask
 
longPrimesTask()</syntaxhighlight>
 
{{output}}
<pre>"Long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to 500: 35
Number of long primes up to 1000: 60
Number of long primes up to 2000: 116
Number of long primes up to 4000: 218
Number of long primes up to 8000: 390
Number of long primes up to 16000: 716
Number of long primes up to 32000: 1300
Number of long primes up to 64000: 2430"</pre>
 
=={{header|C}}==
{{trans|Go}}
<langsyntaxhighlight lang="c">#include <stdio.h>
#include <stdlib.h>
 
#define TRUE 1
#define FALSE 0
 
typedef int bool;
 
void sieve(int limit, int primes[], int *count) {
bool *c = calloc(limit + 1, sizeof(bool)); //* composite = TRUE */
//* no need to process even numbers */
int i, p = 3, p2, n = 0;
whilep2 (TRUE)= {p * p;
while (p2 <= limit) {
for (i = p2; i <= limit; i += 2 * p)
c[i] = TRUE;
do {
p += 2;
} while (c[p]);
p2 = p * p;
if (p2 > limit) break;
for (i = p2; i <= limit; i += 2 * p) c[i] = TRUE;
while (TRUE) {
p += 2;
if (!c[p]) break;
}
}
for (i = 3; i <= limit; i += 2) {
Line 81 ⟶ 347:
free(c);
}
 
//* finds the period of the reciprocal of n */
int findPeriod(int n) {
int i, r = 1, rr, period = 0;
Line 89 ⟶ 355:
}
rr = r;
while (TRUE)do {
r = (10 * r) % n;
period++;
} ifwhile (r =!= rr) break;
}
return period;
}
 
int main() {
int i, prime, count = 0, index = 0, primeCount, longCount = 0, numberCount;
int *primes, *longPrimes, *totals;
int numbers[] = {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000};
int totals[8];
primes = calloc(6500, sizeof(int));
longPrimesnumberCount = callocsizeof(2500,numbers) / sizeof(int));
totals = calloc(numberCount, sizeof(int));
sieve(64000, primes, &primeCount);
longPrimes = calloc(primeCount, sizeof(int));
/* Surely longCount < primeCount */
for (i = 0; i < primeCount; ++i) {
prime = primes[i];
Line 111 ⟶ 379:
}
}
for (i = 0; i < longCount; ++i, ++count) {
if (longPrimes[i] > numbers[index]) {
totals[index++] = count;
}
count++;
}
totals[7numberCount - 1] = count;
printf("The long primes up to 500%d are:\n", numbers[0]);
printf("[");
for (i = 0; i < totals[0]; ++i) {
Line 124 ⟶ 391:
}
printf("\b]\n");
 
printf("\nThe number of long primes up to:\n");
for (i = 0; i < 8; ++i) {
printf(" %5d is %d\n", numbers[i], totals[i]);
}
free(totals);
free(longPrimes);
free(primes);
return 0;
}</langsyntaxhighlight>
 
{{out}}
Line 149 ⟶ 417:
64000 is 2430
</pre>
 
=={{header|C sharp}}==
{{works with|C sharp|7}}
<syntaxhighlight lang="csharp">using System;
using System.Collections.Generic;
using System.Linq;
 
public static class LongPrimes
{
public static void Main() {
var primes = SomePrimeGenerator.Primes(64000).Skip(1).Where(p => Period(p) == p - 1).Append(99999);
Console.WriteLine(string.Join(" ", primes.TakeWhile(p => p <= 500)));
int count = 0, limit = 500;
foreach (int prime in primes) {
if (prime > limit) {
Console.WriteLine($"There are {count} long primes below {limit}");
limit *= 2;
}
count++;
}
 
int Period(int n) {
int r = 1, rr;
for (int i = 0; i <= n; i++) r = 10 * r % n;
rr = r;
for (int period = 1;; period++) {
r = (10 * r) % n;
if (r == rr) return period;
}
}
}
 
}
 
static class SomePrimeGenerator {
 
public static IEnumerable<int> Primes(int lim) {
bool [] flags = new bool[lim + 1]; int j = 2;
for (int d = 3, sq = 4; sq <= lim; j++, sq += d += 2)
if (!flags[j]) {
yield return j; for (int k = sq; k <= lim; k += j)
flags[k] = true;
}
for (; j<= lim; j++) if (!flags[j]) yield return j;
}
}</syntaxhighlight>
{{out}}
<pre>
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
There are 35 long primes below 500
There are 60 long primes below 1000
There are 116 long primes below 2000
There are 218 long primes below 4000
There are 390 long primes below 8000
There are 716 long primes below 16000
There are 1300 long primes below 32000
There are 2430 long primes below 64000</pre>
 
=={{header|C++}}==
{{trans|C}}
<syntaxhighlight lang="cpp">
#include <iomanip>
#include <iostream>
#include <list>
using namespace std;
void sieve(int limit, list<int> &primes)
{
bool *c = new bool[limit + 1];
for (int i = 0; i <= limit; i++)
c[i] = false;
// No need to process even numbers
int p = 3, n = 0;
int p2 = p * p;
while (p2 <= limit)
{
for (int i = p2; i <= limit; i += 2 * p)
c[i] = true;
do
p += 2;
while (c[p]);
p2 = p * p;
}
for (int i = 3; i <= limit; i += 2)
if (!c[i])
primes.push_back(i);
delete [] c;
}
// Finds the period of the reciprocal of n
int findPeriod(int n)
{
int r = 1, rr, period = 0;
for (int i = 1; i <= n + 1; ++i)
r = (10 * r) % n;
rr = r;
do
{
r = (10 * r) % n;
period++;
}
while (r != rr);
return period;
}
int main()
{
int count = 0, index = 0;
int numbers[] = {500, 1000, 2000, 4000, 8000, 16000, 32000, 64000};
list<int> primes;
list<int> longPrimes;
int numberCount = sizeof(numbers) / sizeof(int);
int *totals = new int[numberCount];
cout << "Please wait." << endl << endl;
sieve(64000, primes);
for (list<int>::iterator iterPrime = primes.begin();
iterPrime != primes.end();
iterPrime++)
{
if (findPeriod(*iterPrime) == *iterPrime - 1)
longPrimes.push_back(*iterPrime);
}
for (list<int>::iterator iterLongPrime = longPrimes.begin();
iterLongPrime != longPrimes.end();
iterLongPrime++)
{
if (*iterLongPrime > numbers[index])
totals[index++] = count;
++count;
}
totals[numberCount - 1] = count;
cout << "The long primes up to " << totals[0] << " are:" << endl;
cout << "[";
int i = 0;
for (list<int>::iterator iterLongPrime = longPrimes.begin();
iterLongPrime != longPrimes.end() && i < totals[0];
iterLongPrime++, i++)
{
cout << *iterLongPrime << " ";
}
cout << "\b]" << endl;
cout << endl << "The number of long primes up to:" << endl;
for (int i = 0; i < 8; ++i)
cout << " " << setw(5) << numbers[i] << " is " << totals[i] << endl;
delete [] totals;
}
</syntaxhighlight>
{{out}}
<pre>
Please wait.
 
The long primes up to 35 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
</pre>
 
=={{header|Common Lisp}}==
{{trans|Raku}}
<syntaxhighlight lang="lisp">; Primality test using the Sieve of Eratosthenes with a couple minor optimizations
(defun primep (n)
(cond ((and (<= n 3) (> n 1)) t)
((some #'zerop (mapcar (lambda (d) (mod n d)) '(2 3))) nil)
(t (loop for i = 5 then (+ i 6)
while (<= (* i i) n)
when (some #'zerop (mapcar (lambda (d) (mod n (+ i d))) '(0 2))) return nil
finally (return t)))))
 
; Translation of the long-prime algorithm from the Raku solution
(defun long-prime-p (n)
(cond
((< n 3) nil)
((not (primep n)) nil)
(t (let* ((rr (loop repeat (1+ n)
for r = 1 then (mod (* 10 r) n)
finally (return r)))
 
(period (loop for p = 0 then (1+ p)
for r = (mod (* 10 rr) n) then (mod (* 10 r) n)
while (and (< p n) (/= r rr))
finally (return (1+ p)))))
 
(= period (1- n))))))
 
(format t "~{~a~^, ~}" (loop for n from 1 to 500 if (long-prime-p n) collect n))
</syntaxhighlight>
{{Out}}
<pre>7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499</pre>
 
=={{header|Crystal}}==
{{trans|Sidef}}
Simpler but slower.
<syntaxhighlight lang="ruby">require "big"
 
def prime?(n) # P3 Prime Generator primality test
return n | 1 == 3 if n < 5 # n: 2,3|true; 0,1,4|false
return false if n.gcd(6) != 1 # this filters out 2/3 of all integers
pc = typeof(n).new(5) # first P3 prime candidates sequence value
until pc*pc > n
return false if n % pc == 0 || n % (pc + 2) == 0 # if n is composite
pc += 6 # 1st prime candidate for next residues group
end
true
end
 
# The smallest divisor d of p-1 such that 10^d = 1 (mod p),
# is the length of the period of the decimal expansion of 1/p.
def long_prime?(p)
return false unless prime? p
(2...p).each do |d|
return d == (p - 1) if (p - 1) % d == 0 && (10.to_big_i ** d) % p == 1
end
false
end
 
start = Time.monotonic # time of starting
puts "Long primes ≤ 500:"
(2..500).each { |pc| print "#{pc} " if long_prime? pc }
puts
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |n|
puts "Number of long primes ≤ #{n}: #{(7..n).count { |pc| long_prime? pc }}"
end
puts "\nTime: #{(Time.monotonic - start).total_seconds} secs"</syntaxhighlight>
 
{{out}}
<pre>
Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430</pre>
 
System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.17, Crystal 0.35
Run as: $ crystal run longprimes.cr --release
Time: 1.090748711 secs
 
Faster: using divisors of (p - 1) and powmod().
<syntaxhighlight lang="ruby">require "big"
 
def prime?(n) # P3 Prime Generator primality test
n = n.to_big_i
return n | 1 == 3 if n < 5 # n: 0,1,4|false, 2,3|true
return false if n.gcd(6) != 1 # 1/3 (2/6) of integers are P3 pc
p = typeof(n).new(5) # first P3 sequence value
until p*p > n
return false if n % p == 0 || n % (p + 2) == 0 # if n is composite
p += 6 # first prime candidate for next kth residues group
end
true
end
 
def powmod(b, e, m) # Compute b**e mod m
r, b = 1, b.to_big_i
while e > 0
r = (b * r) % m if e.odd?
b = (b * b) % m
e >>= 1
end
r
end
 
def divisors(n) # divisors of n -> [1,..,n]
f = [] of Int32
(1..Math.sqrt(n)).each { |i| (n % i).zero? && (f << i; f << n // i if n // i != i) }
f.sort
end
 
# The smallest divisor d of p-1 such that 10^d = 1 (mod p),
# is the length of the period of the decimal expansion of 1/p.
def long_prime?(p)
return false unless prime? p
divisors(p - 1).each { |d| return d == (p - 1) if powmod(10, d, p) == 1 }
false
end
 
start = Time.monotonic # time of starting
puts "Long primes ≤ 500:"
(7..500).each { |pc| print "#{pc} " if long_prime? pc }
puts
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |n|
puts "Number of long primes ≤ #{n}: #{(7..n).count { |pc| long_prime? pc }}"
end
puts "\nTime: #{(Time.monotonic - start).total_seconds} secs"</syntaxhighlight>
{{out}}
<pre>
Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430</pre>
 
System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.17, Crystal 0.35
Run as: $ crystal run longprimes.cr --release
Time: 0.28927228 secs
 
=={{header|Delphi}}==
See [https://rosettacode.org/wiki/Long_primes#Pascal Pascal].
 
 
=={{header|EasyLang}}==
<syntaxhighlight>
fastfunc isprim num .
if num mod 2 = 0 and num > 2
return 0
.
i = 3
while i <= sqrt num
if num mod i = 0
return 0
.
i += 2
.
return 1
.
prim = 2
proc nextprim . .
repeat
prim += 1
until isprim prim = 1
.
.
func period n .
r = 1
repeat
r = (r * 10) mod n
p += 1
until r <= 1
.
return p
.
#
print "Long primes up to 500 are:"
repeat
nextprim
until prim > 500
if period prim = prim - 1
write prim & " "
cnt += 1
.
.
print ""
print ""
print "The number of long primes up to:"
limit = 500
repeat
if prim > limit
print limit & " is " & cnt
limit *= 2
.
until limit > 32000
if period prim = prim - 1
cnt += 1
.
nextprim
.
</syntaxhighlight>
 
=={{header|F_Sharp|F#}}==
Line 154 ⟶ 797:
This task uses [http://www.rosettacode.org/wiki/Extensible_prime_generator#The_function Extensible Prime Generator (F#)]<br>
This task uses [[Factors_of_an_integer#F.23]]
<langsyntaxhighlight lang="fsharp">
// Return true if prime n is a long prime. Nigel Galloway: September 25th., 2018
let fN n g = let rec fN i g e l = match e with | 0UL -> i
Line 161 ⟶ 804:
fN 1UL 10UL (uint64 g) (uint64 n)
let isLongPrime n=Seq.length (factors (n-1) |> Seq.filter(fun g->(fN n g)=1UL))=1
</syntaxhighlight>
</lang>
===The Task===
<langsyntaxhighlight lang="fsharp">
primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<500) |> Seq.filter isLongPrime |> Seq.iter(printf "%d ")
</syntaxhighlight>
</lang>
{{out}}
<pre>
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 500" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<500) |> Seq.filter isLongPrime |> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 35 long primes less than 500
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 1000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<1000) |> Seq.filter isLongPrime |> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 60 long primes less than 1000
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 2000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<2000) |> Seq.filter isLongPrime |> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 116 long primes less than 2000
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 4000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<4000) |> Seq.filter isLongPrime|> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 218 long primes less than 4000
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 8000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<8000) |> Seq.filter isLongPrime |> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 390 long primes less than 8000
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 16000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<16000) |> Seq.filter isLongPrime |> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 716 long primes less than 16000
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 32000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<32000) |> Seq.filter isLongPrime |> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 1300 long primes less than 32000
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 64000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<64000) |> Seq.filter isLongPrime|> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
There are 2430 long primes less than 64000
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 128000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<128000) |> Seq.filter isLongPrime|> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 234 ⟶ 877:
Real: 00:00:01.294, CPU: 00:00:01.300, GC gen0: 27, gen1: 0
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 256000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<256000) |> Seq.filter isLongPrime|> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 242 ⟶ 885:
Real: 00:00:03.434, CPU: 00:00:03.440, GC gen0: 58, gen1: 0
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 512000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<512000) |> Seq.filter isLongPrime|> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 250 ⟶ 893:
Real: 00:00:09.248, CPU: 00:00:09.260, GC gen0: 128, gen1: 0
</pre>
<langsyntaxhighlight lang="fsharp">
printfn "There are %d long primes less than 1024000" (primes |> Seq.skip 3 |> Seq.takeWhile(fun n->n<1024000) |> Seq.filter isLongPrime|> Seq.length)
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 259 ⟶ 902:
</pre>
 
=={{header|GoFactor}}==
<syntaxhighlight lang="factor">USING: formatting fry io kernel math math.functions math.primes
<lang go>package main
math.primes.factors memoize prettyprint sequences ;
IN: rosetta-code.long-primes
 
: period-length ( p -- len )
import "fmt"
[ 1 - divisors ] [ '[ 10 swap _ ^mod 1 = ] ] bi find nip ;
 
MEMO: long-prime? ( p -- ? ) [ period-length ] [ 1 - ] bi = ;
 
: .lp<=500 ( -- )
500 primes-upto [ long-prime? ] filter
"Long primes <= 500:" print [ pprint bl ] each nl ;
 
: .#lp<=n ( n -- )
dup primes-upto [ long-prime? t = ] count swap
"%-4d long primes <= %d\n" printf ;
 
: long-primes-demo ( -- )
.lp<=500 nl
{ 500 1,000 2,000 4,000 8,000 16,000 32,000 64,000 }
[ .#lp<=n ] each ;
 
MAIN: long-primes-demo</syntaxhighlight>
{{out}}
<pre>
Long primes <= 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
 
35 long primes <= 500
60 long primes <= 1000
116 long primes <= 2000
218 long primes <= 4000
390 long primes <= 8000
716 long primes <= 16000
1300 long primes <= 32000
2430 long primes <= 64000
</pre>
 
=={{header|Forth}}==
{{works with|Gforth}}
The prime sieve code was borrowed from [[Sieve of Eratosthenes#Forth]].
<syntaxhighlight lang="forth">: prime? ( n -- ? ) here + c@ 0= ;
: notprime! ( n -- ) here + 1 swap c! ;
 
: sieve ( n -- )
here over erase
0 notprime!
1 notprime!
2
begin
2dup dup * >
while
dup prime? if
2dup dup * do
i notprime!
dup +loop
then
1+
repeat
2drop ;
 
: modpow { c b a -- a^b mod c }
c 1 = if 0 exit then
1
a c mod to a
begin
b 0>
while
b 1 and 1 = if
a * c mod
then
a a * c mod to a
b 2/ to b
repeat ;
 
: divide_out ( n1 n2 -- n )
begin
2dup mod 0=
while
tuck / swap
repeat drop ;
 
: long_prime? ( n -- ? )
dup prime? invert if drop false exit then
10 over mod 0= if drop false exit then
dup 1-
2 >r
begin
over r@ dup * >
while
r@ prime? if
dup r@ mod 0= if
over dup 1- r@ / 10 modpow 1 = if
2drop rdrop false exit
then
r@ divide_out
then
then
r> 1+ >r
repeat
rdrop
dup 1 = if 2drop true exit then
over 1- swap / 10 modpow 1 <> ;
 
: next_long_prime ( n -- n )
begin 2 + dup long_prime? until ;
 
500 constant limit1
512000 constant limit2
 
: main
limit2 1+ sieve
limit2 limit1 3
0 >r
." Long primes up to " over 1 .r ." :" cr
begin
2 pick over >
while
next_long_prime
dup limit1 < if dup . then
dup 2 pick > if
over limit1 = if cr then
." Number of long primes up to " over 6 .r ." : " r@ 5 .r cr
swap 2* swap
then
r> 1+ >r
repeat
2drop drop rdrop ;
 
main
bye</syntaxhighlight>
 
{{out}}
Execution time is about 1.1 seconds on my machine (3.2GHz Quad-Core Intel Core i5).
<pre>
Long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to 500: 35
Number of long primes up to 1000: 60
Number of long primes up to 2000: 116
Number of long primes up to 4000: 218
Number of long primes up to 8000: 390
Number of long primes up to 16000: 716
Number of long primes up to 32000: 1300
Number of long primes up to 64000: 2430
Number of long primes up to 128000: 4498
Number of long primes up to 256000: 8434
Number of long primes up to 512000: 15920
</pre>
 
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">' version 01-02-2019
' compile with: fbc -s console
 
Dim Shared As UByte prime()
 
Sub find_primes(n As UInteger)
 
ReDim prime(n)
Dim As UInteger i, k
 
' need only to consider odd primes, 2 has no repetion
For i = 3 To n Step 2
If prime(i) = 0 Then
For k = i * i To n Step i + i
prime(k) = 1
Next
End If
Next
 
End Sub
 
Function find_period(p As UInteger) As UInteger
' finds period for every positive number
Dim As UInteger period, r = 1
 
Do
r = (r * 10) Mod p
period += 1
If r <= 1 Then Return period
Loop
 
End Function
 
' ------=< MAIN >=------
 
#Define max 64000
Dim As UInteger p = 3, n1 = 3, n2 = 500, i, n50, count
 
find_primes(max)
Print "Long primes upto 500 are ";
 
For i = n1 To n2 Step 2
If prime(i) = 0 Then
If i -1 = find_period(i) Then
If n50 <= 50 Then
Print Str(i); " ";
End If
count += 1
End If
End If
Next
 
Print : Print
 
Do
Print "There are "; Str(count); " long primes upto "; Str(n2)
 
n1 = n2 +1
n2 += n2
If n1 > max Then Exit Do
 
For i = n1 To n2 Step 2
If prime(i) = 0 Then
If i -1 = find_period(i) Then
count += 1
End If
End If
Next
Loop
 
' empty keyboard buffer
While Inkey <> "" : Wend
Print : Print "hit any key to end program"
Sleep
End</syntaxhighlight>
{{out}}
<pre>Long primes upto 500 are 7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
 
There are 35 long primes upto 500
There are 60 long primes upto 1000
There are 116 long primes upto 2000
There are 218 long primes upto 4000
There are 390 long primes upto 8000
There are 716 long primes upto 16000
There are 1300 long primes upto 32000
There are 2430 long primes upto 64000</pre>
 
=={{header|Go}}==
<syntaxhighlight lang="go">package main
import "fmt"
func sieve(limit int) []int {
var primes []int
c := make([]bool, limit + 1) // composite = true
// no need to process even numbers
p := 3
forp2 {:= p * p
for p2 :<= p *limit p{
if p2 > limit {
break
}
for i := p2; i <= limit; i += 2 * p {
c[i] = true
}
for ok := true; ok; ok = c[p] {
p += 2
if !c[p] {
break
}
}
p2 = p * p
}
for i := 3; i <= limit; i += 2 {
Line 291 ⟶ 1,168:
return primes
}
 
// finds the period of the reciprocal of n
func findPeriod(n int) int {
r := 1
for i := 1; i <= n + 1; i++ {
r = (10 * r) % n
}
rr := r
period := 0
for ok := true; ok; ok = r != rr {
r = (10 * r) % n
period++
if r == rr {
break
}
}
return period
}
 
func main() {
primes := sieve(64000)
var longPrimes []int
for _, prime := range primes {
if findPeriod(prime) == prime - 1 {
longPrimes = append(longPrimes, prime)
}
Line 330 ⟶ 1,204:
}
totals[len(numbers)-1] = count
fmt.Println("The long primes up to", 500numbers[0], "are: ")
fmt.Println(longPrimes[:totals[0]])
 
fmt.Println("\nThe number of long primes up to: ")
for i, total := range totals {
fmt.Printf(" %5d is %d\n", numbers[i], total)
}
}</langsyntaxhighlight>
 
{{out}}
Line 354 ⟶ 1,228:
64000 is 2430
</pre>
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">import Data.List (elemIndex)
 
longPrimesUpTo :: Int -> [Int]
longPrimesUpTo n =
filter isLongPrime $
takeWhile (< n) primes
where
sieve (p : xs) = p : sieve [x | x <- xs, x `mod` p /= 0]
primes = sieve [2 ..]
isLongPrime n = found
where
cycles = take n (iterate ((`mod` n) . (10 *)) 1)
index = elemIndex (head cycles) $ tail cycles
found = case index of
(Just i) -> n - i == 2
_ -> False
 
display :: Int -> IO ()
display n =
if n <= 64000
then do
putStrLn
( show n <> " is "
<> show (length $ longPrimesUpTo n)
)
display (n * 2)
else pure ()
 
main :: IO ()
main = do
let fiveHundred = longPrimesUpTo 500
putStrLn
( "The long primes up to 35 are:\n"
<> show fiveHundred
<> "\n"
)
putStrLn ("500 is " <> show (length fiveHundred))
display 1000</syntaxhighlight>
{{out}}
<pre>The long primes up to 35 are:
[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]
 
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430</pre>
 
=={{header|J}}==
Line 399 ⟶ 1,324:
500 1000 2000 4000 8000 16000 32000 64000
35 60 116 218 390 716 1300 2430
</pre>
 
=={{header|Java}}==
{{trans|C}}
<syntaxhighlight lang="java">
import java.util.LinkedList;
import java.util.List;
 
public class LongPrimes
{
private static void sieve(int limit, List<Integer> primes)
{
boolean[] c = new boolean[limit];
for (int i = 0; i < limit; i++)
c[i] = false;
// No need to process even numbers
int p = 3, n = 0;
int p2 = p * p;
while (p2 <= limit)
{
for (int i = p2; i <= limit; i += 2 * p)
c[i] = true;
do
p += 2;
while (c[p]);
p2 = p * p;
}
for (int i = 3; i <= limit; i += 2)
if (!c[i])
primes.add(i);
}
 
// Finds the period of the reciprocal of n
private static int findPeriod(int n)
{
int r = 1, period = 0;
for (int i = 1; i < n; i++)
r = (10 * r) % n;
int rr = r;
do
{
r = (10 * r) % n;
++period;
}
while (r != rr);
return period;
}
public static void main(String[] args)
{
int[] numbers = new int[]{500, 1000, 2000, 4000, 8000, 16000, 32000, 64000};
int[] totals = new int[numbers.length];
List<Integer> primes = new LinkedList<Integer>();
List<Integer> longPrimes = new LinkedList<Integer>();
sieve(64000, primes);
for (int prime : primes)
if (findPeriod(prime) == prime - 1)
longPrimes.add(prime);
int count = 0, index = 0;
for (int longPrime : longPrimes)
{
if (longPrime > numbers[index])
totals[index++] = count;
++count;
}
totals[numbers.length - 1] = count;
System.out.println("The long primes up to " + numbers[0] + " are:");
System.out.println(longPrimes.subList(0, totals[0]));
System.out.println();
System.out.println("The number of long primes up to:");
for (int i = 0; i <= 7; i++)
System.out.printf(" %5d is %d\n", numbers[i], totals[i]);
}
}
</syntaxhighlight>
{{out}}
<pre>
The long primes up to 500 are:
[7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499]
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
</pre>
 
=={{header|jq}}==
'''Adapted from [[#Wren|Wren]]'''
{{works with|jq}}
'''Works with gojq, the Go implementation of jq''' (*)
 
This entry does not attempt to avoid the redundancy involved in the subtasks, but instead
includes a prime number generator intended for efficiently generating large numbers of primes.
 
(*) For the computationally intensive subtasks, gojq will require too much memory.
 
'''Preliminaries'''
<syntaxhighlight lang="jq">
def count(s): reduce s as $x (0; .+1);
 
# Is the input integer a prime?
# "previous" should be a sorted array of consecutive primes
# from 2 on that includes the greatest prime less than (.|sqrt)
def is_prime(previous):
. as $in
| (($in + 1) | sqrt) as $sqrt
| first(previous[]
| if . > $sqrt then 1
elif 0 == ($in % .) then 0
else empty
end) // 1
| . == 1;
 
# This assumes . is an array of consecutive primes beginning with [2,3]
def next_prime:
. as $previous
| (2 + .[-1] )
| until(is_prime($previous); . + 2) ;
 
# Emit primes from 2 up
def primes:
# The helper function has arity 0 for TCO
# It expects its input to be an array of previously found primes, in order:
def next:
. as $previous
| ($previous|next_prime) as $next
| $next, (($previous + [$next]) | next) ;
2, 3, ([2,3] | next);
 
</syntaxhighlight>
'''Long Primes'''
<syntaxhighlight lang="jq">
# finds the period of the reciprocal of .
# (The following definition does not make a special case of 2
# but yields a justifiable result for 2, namely 1.)
def findPeriod:
. as $n
| (reduce range(1; $n+2) as $i (1; (. * 10) % $n)) as $rr
| {r: $rr, period:0, ok:true}
| until( .ok|not;
.r = (10 * .r) % $n
| .period += 1
| .ok = (.r != $rr) )
| .period ;
 
# This definition takes into account the
# claim in the preamble that the first long prime is 7:
def long_primes_less_than($n):
label $out
| primes
| if . >= $n then break $out else . end
| select(. > 2 and (findPeriod == . - 1));
 
def count_long_primes:
count(long_primes_less_than(.));
 
# Since 2 is not a "long prime" for the purposes of this
# article, we can begin searching at 3:
"Long primes ≤ 500: ", long_primes_less_than(500),
 
"\n",
 
(500,1000, 2000, 4000, 8000, 16000, 32000, 64000
| "Number of long primes ≤ \(.): \(count_long_primes)" )
 
</syntaxhighlight>
{{out}}
<pre>
Long primes ≤ 500:
7
17
19
23
29
47
59
61
97
109
113
131
149
167
179
181
193
223
229
233
257
263
269
313
337
367
379
383
389
419
433
461
487
491
499
 
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430
</pre>
 
=={{header|Julia}}==
{{trans|Sidef}}
Function islongprime is from the Sidef version.
<langsyntaxhighlight lang="julia">
using Primes
 
Line 434 ⟶ 1,577:
println("Number of long primes ≤ $i: $(sum(map(x->islongprime(x), 1:i)))")
end
</syntaxhighlight>
</lang>
{{output}}<pre>
Long primes ≤ 500:
Line 452 ⟶ 1,595:
=={{header|Kotlin}}==
{{trans|Go}}
<langsyntaxhighlight lang="scala">// Version 1.2.60
 
fun sieve(limit: Int): List<Int> {
val primes = mutableListOf<Int>()
Line 459 ⟶ 1,602:
// no need to process even numbers
var p = 3
whilevar (true)p2 {= p * p
while val (p2 <= p *limit) p{
if (p2 > limit) break
for (i in p2..limit step 2 * p) c[i] = true
while (true)do {
p += 2
} ifwhile (!c[p]) break
}p2 = p * p
}
for (i in 3..limit step 2) {
Line 473 ⟶ 1,615:
return primes
}
 
// finds the period of the reciprocal of n
fun findPeriod(n: Int): Int {
Line 480 ⟶ 1,622:
val rr = r
var period = 0
while (true)do {
r = (10 * r) % n
period++
} ifwhile (r =!= rr) break
}
return period
}
 
fun main(args: Array<String>) {
val primes = sieve(64000)
Line 507 ⟶ 1,648:
}
totals[numbers.lastIndex] = count
println("The long primes up to 500" + numbers[0] + " are:")
println(longPrimes.take(totals[0]))
 
println("\nThe number of long primes up to:")
for ((i, total) in totals.withIndex()) {
System.out.printf(" %5d is %d\n", numbers[i], total)
}
}</langsyntaxhighlight>
 
{{output}}
Line 531 ⟶ 1,672:
64000 is 2430
</pre>
 
=={{header|M2000 Interpreter}}==
{{trans|Go}}
Sieve leave to stack of values primes. This happen because we call the function as a module, so we pass the current stack (modules call modules passing own stack of values). We can place value to stack using Push to the top (as LIFO) or using Data to bottom (as FIFO). Variable Number read a number from stack and drop it.
 
<syntaxhighlight lang="m2000 interpreter">
Module LongPrimes {
Sieve=lambda (limit)->{
Flush
Buffer clear c as byte*limit+1
\\ no need to process even numbers
p=3
do
p2=p^2
if p2>limit then exit
i=p2
while i<=limit
Return c, i:=1
i+=2*p
end While
do
p+=2
Until not eval(c,p)
always
for i = 3 to limit step 2
if eval(c,i) else data i
next i
}
findPeriod=lambda (n) -> {
r = 1
for i = 1 to n+1 {r = (10 * r) mod n}
rr = r : period = 0
do
r = (10 * r) mod n
period++
if r == rr then exit
always
=period
}
Call sieve(64000) ' leave stack with primes
stops=(500,1000,2000,4000,8000,16000,32000,64000)
acc=0
stp=0
limit=array(stops, stp)
p=number ' pop one
Print "Long primes up to 500:"
document lp500$
for i=1 to 500
if i=p then
if findPeriod(i)=i-1 then acc++ :lp500$=str$(i)
p=number
end if
if empty then exit for
next i
lp500$="]"
insert 1,1 lp500$="["
Print lp500$
Print
i=500
Print "The number of long primes up to:"
print i," is ";acc
stp++
m=each(stops,1,-2)
while m
for i=array(m)+1 to array(m,m^+1)
if i=p then
if findPeriod(i)=i-1 then acc++
p=number
end if
if empty then exit for
next i
print array(m,m^+1)," is ";acc
end While
}
LongPrimes
</syntaxhighlight>
 
{{out}}
<pre>
The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
</pre >
 
=={{header|Maple}}==
<syntaxhighlight lang="maple">
with(NumberTheory):
with(ArrayTools):
 
isLong := proc(x::integer)
if irem(10^(x - 1) - 1, x) = 0 then
for local count from 1 to x - 2 do
if irem(10^(count) - 1, x) = 0 then
return false;
end if;
end do;
else
return false;
end if;
return true;
end proc:
 
longPrimes := Array([]):
 
for number from 1 to PrimeCounting(500) do
if isLong(ithprime(number)) then Append(longPrimes, ithprime(number)): end if:
end:
 
longPrimes;
lpcount := ArrayNumElems(longPrimes):
numOfLongPrimes := Array([lpcount]):
for expon from 1 to 7 do
for number from PrimeCounting(500 * 2^(expon - 1)) + 1 to PrimeCounting(500 * 2^expon) do
if isLong(ithprime(number)) then lpcount += 1: end if:
end:
Append(numOfLongPrimes, lpcount):
end:
 
numOfLongPrimes;
 
</syntaxhighlight>
{{out}}<pre>
[7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193,
 
223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461,
 
487, 491, 499]
 
[35, 60, 116, 218, 390, 716, 1300, 2430]
</pre>
 
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<syntaxhighlight lang="mathematica">lPrimes[n_] := Select[Range[2, n], Length[RealDigits[1/#][[1, 1]]] == # - 1 &];
lPrimes[500]
Length /@ lPrimes /@ ( 250*2^Range[8])</syntaxhighlight>
{{out}}
<pre>{7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179,
181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389,
419, 433, 461, 487, 491, 499}
 
{35, 60, 116, 218, 390, 716, 1300, 2430}
</pre>
 
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">
/* Test cases */
/* Long primes up to 500 */
sublist(makelist(i,i,500),lambda([x],primep(x) and zn_order(10,x)=x-1));
 
/* Number of long primes up to a specified limit */
length(sublist(makelist(i,i,500),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,1000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,2000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,4000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,8000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,16000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,32000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
length(sublist(makelist(i,i,64000),lambda([x],primep(x) and zn_order(10,x)=x-1)));
</syntaxhighlight>
{{out}}
<pre>
[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]
 
35
60
116
218
390
716
1300
2430
</pre>
 
=={{header|NewLISP}}==
<syntaxhighlight lang="newlisp">
;;; Using the fact that 10 has to be a primitive root mod p
;;; for p to be a reptend/long prime.
;;; p supposed prime and >= 7
(define (cycle-mod p)
(let (n 10 tally 1)
(while (!= n 1)
(++ tally)
(setq n (% (* n 10) p))
tally)))
;
;;; Primality test
(define (prime? n)
(= (length (factor n)) 1))
;
;;; Reptend test (p >= 7)
(define (reptend? p)
(if (prime? p)
(= (- p (cycle-mod p)) 1)
false))
;
;;; Find reptends in interval 7 .. n
(define (find-reptends n)
(filter reptend? (sequence 7 n)))
;
;;; Task
(println (find-reptends 500))
(println (map (fn(n) (println n " --> " (length (find-reptends n)))) '(500 1000 2000 4000 8000 16000 32000 64000)))
</syntaxhighlight>
{{out}}
<pre>
(7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499)
500 --> 35
1000 --> 60
2000 --> 116
4000 --> 218
8000 --> 390
16000 --> 716
32000 --> 1300
64000 --> 2430
</pre>
 
=={{header|Nim}}==
{{trans|Kotlin}}
<syntaxhighlight lang="nim">import strformat
 
 
func sieve(limit: int): seq[int] =
 
var composite = newSeq[bool](limit + 1)
var p = 3
var p2 = p * p
while p2 < limit:
if not composite[p]:
for n in countup(p2, limit, 2 * p):
composite[n] = true
inc p, 2
p2 = p * p
 
for n in countup(3, limit, 2):
if not composite[n]:
result.add n
 
 
func period(n: int): int =
## Find the period of the reciprocal of "n".
var r = 1
for i in 1..(n + 1):
r = 10 * r mod n
let r1 = r
while true:
r = 10 * r mod n
inc result
if r == r1: break
 
 
let primes = sieve(64000)
var longPrimes: seq[int]
for prime in primes:
if prime.period() == prime - 1:
longPrimes.add prime
 
const Numbers = [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
var index, count = 0
var totals = newSeq[int](Numbers.len)
for longPrime in longPrimes:
if longPrime > Numbers[index]:
totals[index] = count
inc index
inc count
totals[^1] = count
 
echo &"The long primes up to {Numbers[0]} are:"
for i in 0..<totals[0]:
stdout.write ' ', longPrimes[i]
stdout.write '\n'
 
echo "\nThe number of long primes up to:"
for i, total in totals:
echo &" {Numbers[i]:>5} is {total}"</syntaxhighlight>
 
{{out}}
<pre>The long primes up to 500 are:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430</pre>
 
=={{header|Pascal}}==
Line 536 ⟶ 1,974:
www . arndt-bruenner.de/mathe/scripts/periodenlaenge.htm
 
<langsyntaxhighlight lang="pascal">
PROGRAMprogram Periode;
 
{$IFDEF FPC}
{$MODE Delphi}
{$OPTIMIZATION ON}
{$OPTIMIZATION Regvar}
Line 549 ⟶ 1,986:
{$else}
{$Apptype Console}
{$ENDIF}
 
uses
sysutils;
 
const
cBASIS = 10;
PRIMFELDOBERGRENZE = 6542;
{Das sind alle Primzahlen bis 2^16}
{Das reicht fuer al8le Primzahlen bis 2^32}
TESTZAHL = 500; //429496709;//High(DwordCardinal) DIV cBasis;
 
type
tPrimFeld = array [1..PRIMFELDOBERGRENZE] of Word;
 
tFaktorPotenz = record
tFaktorPotenz = record
Faktor,
Faktor, Potenz : DWordCardinal;
end;
//2*3*5*7*11*13*17*19*23 *29 > DWordCardinal also maximal 9 Faktoren
 
tFaktorFeld = array [1..9] of TFaktorPotenz;//DWord
tFaktorFeld = array[1..9] of TFaktorPotenz; //Cardinal
// tFaktorFeld = array [1..15] of TFaktorPotenz;//QWord
tFaktorisieren = class(TObject)
private
fFakZahl : DWord;
fFakBasis : DWord;
fFakAnzahl : Dword;
fAnzahlMoeglicherTeiler : Dword;
fEulerPhi : DWORD;
fStartPeriode : DWORD;
fPeriodenLaenge : DWORD;
fTeiler : array of DWord;
fFaktoren : tFaktorFeld;
fBasFakt : tFaktorFeld;
fPrimfeld : tPrimFeld;
 
tFaktorisieren = class(TObject)
procedure PrimFeldAufbauen;
private
procedure Fakteinfuegen(var Zahl:Dword;inFak:Dword);
fFakZahl: Cardinal;
function BasisPeriodeExtrahieren(var inZahl:Dword):DWord;
fFakBasis: Cardinal;
procedure NachkommaPeriode(var OutText: String);
fFakAnzahl: Cardinal;
public
fAnzahlMoeglicherTeiler: Cardinal;
constructor create; overload;
fEulerPhi: Cardinal;
function Prim(inZahl:Dword):Boolean;
fStartPeriode: Cardinal;
procedure AusgabeFaktorfeld(n : DWord);
fPeriodenLaenge: Cardinal;
procedure Faktorisierung (inZahl: DWord);
fTeiler: array of Cardinal;
procedure TeilerErmitteln;
fFaktoren: tFaktorFeld;
procedure PeriodeErmitteln(inZahl:Dword);
fBasFakt: tFaktorFeld;
function BasExpMod( b, e, m : Dword) : DWord;
fPrimfeld: tPrimFeld;
procedure PrimFeldAufbauen;
property
procedure Fakteinfuegen(var Zahl: Cardinal; inFak: Cardinal);
EulerPhi : Dword read fEulerPhi;
function BasisPeriodeExtrahieren(var inZahl: Cardinal): Cardinal;
property
procedure NachkommaPeriode(var OutText: string);
PeriodenLaenge: DWord read fPeriodenLaenge ;
public
property
constructor create; overload;
StartPeriode: DWord read fStartPeriode ;
function Prim(inZahl: Cardinal): Boolean;
end;
procedure AusgabeFaktorfeld(n: Cardinal);
procedure Faktorisierung(inZahl: Cardinal);
procedure TeilerErmitteln;
procedure PeriodeErmitteln(inZahl: Cardinal);
function BasExpMod(b, e, m: Cardinal): Cardinal;
property EulerPhi: Cardinal read fEulerPhi;
property PeriodenLaenge: Cardinal read fPeriodenLaenge;
property StartPeriode: Cardinal read fStartPeriode;
end;
 
constructor tFaktorisieren.create;
begin
inherited;
PrimFeldAufbauen;
 
fFakZahl := 0;
fFakBasis := cBASIS;
Faktorisierung(fFakBasis);
fBasFakt := fFaktoren;
 
fFakZahl := 0;
fEulerPhi := 1;
fPeriodenLaenge := 0;
fFakZahl := 0;
fFakAnzahl := 0;
fAnzahlMoeglicherTeiler := 0;
end;
 
function tFaktorisieren.Prim(inZahl:Dword Cardinal): Boolean;
{Testet auf PrimZahl}
var
Wurzel, pos: Cardinal;
begin
pos : Dword;
Begin
if fFakZahl = inZahl then
begin
result := (fAnzahlMoeglicherTeiler = 2);
exit;
end;
result := false;
if inZahl > 1 then
begin
result := true;
pos := 1;
Wurzel := trunc(sqrt(inZahl));
while fPrimFeld[pos] <= Wurzel do
begin
if (inZahl mod fPrimFeld[pos]) = 0 then
result := true;
Pos := 1;
Wurzel:= trunc(sqrt(inZahl));
While fPrimFeld[Pos] <= Wurzel do
begin
if (inZahl mod fPrimFeld[Pos])=0 then
begin
result := false;
break;
end;
inc(Pos);
IF Pos > High(fPrimFeld) then
break;
end;
end; inc(pos);
if pos > High(fPrimFeld) then
break;
end;
end;
end;
 
Procedureprocedure tFaktorisieren.PrimFeldAufbauen;
{Baut die Liste der Primzahlen bis Obergrenze auf}
const
MAX = 65536;
var
TestaufPrim, Zaehler, delta: Cardinal;
Zaehler,delta : Dword;
begin
Zaehler := 1;
fPrimFeld[Zaehler] := 2;
inc(Zaehler);
fPrimFeld[Zaehler] := 3;
 
delta := 2;
TestAufPrim TestaufPrim := 5;
repeat
if prim(TestAufPrimTestaufPrim) then
begin
inc(Zaehler);
fPrimFeld[Zaehler] := TestAufPrimTestaufPrim;
end;
inc(TestAufPrimTestaufPrim, delta);
delta := 6 - delta; // 2,4,2,4,2,4,2,
until (TestAufPrimTestaufPrim >= MAX);
 
end; {PrimfeldAufbauen}
 
procedure tFaktorisieren.Fakteinfuegen(var Zahl: Cardinal; inFak: Cardinal);
 
procedure tFaktorisieren.Fakteinfuegen(var Zahl:Dword;inFak:Dword);
var
i : DWordCardinal;
begin
inc(fFakAnzahl);
with fFaktoren[fFakAnzahl] do
begin
fEulerPhi := fEulerPhi * (inFak - 1);
Faktor := inFak;
Potenz := 0;
while (Zahl mod inFak) = 0 do
begin
Zahl := Zahl div inFak;
inc(Potenz);
end;
For i := 2 to Potenz do
fEulerPhi := fEulerPhi*inFak;
end;
for i := 2 to Potenz do
fAnzahlMoeglicherTeiler:=fAnzahlMoeglicherTeiler*(1+fFaktoren[fFakAnzahl].Potenz);
fEulerPhi := fEulerPhi * inFak;
end;
fAnzahlMoeglicherTeiler := fAnzahlMoeglicherTeiler * (1 + fFaktoren[fFakAnzahl].Potenz);
end;
 
procedure tFaktorisieren.Faktorisierung (inZahl: DWordCardinal);
var
j, og: longint;
og : longint;
begin
if fFakZahl = inZahl then
exit;
fPeriodenLaenge := 0;
fFakZahl := inZahl;
fEulerPhi := 1;
fFakAnzahl := 0;
fAnzahlMoeglicherTeiler :=1;
setlength(fTeiler,0);
 
fPeriodenLaenge := 0;
If inZahl < 2 then
fFakZahl := inZahl;
exit;
fEulerPhi := 1;
og := round(sqrt(inZahl)+1.0);
fFakAnzahl := 0;
fAnzahlMoeglicherTeiler := 1;
setlength(fTeiler, 0);
 
if inZahl < 2 then
exit;
og := round(sqrt(inZahl) + 1.0);
{Suche Teiler von inZahl}
for j := 1 to High(fPrimfeld) do
begin
If if fPrimfeld[j] > OGog then
Break;
if (inZahl mod fPrimfeld[j]) = 0 then
Fakteinfuegen(inZahl, fPrimfeld[j]);
end;
If if inZahl > 1 then
Fakteinfuegen(inZahl, inZahl);
TeilerErmitteln;
end; {Faktorisierung}
 
procedure tFaktorisieren.AusgabeFaktorfeld(n : DWordCardinal);
var
i : integer;
begin
if fFakZahl <> n then
Faktorisierung(n);
write(fAnzahlMoeglicherTeiler: 5, ' Faktoren ');
 
Forfor i := 1 to fFakAnzahl - 1 do
with fFaktoren[i] do
IFif potenz > 1 then
write(Faktor, '^', Potenz, '*')
else
write(Faktor, '*');
with fFaktoren[fFakAnzahl] do
IFif potenz > 1 then
write(Faktor, '^', Potenz)
else
write(Faktor);
 
writeln(' Euler Phi: ', fEulerPhi: 12, PeriodenLaenge: 12);
end;
 
procedure tFaktorisieren.TeilerErmitteln;
var
Position : DWordCardinal;
i,j j: DWordCardinal;
 
procedure FaktorAufbauen(Faktor: DWord;n: DWord);
procedure FaktorAufbauen(Faktor: Cardinal; n: Cardinal);
var
i, Pot: Cardinal;
Pot : DWord;
begin
Pot := 1;
i := 0;
repeat
IFif n > Low(fFaktoren) then
FaktorAufbauen(Pot * Faktor, n - 1)
else
begin
FTeiler[Position] := Pot * Faktor;
inc(Position);
end;
Pot := Pot * fFaktoren[n].Faktor;
inc(i);
until i > fFaktoren[n].Potenz;
end;
 
begin
Position := 0;
setlength(FTeiler, fAnzahlMoeglicherTeiler);
FaktorAufbauen(1, fFakAnzahl);
//Sortieren
Forfor i := Low(fTeiler) to fAnzahlMoeglicherTeiler - 2 do
begin
j := i;
while (j >= Low(fTeiler)) ANDand (fTeiler[j] > fTeiler[j + 1]) do
begin
Position := fTeiler[j];
fTeiler[j] := fTeiler[j + 1];
fTeiler[j + 1] := Position;
dec(j);
end;
end;
end;
end;
 
function tFaktorisieren.BasisPeriodeExtrahieren(var inZahl:Dword Cardinal):DWord Cardinal;
var
i, cnt, Teiler: Cardinal;
Teiler: Dword;
begin
cnt := 0;
result := 0;
Forfor i := Low(fBasFakt) to High(fBasFakt) do
begin
with fBasFakt[i] do
begin
if Faktor = 0 then
with fBasFakt[i] do
begin
IF Faktor = 0 then
BREAK;
Teiler := Faktor;
Forfor cnt := 2 to Potenz do
Teiler := Teiler * Faktor;
end;
cnt := 0;
while (inZahl <> 0) ANDand (inZahl mod Teiler = 0) do
begin
inZahl := inZahl div Teiler;
inc(cnt);
end;
IF cnt > result then
result := cnt;
end;
if cnt > result then
result := cnt;
end;
end;
 
procedure tFaktorisieren.PeriodeErmitteln(inZahl:Dword Cardinal);
var
i, TempZahl, TempPhi, TempPer, TempBasPer: Cardinal;
i,
TempZahl,
TempPhi,
TempPer,
TempBasPer: DWord;
begin
Faktorisierung(inZahl);
Line 840 ⟶ 2,265:
TempBasPer := BasisPeriodeExtrahieren(TempZahl);
TempPer := 0;
IFif TempZahl > 1 then
begin
Faktorisierung(TempZahl);
TempPhi := fEulerPhi;
IFif (TempPhi > 1) then
begin
Faktorisierung(TempPhi);
i := 0;
repeat
TempPer := fTeiler[i];
IFif BasExpMod(fFakBasis, TempPer, TempZahl) = 1 then
Break;
inc(i);
until i >= Length(fTeiler);
IFif i >= Length(fTeiler) then
TempPer := inZahl - 1;
end;
end;
end;
 
Faktorisierung(inZahl);
fPeriodenlaenge := TempPer;
fStartPeriode := TempBasPer;
end;
 
procedure tFaktorisieren.NachkommaPeriode(var OutText: Stringstring);
var
i, limit: integer;
i,
Rest, Rest1, Divi, basis: Cardinal;
limit : integer;
pText: pChar;
 
Rest,
Rest1,
Divi,
basis: DWord;
pText : pChar;
procedure Ziffernfolge(Ende: longint);
var
j : longint;
begin
j := i - Ende;
 
while j < 0 do
begin
Rest := Rest *Basis basis;
Rest1 := Rest Divdiv Divi;
Rest := Rest - Rest1 * Divi; //== Rest1 Mod Divi
 
pText^ := chr(Rest1 + Ord('0'));
inc(pText);
 
inc(j);
end;
 
i := Ende;
end;
 
begin
limit := fStartPeriode + fPeriodenlaenge;
 
setlength(OutText, limit + 2 + 2 + 5);
OutText[1] := '0';
OutText[2] := '.';
pText := @OutText[3];
 
Rest := 1;
Divi := fFakZahl;
Basisbasis := fFakBasis;
 
i := 0;
Ziffernfolge(fStartPeriode);
if fPeriodenlaenge = 0 then
begin
setlength(OutText, fStartPeriode + 2);
EXIT;
end;
 
pText^ := '_'; inc(pText);
inc(pText);
Ziffernfolge(limit);
pText^ := '_'; inc(pText);
inc(pText);
 
Ziffernfolge(limit + 5);
end;
 
type
tZahl = integer;
tRestFeld = array[0..31] of integer;
 
tRestFeld = array[0..31] of integer;
VAR
 
F : tFaktorisieren;
var
F: tFaktorisieren;
function tFaktorisieren.BasExpMod( b, e, m : Dword) : DWord;
 
begin
function tFaktorisieren.BasExpMod(b, e, m: Cardinal): Cardinal;
Result := 1;
begin
IF m = 0 then
Result := 1;
if m = 0 then
exit;
Result := 1;
while ( e > 0 ) do
begin
if (e ANDand 1) <> 0 then
Result := (Result * int64(b)) mod m;
b := (int64(b) * b ) mod m;
e := e shr 1;
end;
end;
 
procedure start;
var
VAR
Limit, Testzahl: Cardinal;
Testzahl longPrimCount: DWordint64;
t1, t0: TDateTime;
longPrimCount : int64;
begin
t1,t0: TDateTime;
BEGIN
 
Limit := 500;
Line 959 ⟶ 2,381:
 
repeat
write(Limit: 8, ': ');
repeat
if F.Prim(Testzahl) then
begin
F.PeriodeErmitteln(Testzahl);
if F.PeriodenLaenge = Testzahl - 1 then
Beginbegin
inc(longPrimCount);
IFif Limit = 500 then
write(TestZahlTestzahl, ',');
end
end;
inc(Testzahl);
until TestZahlTestzahl = Limit;
inc(Limit, Limit);
write(' .. count ', longPrimCount: 8, ' ');
t1 := time;
Ifif (t1 - t0) > 1 / 864000 then
write(FormatDateTime('HH:NN:SS.ZZZ', t1 -T0 t0));
writeln;
until Limit > 10 * 1000 * 1000;
t1 := time;
writeln;
writeln('count of long primes ',longPrimCount);
writeln('Benoetigte Zeit ',FormatDateTime('HH:NN:SS.ZZZ',T1-T0));
END;
 
t1 := time;
BEGIN
writeln;
writeln('count of long primes ', longPrimCount);
writeln('Benoetigte Zeit ', FormatDateTime('HH:NN:SS.ZZZ', t1 - t0));
 
end;
 
begin
F := tFaktorisieren.create;
writeln('Start');
start;
writeln('Fertig.');
F.free;
readln;
end.</langsyntaxhighlight>
{{out}}
<pre>sh-4.4# ./Periode
Line 1,022 ⟶ 2,444:
=={{header|Perl}}==
{{trans|Sidef}}
{{libheader|ntheory}}
<lang perl>use ntheory qw/divisors powmod/;
<syntaxhighlight lang="perl">use ntheory qw/divisors powmod is_prime/;
 
sub is_long_prime {
my($p) = @_;
return 0 unless is_prime($p);
for my $d (divisors($p-1)) {
return $d+1 == $p if powmod(10, $d, $p) == 1;
}
0;
Line 1,035 ⟶ 2,459:
print join(' ', grep {is_long_prime($_) } 1 .. 500), "\n\n";
 
for my $n (500, 1000, 2000, 4000, 8000, 16000, 32000, 64000) {
printf "Number of long primes ≤ $n: %d\n", scalar grep { is_long_prime($_) } 1 .. $n;
}</langsyntaxhighlight>
{{out}}
<pre>Long primes ≤ 500:
Line 1,051 ⟶ 2,475:
Number of long primes ≤ 64000: 2430</pre>
 
=== Using znorder ===
=={{header|Perl 6}}==
{{works with|Rakudo|2018.06}}
Not very fast as the numbers get larger.
<lang perl6>use Math::Primesieve;
my $sieve = Math::Primesieve.new;
 
Faster due to going directly over primes and using znorder. Takes one second to count to 8,192,000.
sub is-long (Int $p) {
<syntaxhighlight lang="perl">use ntheory qw/forprimes znorder/;
my $r = 1;
my($t,$z)=(0,0);
my $rr = $r = (10 * $r) % $p for ^$p;
forprimes {
my $period;
$z = loopznorder(10, {$_);
$t++ if defined $z && $rz+1 = (10 * $r) %= $p_;
} 8192000;
++$period;
print "$t\n";</syntaxhighlight>
last if $period >= $p or $r == $rr;
}
$period == $p - 1 and $p > 2;
}
 
my @primes = $sieve.primes(500);
my @long-primes = @primes.grep: {.&is-long};
 
put "Long primes ≤ 500:\n", @long-primes;
 
@long-primes = ();
 
for 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000 -> $upto {
state $from = 0;
my @extend = $sieve.primes($from, $upto);
@long-primes.append: @extend.hyper(:8degree).grep: {.&is-long};
say "\nNumber of long primes ≤ $upto: ", +@long-primes;
$from = $upto;
}</lang>
{{out}}
<pre>206594</pre>
<pre>Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
 
Number of long primes ≤ 500: 35
 
Number of long primes ≤ 1000: 60
 
Number of long primes ≤ 2000: 116
 
Number of long primes ≤ 4000: 218
 
Number of long primes ≤ 8000: 390
 
Number of long primes ≤ 16000: 716
 
Number of long primes ≤ 32000: 1300
 
Number of long primes ≤ 64000: 2430</pre>
 
=={{header|Phix}}==
Slow version:
Using primes and add_block from [[Extensible_prime_generator#Phix]]
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>function is_long_prime(integer n)
<span style="color: #008080;">function</span> <span style="color: #000000;">is_long_prime</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
integer r = 1, rr, period = 0
<span style="color: #004080;">integer</span> <span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">rr</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">period</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
for i=1 to n+1 do
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">+</span><span style="color: #000000;">1</span> <span style="color: #008080;">do</span>
r = mod(10*r,n)
<span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">*</span><span style="color: #000000;">r</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
end for
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
rr = r
<span style="color: #000000;">rr</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">r</span>
while true do
<span style="color: #008080;">while</span> <span style="color: #004600;">true</span> <span style="color: #008080;">do</span>
r = mod(10*r,n)
<span style="color: #000000;">r</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">10</span><span style="color: #0000FF;">*</span><span style="color: #000000;">r</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
period += 1
<span style="color: #000000;">period</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
if period>=n then return false end if
<span style="color: #008080;">if</span> <span style="color: #000000;">period</span><span style="color: #0000FF;">>=</span><span style="color: #000000;">n</span> <span style="color: #008080;">then</span> <span style="color: #008080;">return</span> <span style="color: #004600;">false</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
if r=rr then exit end if
<span style="color: #008080;">if</span> <span style="color: #000000;">r</span><span style="color: #0000FF;">=</span><span style="color: #000000;">rr</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
end while
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
return period=n-1
<span style="color: #008080;">return</span> <span style="color: #000000;">period</span><span style="color: #0000FF;">=</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span>
end function</lang>
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
<!--</syntaxhighlight>-->
(use the same main() as below but limit maxN to 8 iterations)
 
Much faster version:
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>function is_long_prime(integer n)
<span style="color: #008080;">function</span> <span style="color: #000000;">is_long_prime</span><span style="color: #0000FF;">(</span><span style="color: #004080;">integer</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
sequence f = factors(n-1,1)
<span style="color: #004080;">sequence</span> <span style="color: #000000;">f</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">factors</span><span style="color: #0000FF;">(</span><span style="color: #000000;">n</span><span style="color: #0000FF;">-</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">1</span><span style="color: #0000FF;">)</span>
integer count = 0
<span style="color: #004080;">integer</span> <span style="color: #000000;">count</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span>
for i=1 to length(f) do
<span style="color: #008080;">for</span> <span style="color: #000000;">i</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">to</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">f</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">do</span>
integer fi = f[i], e=1, base=10
<span style="color: #004080;">integer</span> <span style="color: #000000;">fi</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">f</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">],</span> <span style="color: #000000;">e</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">base</span><span style="color: #0000FF;">=</span><span style="color: #000000;">10</span>
while fi!=0 do
<span style="color: #008080;">while</span> <span style="color: #000000;">fi</span><span style="color: #0000FF;">!=</span><span style="color: #000000;">0</span> <span style="color: #008080;">do</span>
if mod(fi,2)=1 then
<span style="color: #008080;">if</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fi</span><span style="color: #0000FF;">,</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span>
e = mod(e*base,n)
<span style="color: #000000;">e</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">e</span><span style="color: #0000FF;">*</span><span style="color: #000000;">base</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
end if
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
base = mod(base*base,n)
<span style="color: #000000;">base</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">mod</span><span style="color: #0000FF;">(</span><span style="color: #000000;">base</span><span style="color: #0000FF;">*</span><span style="color: #000000;">base</span><span style="color: #0000FF;">,</span><span style="color: #000000;">n</span><span style="color: #0000FF;">)</span>
fi = floor(fi/2)
<span style="color: #000000;">fi</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">floor</span><span style="color: #0000FF;">(</span><span style="color: #000000;">fi</span><span style="color: #0000FF;">/</span><span style="color: #000000;">2</span><span style="color: #0000FF;">)</span>
end while
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
if e=1 then
<span style="color: #008080;">if</span> <span style="color: #000000;">e</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span>
count += 1
<span style="color: #000000;">count</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
if count>1 then exit end if
<span style="color: #008080;">if</span> <span style="color: #000000;">count</span><span style="color: #0000FF;">></span><span style="color: #000000;">1</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
end if
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
end for
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
return count=1
<span style="color: #008080;">return</span> <span style="color: #000000;">count</span><span style="color: #0000FF;">=</span><span style="color: #000000;">1</span>
end function
<span style="color: #008080;">end</span> <span style="color: #008080;">function</span>
 
procedure main()
<span style="color: #008080;">procedure</span> <span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
atom t0 = time()
<span style="color: #004080;">atom</span> <span style="color: #000000;">t0</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">time</span><span style="color: #0000FF;">()</span>
integer maxN = 500*power(2,14)--8)
<span style="color: #004080;">integer</span> <span style="color: #000000;">maxN</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">500</span><span style="color: #0000FF;">*</span><span style="color: #7060A8;">power</span><span style="color: #0000FF;">(</span><span style="color: #000000;">2</span><span style="color: #0000FF;">,</span><span style="color: #000000;">14</span><span style="color: #0000FF;">)</span>
while primes[$]<maxN do
<span style="color: #000080;font-style:italic;">--integer maxN = 500*power(2,7) -- (slow version)</span>
add_block()
<span style="color: #004080;">sequence</span> <span style="color: #000000;">long_primes</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{}</span>
end while
<span style="color: #004080;">integer</span> <span style="color: #000000;">count</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span><span style="color: #0000FF;">,</span>
sequence long_primes = {}
<span style="color: #000000;">n</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">500</span><span style="color: #0000FF;">,</span>
integer count = 0,
<span style="color: #000000;">i</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">2</span>
n = 500
<span style="color: #008080;">while</span> <span style="color: #004600;">true</span> <span style="color: #008080;">do</span>
for i=2 to length(primes) do -- (skip 2)
<span style="color: #004080;">integer</span> <span style="color: #000000;">prime</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">get_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">i</span><span style="color: #0000FF;">)</span>
integer prime = primes[i]
<span style="color: #008080;">if</span> <span style="color: #000000;">is_long_prime</span><span style="color: #0000FF;">(</span><span style="color: #000000;">prime</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">then</span>
if is_long_prime(prime) then
<span style="color: #008080;">if</span> <span style="color: #000000;">prime</span><span style="color: #0000FF;"><</span><span style="color: #000000;">500</span> <span style="color: #008080;">then</span>
if prime<500 then
<span style="color: #000000;">long_primes</span> <span style="color: #0000FF;">&=</span> <span style="color: #000000;">prime</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
<span style="color: #008080;">if</span> <span style="color: #000000;">prime</span><span style="color: #0000FF;">></span><span style="color: #000000;">n</span> <span style="color: #008080;">then</span>
if prime>n then
<span style="color: #008080;">if</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">500</span> <span style="color: #008080;">then</span>
if n=500 then
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"The long primes up to 500 are:\n %V\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">long_primes</span><span style="color: #0000FF;">})</span>
printf(1,"The long primes up to 500 are:\n")
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"\nThe number of long primes up to:\n"</span><span style="color: #0000FF;">)</span>
?long_primes
<span style="color: printf(1,#008080;"\nThe>end</span> number<span ofstyle="color: long primes up to:\n#008080;")>if</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">" %7d is %d (%s)\n"</span><span style="color: #0000FF;">,</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">n</span><span style="color: #0000FF;">,</span> <span style="color: #000000;">count</span><span style="color: #0000FF;">,</span> <span style="color: #7060A8;">elapsed</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">time</span><span style="color: #0000FF;">()-</span><span style="color: #000000;">t0</span><span style="color: #0000FF;">)})</span>
end if
<span style="color: #008080;">if</span> <span style="color: #000000;">n</span><span style="color: #0000FF;">=</span><span style="color: #000000;">maxN</span> <span style="color: #008080;">then</span> <span style="color: #008080;">exit</span> <span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
printf(1," %7d is %d (%s)\n", {n, count, elapsed(time()-t0)})
<span style="color: #000000;">n</span> <span style="color: #0000FF;">*=</span> <span style="color: #000000;">2</span>
if n=maxN then exit end if
<span style="color: #008080;">end</span> n<span *style="color: 2#008080;">if</span>
<span style="color: #000000;">count</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
end if
<span style="color: #008080;">end</span> <span style="color: #008080;">if</span>
count += 1
<span style="color: #000000;">i</span> <span style="color: #0000FF;">+=</span> <span style="color: #000000;">1</span>
end if
<span style="color: #008080;">end</span> <span style="color: #008080;">while</span>
end for
<span style="color: #008080;">end</span> <span style="color: #008080;">procedure</span>
end procedure
<span style="color: #000000;">main</span><span style="color: #0000FF;">()</span>
main()</lang>
<!--</syntaxhighlight>-->
{{out}}
slow version:
<pre>
The long primes up to 500 are:
{7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499}
 
The number of long primes up to:
500 is 35 (0.2s)
1000 is 60 (0.3s2s)
2000 is 116 (0.3s)
4000 is 218 (0.6s5s)
8000 is 390 (1.5s4s)
16000 is 716 (4.9s5s)
32000 is 1300 (16.6s0s)
64000 is 2430 (1 minute and 01s59.5s)
</pre>
fast version:
<pre>
The long primes up to 500 are:
{7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499}
 
The number of long primes up to:
500 is 35 (0.2s)
1000 is 60 (0.2s3s)
2000 is 116 (0.2s3s)
4000 is 218 (0.2s3s)
8000 is 390 (0.2s3s)
16000 is 716 (0.3s4s)
32000 is 1300 (0.4s5s)
64000 is 2430 (0.7s)
128000 is 4498 (1.3s4s)
256000 is 8434 (2.8s7s)
512000 is 15920 (65.0s8s)
1024000 is 30171 (1312.1s3s)
2048000 is 57115 (2826.2s3s)
4096000 is 108381 (1 minute and 01s56.5s)
8192000 is 206594 (21 minutesminute and 11s60s)
</pre>
 
=={{header|Picat}}==
<syntaxhighlight lang="picat">go =>
println(findall(P, (member(P,primes(500)),long_prime(P)))),
nl,
println("Number of long primes up to limit are:"),
foreach(Limit in [500,1_000,2_000,4_000,8_000,16_000,32_000,64_000])
printf(" <= %5d: %4d\n", Limit, count_all( (member(P,primes(Limit)), long_prime(P)) ))
end,
nl.
 
long_prime(P) =>
get_rep_len(P) == (P-1).
 
%
% Get the length of the repeating cycle for 1/n
%
get_rep_len(I) = Len =>
FoundRemainders = {0 : _K in 1..I+1},
Value = 1,
Position = 1,
while (FoundRemainders[Value+1] == 0, Value != 0)
FoundRemainders[Value+1] := Position,
Value := (Value*10) mod I,
Position := Position+1
end,
Len = Position-FoundRemainders[Value+1].</syntaxhighlight>
 
{{out}}
<pre>[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]
 
Number of long primes up to limit are:
<= 500: 35
<= 1000: 60
<= 2000: 116
<= 4000: 218
<= 8000: 390
<= 16000: 716
<= 32000: 1300
<= 64000: 2430</pre>
 
=={{header|Prolog}}==
{{works with|SWI Prolog}}
<syntaxhighlight lang="prolog">% See https://en.wikipedia.org/wiki/Full_reptend_prime
long_prime(Prime):-
is_prime(Prime),
M is 10 mod Prime,
M > 1,
primitive_root(10, Prime).
 
% See https://en.wikipedia.org/wiki/Primitive_root_modulo_n#Finding_primitive_roots
primitive_root(Base, Prime):-
Phi is Prime - 1,
primitive_root(Phi, 2, Base, Prime).
 
primitive_root(1, _, _, _):-!.
primitive_root(N, P, Base, Prime):-
is_prime(P),
0 is N mod P,
!,
X is (Prime - 1) // P,
R is powm(Base, X, Prime),
R \= 1,
divide_out(N, P, M),
Q is P + 1,
primitive_root(M, Q, Base, Prime).
primitive_root(N, P, Base, Prime):-
Q is P + 1,
Q * Q < Prime,
!,
primitive_root(N, Q, Base, Prime).
primitive_root(N, _, Base, Prime):-
X is (Prime - 1) // N,
R is powm(Base, X, Prime),
R \= 1.
 
divide_out(N, P, M):-
divmod(N, P, Q, 0),
!,
divide_out(Q, P, M).
divide_out(N, _, N).
 
print_long_primes([], _):-
!,
nl.
print_long_primes([Prime|_], Limit):-
Prime > Limit,
!,
nl.
print_long_primes([Prime|Primes], Limit):-
writef('%w ', [Prime]),
print_long_primes(Primes, Limit).
 
count_long_primes(_, L, Limit, _):-
L > Limit,
!.
count_long_primes([], Limit, _, Count):-
writef('Number of long primes up to %w: %w\n', [Limit, Count]),
!.
count_long_primes([Prime|Primes], L, Limit, Count):-
Prime > L,
!,
writef('Number of long primes up to %w: %w\n', [L, Count]),
Count1 is Count + 1,
L1 is L * 2,
count_long_primes(Primes, L1, Limit, Count1).
count_long_primes([_|Primes], L, Limit, Count):-
Count1 is Count + 1,
count_long_primes(Primes, L, Limit, Count1).
 
main(Limit):-
find_prime_numbers(Limit),
findall(Prime, long_prime(Prime), Primes),
writef('Long primes up to 500:\n'),
print_long_primes(Primes, 500),
count_long_primes(Primes, 500, Limit, 0).
 
main:-
main(256000).</syntaxhighlight>
 
Module for finding prime numbers up to some limit:
<syntaxhighlight lang="prolog">:- module(prime_numbers, [find_prime_numbers/1, is_prime/1]).
:- dynamic is_prime/1.
 
find_prime_numbers(N):-
retractall(is_prime(_)),
assertz(is_prime(2)),
init_sieve(N, 3),
sieve(N, 3).
 
init_sieve(N, P):-
P > N,
!.
init_sieve(N, P):-
assertz(is_prime(P)),
Q is P + 2,
init_sieve(N, Q).
 
sieve(N, P):-
P * P > N,
!.
sieve(N, P):-
is_prime(P),
!,
S is P * P,
cross_out(S, N, P),
Q is P + 2,
sieve(N, Q).
sieve(N, P):-
Q is P + 2,
sieve(N, Q).
 
cross_out(S, N, _):-
S > N,
!.
cross_out(S, N, P):-
retract(is_prime(S)),
!,
Q is S + 2 * P,
cross_out(Q, N, P).
cross_out(S, N, P):-
Q is S + 2 * P,
cross_out(Q, N, P).</syntaxhighlight>
 
{{out}}
<pre>
?- time(main(256000)).
Long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to 500: 35
Number of long primes up to 1000: 60
Number of long primes up to 2000: 116
Number of long primes up to 4000: 218
Number of long primes up to 8000: 390
Number of long primes up to 16000: 716
Number of long primes up to 32000: 1300
Number of long primes up to 64000: 2430
Number of long primes up to 128000: 4498
Number of long primes up to 256000: 8434
% 8,564,024 inferences, 0.991 CPU in 1.040 seconds (95% CPU, 8641390 Lips)
true.
</pre>
===alternative version===
the smallest divisor d of p - 1 such that 10^d = 1 (mod p)
is the length of the period of the decimal expansion of 1/p
<syntaxhighlight lang="prolog">isPrime(A):-
A1 is ceil(sqrt(A)),
between(2, A1, N),
0 =:= A mod N,!,
false.
isPrime(_).
 
divisors(N, Dlist):-
N1 is floor(sqrt(N)),
numlist(1, N1, Ds0),
include([D]>>(N mod D =:= 0), Ds0, Ds1),
reverse(Ds1, [Dh|Dt]),
( Dh * Dh < N
-> Ds1a = [Dh|Dt]
; Ds1a = Dt
),
maplist([X,Y]>>(Y is N div X), Ds1a, Ds2),
append(Ds1, Ds2, Dlist).
 
longPrime(P):-
divisors(P - 1, Dlist),
longPrime(P, Dlist).
 
longPrime(_,[]):- false.
longPrime(P, [D|Dtail]):-
powm(10, D, P) =\= 1,!,
longPrime(P, Dtail).
longPrime(P, [D|_]):-!,
D =:= P - 1.
 
isLongPrime(N):-
isPrime(N),
longPrime(N).
 
longPrimes(N, LongPrimes):-
numlist(7, N, List),
include(isLongPrime, List, LongPrimes).
 
run([]):-!.
run([Limit|Tail]):-
statistics(runtime,[Start|_]),
longPrimes(Limit, LongPrimes),
length(LongPrimes, Num),
statistics(runtime,[Stop|_]),
Runtime is Stop - Start,
writef('there are%5r long primes up to%6r [time (ms)%5r]\n',[Num, Limit, Runtime]),
run(Tail).
 
do:- longPrimes(500, LongPrimes),
writeln('long primes up to 500:'),
writeln(LongPrimes),
numlist(0, 7, List),
maplist([X, Y]>>(Y is 500 * 2**X), List, LimitList),
run(LimitList).</syntaxhighlight>
{{out}}
<pre>long primes up to 500:
[7,17,19,23,29,47,59,61,97,109,113,131,149,167,179,181,193,223,229,233,257,263,269,313,337,367,379,383,389,419,433,461,487,491,499]
there are 35 long primes up to 500 [time (ms) 7]
there are 60 long primes up to 1000 [time (ms) 16]
there are 116 long primes up to 2000 [time (ms) 42]
there are 218 long primes up to 4000 [time (ms) 98]
there are 390 long primes up to 8000 [time (ms) 242]
there are 716 long primes up to 16000 [time (ms) 603]
there are 1300 long primes up to 32000 [time (ms) 1507]
there are 2430 long primes up to 64000 [time (ms) 3851]
</pre>
 
=={{header|PureBasic}}==
<syntaxhighlight lang="purebasic">#MAX=64000
If OpenConsole()=0 : End 1 : EndIf
 
Dim p.b(#MAX) : FillMemory(@p(),#MAX,#True,#PB_Byte)
For n=2 To Int(Sqr(#MAX))+1 : If p(n) : m=n*n : While m<=#MAX : p(m)=#False : m+n : Wend : EndIf : Next
 
Procedure.i periodic(v.i)
r=1 : Repeat : r=(r*10)%v : c+1 : If r<=1 : ProcedureReturn c : EndIf : ForEver
EndProcedure
 
n=500
PrintN(LSet("_",15,"_")+"Long primes upto "+Str(n)+LSet("_",15,"_"))
For i=3 To 500 Step 2
If p(i) And (i-1)=periodic(i)
Print(RSet(Str(i),5)) : c+1 : If c%10=0 : PrintN("") : EndIf
EndIf
Next
 
PrintN(~"\n")
PrintN("The number of long primes up to:")
PrintN(RSet(Str(n),8)+" is "+Str(c)) : n+n
For i=501 To #MAX+1 Step 2
If p(i) And (i-1)=periodic(i) : c+1 : EndIf
If i>n : PrintN(RSet(Str(n),8)+" is "+Str(c)) : n+n : EndIf
Next
Input()</syntaxhighlight>
{{out}}
<pre>_______________Long primes upto 500_______________
7 17 19 23 29 47 59 61 97 109
113 131 149 167 179 181 193 223 229 233
257 263 269 313 337 367 379 383 389 419
433 461 487 491 499
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
</pre>
 
=={{header|Python}}==
{{trans|Kotlin}}
<langsyntaxhighlight lang="python">def sieve(limit):
primes = []
c = [False] * (limit + 1) # composite = true
Line 1,261 ⟶ 2,945:
print('\nThe number of long primes up to:')
for (i, total) in enumerate(totals):
print(' %5d is %d' % (numbers[i], total))</langsyntaxhighlight>
{{out}}
<pre>
Line 1,277 ⟶ 2,961:
64000 is 2430
</pre>
 
=={{header|Quackery}}==
 
<code>eratosthenes</code> and <code>isprime</code> are defined at [[Sieve of Eratosthenes#Quackery]].
 
<code>bsearchwith</code> is defined at [[Binary search#Quackery]].
 
<syntaxhighlight lang="quackery"> [ over size 0 swap 2swap
bsearchwith < drop ] is search ( [ --> n )
 
[ 1 over 1 - times
[ 10 * over mod ]
tuck
0 temp put
[ 10 * over mod
1 temp tally
rot 2dup != while
unrot again ]
2drop drop
temp take ] is period ( n --> n )
 
[ dup isprime not iff
[ drop false ] done
dup period 1+ = ] is islongprime ( n --> b )
64000 eratosthenes
 
[]
64000 times
[ i^ islongprime if [ i^ join ] ]
behead drop
dup dup 500 search split drop echo cr cr
' [ 500 1000 2000 4000 8000 16000 32000 64000 ]
witheach
[ dup echo say " --> "
dip dup search echo cr ]
drop</syntaxhighlight>
 
{{out}}
 
<pre>[ 7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499 ]
 
500 --> 35
1000 --> 60
2000 --> 116
4000 --> 218
8000 --> 390
16000 --> 716
32000 --> 1300
64000 --> 2430</pre>
 
=={{header|Racket}}==
 
{{trans|Go}} (at least '''find-period''')
 
<syntaxhighlight lang="racket">#lang racket
(require math/number-theory)
 
(define (find-period n)
(let ((rr (for/fold ((r 1))
((i (in-range 1 (+ n 2))))
(modulo (* 10 r) n))))
(let period-loop ((r rr) (p 1))
(let ((r′ (modulo (* 10 r) n)))
(if (= r′ rr) p (period-loop r′ (add1 p)))))))
 
(define (long-prime? n)
(and (prime? n) (= (find-period n) (sub1 n))))
 
(define memoised-long-prime? (let ((h# (make-hash))) (λ (n) (hash-ref! h# n (λ () (long-prime? n))))))
 
(module+ main
;; strictly, won't test 500 itself... but does it look prime to you?
(filter memoised-long-prime? (range 7 500 2))
(for-each
(λ (n) (displayln (cons n (for/sum ((i (in-range 7 n 2))) (if (memoised-long-prime? i) 1 0)))))
'(500 1000 2000 4000 8000 16000 32000 64000)))
 
(module+ test
(require rackunit)
(check-equal? (map find-period '(7 11 977)) '(6 2 976)))</syntaxhighlight>
 
{{out}}
<pre>'(7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499)
(500 . 35)
(1000 . 60)
(2000 . 116)
(4000 . 218)
(8000 . 390)
(16000 . 716)
(32000 . 1300)
(64000 . 2430)</pre>
 
=={{header|Raku}}==
(formerly Perl 6)
{{works with|Rakudo|2018.06}}
Not very fast as the numbers get larger.
<syntaxhighlight lang="raku" line>use Math::Primesieve;
my $sieve = Math::Primesieve.new;
 
sub is-long (Int $p) {
my $r = 1;
my $rr = $r = (10 * $r) % $p for ^$p;
my $period;
loop {
$r = (10 * $r) % $p;
++$period;
last if $period >= $p or $r == $rr;
}
$period == $p - 1 and $p > 2;
}
 
my @primes = $sieve.primes(500);
my @long-primes = @primes.grep: {.&is-long};
 
put "Long primes ≤ 500:\n", @long-primes;
 
@long-primes = ();
 
for 500, 1000, 2000, 4000, 8000, 16000, 32000, 64000 -> $upto {
state $from = 0;
my @extend = $sieve.primes($from, $upto);
@long-primes.append: @extend.hyper(:8degree).grep: {.&is-long};
say "\nNumber of long primes ≤ $upto: ", +@long-primes;
$from = $upto;
}</syntaxhighlight>
{{out}}
<pre>Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
 
Number of long primes ≤ 500: 35
 
Number of long primes ≤ 1000: 60
 
Number of long primes ≤ 2000: 116
 
Number of long primes ≤ 4000: 218
 
Number of long primes ≤ 8000: 390
 
Number of long primes ≤ 16000: 716
 
Number of long primes ≤ 32000: 1300
 
Number of long primes ≤ 64000: 2430</pre>
 
=={{header|REXX}}==
Line 1,286 ⟶ 3,116:
For every &nbsp; '''doubling''' &nbsp; of the limit, it takes about roughly &nbsp; '''5''' &nbsp; times longer to compute the long primes.
===uses odd numbers===
<langsyntaxhighlight lang="rexx">/*REXX pgm calculates/displays base ten long primes (AKA golden primes, proper primes,*/
/*───────────────────── maximal period primes, long period primes, full reptend primes).*/
parse arg a /*obtain optional argument from the CL.*/
Line 1,307 ⟶ 3,137:
.len: procedure; parse arg x; r=1; do x; r= 10*r // x; end /*x*/
rr=r; do p=1 until r==rr; r= 10*r // x; end /*p*/
return p</langsyntaxhighlight>
{{out|output|text=&nbsp; when using the internal default inputs:}}
<pre>
Line 1,338 ⟶ 3,168:
===uses odd numbers, some prime tests===
This REXX version is about &nbsp; '''2''' &nbsp; times faster than the 1<sup>st</sup> REXX version &nbsp; (because it does some primality testing).
<langsyntaxhighlight lang="rexx">/*REXX pgm calculates/displays base ten long primes (AKA golden primes, proper primes,*/
/*───────────────────── maximal period primes, long period primes, full reptend primes).*/
parse arg a /*obtain optional argument from the CL.*/
Line 1,365 ⟶ 3,195:
.len: procedure; parse arg x; r=1; do x; r= 10*r // x; end /*x*/
rr=r; do p=1 until r==rr; r= 10*r // x; end /*p*/
return p</langsyntaxhighlight>
{{out|output|text=&nbsp; is identical to the 1<sup>st</sup> REXX version.}}
 
===uses primes===
This REXX version is about &nbsp; '''5''' &nbsp; times faster than the 1<sup>st</sup> REXX version &nbsp; (because it only tests primes).
<langsyntaxhighlight lang="rexx">/*REXX pgm calculates/displays base ten long primes (AKA golden primes, proper primes,*/
/*───────────────────── maximal period primes, long period primes, full reptend primes).*/
parse arg a /*obtain optional argument from the CL.*/
if a='' | a="," then a= '500 -500 -1000 -2000 -4000 -8000 -16000' , /*Not specified? */
'-32000 -64000 -128000 -512000 -1024000' /*Then use default*/
m=0; aa= words(a) /* [↑] two list types of low primes. */
do j=1 for aa; m= max(m, abs(word(a, j))) /*find the maximum argument in the list*/
end /*j*/
call genP /*go and generate some primes. */
do k=1 for aa; H= word(a, k) /*step through the list of high limits.*/
neg= H<1 /*used as an indicator to display count*/
H= abs(H) /*obtain the absolute value of H. */
Line 1,386 ⟶ 3,216:
if \@.j then iterate /*Is J not a prime? Then skip it. */
if .len(j) + 1 \== j then iterate /*Period length wrong? " " " */
$= $ j /*add the long prime to the $ list.*/
end /*j*/ /* [↑] some pretty weak prime testing.*/
say
if neg then do; say 'number of long primes ≤ ' H " is: " words($); end
else do; say 'list of long primes ≤ ' H":"; say strip($); end
end /*k*/
Line 1,395 ⟶ 3,225:
/*──────────────────────────────────────────────────────────────────────────────────────*/
genP: @.=0; @.2=1; @.3=1; @.5=1; @.7=1; @.11=1; !.=0; !.1=2; !.2=3; !.3=5; !.4=7; !.5=11
#=5 5 /*the number of primes (so far). */
do g=!.#+2 by 2 until #g>=m /*gen enough primes to satisfy max A. */
if @.g\==0 then iterate do d=2 until !.d**2 > g /*onlyIs it not a divideprime? up to square root ofThen skip Xit. */
if gdo //d=2 until !.d**2>g == 0 then iterate g /*Divisible?only divide up to square Thenroot skipof this integerX. */
end if g/*/!.d*/ ==0 then iterate g /*Divisible? [↓] aThen spankingskip newthis primeinteger. was found.*/
#=#+1; @.g=1; !.#=g end /*d*/ /*bump P[↓] counter;a assignspanking P,new addprime towas P'sfound.*/
end#= #+1 @.g= 1; !.#= g /*gbump P counter; assign P, add to P's.*/
end /*g*/
return
/*──────────────────────────────────────────────────────────────────────────────────────*/
.len: procedure; parse arg x; r=1; do x; r= 10*r // x; end /*x*/
rr=r; do p=1 until r==rr; r= 10*r // x; end /*p*/
return p</langsyntaxhighlight>
{{out|output|text=&nbsp; is identical to the 1<sup>st</sup> REXX version.}} <br><br>
 
=={{header|RPL}}==
{{works with|HP|49}}
« → n
« 0 1
'''DO''' 10 * n MOD SWAP 1 + SWAP
'''UNTIL''' DUP 1 ≤ '''END'''
DROP
» » '<span style="color:blue">PERIOD</span>' STO <span style="color:grey">@ ''( n → length of 1/n period )''</span>
« { } 7
'''WHILE''' DUP 500 < '''REPEAT'''
'''IF''' DUP <span style="color:blue">PERIOD</span> OVER 1 - == '''THEN''' SWAP OVER + SWAP '''END'''
NEXTPRIME
'''END'''
DROP
» '<span style="color:blue">TASK1</span>' STO
« { 500 1000 2000 4000 8000 16000 32000 } → t
« t NOT 7
'''WHILE''' DUP 1000 < '''REPEAT'''
'''IF''' DUP <span style="color:blue">PERIOD</span> OVER 1 - == '''THEN''' t OVER ≥ ROT ADD SWAP '''END'''
NEXTPRIME
'''END'''
DROP t SWAP
2 « "<" ROT + →TAG » DOLIST
» » '<span style="color:blue">TASK2</span>' STO
{{out}}
<pre>
2: {7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499}
1: {<500:35 <1000:60 <2000:116 <4000:218 <8000:390 <16000:716 <32000:1300}
</pre>
 
=={{header|Ruby}}==
System: I7-6700HQ, 3.5 GHz, Linux Kernel 5.6.17
Run as: $ ruby longprimes.rb
Finding long prime numbers using finding period location (translation of Python's module def findPeriod(n))
<syntaxhighlight lang="ruby">require 'prime'
 
batas = 64_000 # limit number
start = Time.now # time of starting
lp_array = [] # array of long-prime numbers
 
def find_period(n)
r, period = 1, 0
(1...n).each {r = (10 * r) % n}
rr = r
loop do
r = (10 * r) % n
period += 1
break if r == rr
end
return period
end
 
Prime.each(batas).each do |prime|
lp_array.push(prime) if find_period(prime) == prime-1 && prime != 2
end
 
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |s|
if s == 500
puts "\nAll long primes up to #{s} are: #{lp_array.count {|x| x < s}}. They are:"
lp_array.each {|x| print x, " " if x < s}
else
print "\nAll long primes up to #{s} are: #{lp_array.count {|x| x < s}}"
end
end
 
puts "\n\nTime: #{Time.now - start}"</syntaxhighlight>
 
{{out}}
<pre>All long primes up to 500 are: 35. They are:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
All long primes up to 1000 are: 60
All long primes up to 2000 are: 116
All long primes up to 4000 are: 218
All long primes up to 8000 are: 390
All long primes up to 16000 are: 716
All long primes up to 32000 are: 1300
All long primes up to 64000 are: 2430</pre>
 
Time: 16.212039 # Ruby 2.7.1
Time: 18.664795 # JRuby 9.2.11.1
Time: 3.198 # Truffleruby 20.1.0
 
Alternatively, by using primitive way: converting value into string and make assessment for proper repetend position. Indeed produce same information, but with longer time.
<syntaxhighlight lang="ruby">require 'prime'
require 'bigdecimal'
require 'strscan'
 
batas = 64_000 # limit number
start = Time.now # time of starting
lp_array = [] # array of long-prime numbers
a = BigDecimal.("1") # number being divided, that is 1.
 
Prime.each(batas).each do |prime|
cek = a.div(prime, (prime-1)*2).truncate((prime-1)*2).to_s('F')[2..-1] # Dividing 1 with prime and take its value as string.
if (cek[0, prime-1] == cek[prime-1, prime-1])
i = prime-2
until i < 5
break if cek[0, i] == cek[i, i]
i-=1
cek.slice!(-2, 2) # Shortening checked string to reduce checking process load
end
until i == 0
break if cek[0, (cek.size/i)*i].scan(/.{#{i}}/).uniq.length == 1
i-=1
end
 
lp_array.push(prime) if i == 0
end
end
 
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |s|
if s == 500
puts "\nAll long primes up to #{s} are: #{lp_array.count {|x| x < s}}. They are:"
lp_array.each {|x| print x, " " if x < s}
else
print "\nAll long primes up to #{s} are: #{lp_array.count {|x| x < s}}"
end
end
 
puts "\n\nTime: #{Time.now - start}"</syntaxhighlight>
 
{{out}}
<pre>
(same output with previous version, but longer time elapse)
 
Time: 629.360075011 secs # Ruby 2.7.1</pre>
 
{{trans|Crystal of Sidef}}
Fastest version.
<syntaxhighlight lang="ruby">def prime?(n) # P3 Prime Generator primality test
return n | 1 == 3 if n < 5 # n: 2,3|true; 0,1,4|false
return false if n.gcd(6) != 1 # this filters out 2/3 of all integers
pc, sqrtn = 5, Integer.sqrt(n) # first P3 prime candidates sequence value
until pc > sqrtn
return false if n % pc == 0 || n % (pc + 2) == 0 # if n is composite
pc += 6 # 1st prime candidate for next residues group
end
true
end
 
def divisors(n) # divisors of n -> [1,..,n]
f = []
(1..Integer.sqrt(n)).each { |i| (n % i).zero? && (f << i; f << n / i if n / i != i) }
f.sort
end
 
# The smallest divisor d of p-1 such that 10^d = 1 (mod p),
# is the length of the period of the decimal expansion of 1/p.
def long_prime?(p)
return false unless prime? p
divisors(p - 1).each { |d| return d == (p - 1) if 10.pow(d, p) == 1 }
false
end
 
start = Time.now
puts "Long primes ≤ 500:"
(7..500).each { |pc| print "#{pc} " if long_prime? pc }
puts
[500, 1000, 2000, 4000, 8000, 16000, 32000, 64000].each do |n|
puts "Number of long primes ≤ #{n}: #{(7..n).count { |pc| long_prime? pc }}"
end
puts "\nTime: #{(Time.now - start)} secs"</syntaxhighlight>
 
{{out}}
<pre>Long primes ≤ 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes ≤ 500: 35
Number of long primes ≤ 1000: 60
Number of long primes ≤ 2000: 116
Number of long primes ≤ 4000: 218
Number of long primes ≤ 8000: 390
Number of long primes ≤ 16000: 716
Number of long primes ≤ 32000: 1300
Number of long primes ≤ 64000: 2430</pre>
 
Time: 0.228912772 secs # Ruby 2.7.1
Time: 0.544648 secs # JRuby 9.2.11.1
Time: 11.985 secs # Truffleruby 20.1.0
 
=={{header|Rust}}==
<syntaxhighlight lang="rust">// main.rs
// References:
// https://en.wikipedia.org/wiki/Full_reptend_prime
// https://en.wikipedia.org/wiki/Primitive_root_modulo_n#Finding_primitive_roots
 
mod bit_array;
mod prime_sieve;
 
use prime_sieve::PrimeSieve;
 
fn modpow(mut base: usize, mut exp: usize, n: usize) -> usize {
if n == 1 {
return 0;
}
let mut result = 1;
base %= n;
while exp > 0 {
if (exp & 1) == 1 {
result = (result * base) % n;
}
base = (base * base) % n;
exp >>= 1;
}
result
}
 
fn is_long_prime(sieve: &PrimeSieve, prime: usize) -> bool {
if !sieve.is_prime(prime) {
return false;
}
if 10 % prime == 0 {
return false;
}
let n = prime - 1;
let mut m = n;
let mut p = 2;
while p * p <= n {
if sieve.is_prime(p) && m % p == 0 {
if modpow(10, n / p, prime) == 1 {
return false;
}
while m % p == 0 {
m /= p;
}
}
p += 1;
}
if m == 1 {
return true;
}
modpow(10, n / m, prime) != 1
}
 
fn long_primes(limit1: usize, limit2: usize) {
let sieve = PrimeSieve::new(limit2);
let mut count = 0;
let mut limit = limit1;
let mut prime = 3;
while prime < limit2 {
if is_long_prime(&sieve, prime) {
if prime < limit1 {
print!("{} ", prime);
}
if prime > limit {
print!("\nNumber of long primes up to {}: {}", limit, count);
limit *= 2;
}
count += 1;
}
prime += 2;
}
println!("\nNumber of long primes up to {}: {}", limit, count);
}
 
fn main() {
long_primes(500, 8192000);
}</syntaxhighlight>
 
<syntaxhighlight lang="rust">// prime_sieve.rs
use crate::bit_array;
 
pub struct PrimeSieve {
composite: bit_array::BitArray,
}
 
impl PrimeSieve {
pub fn new(limit: usize) -> PrimeSieve {
let mut sieve = PrimeSieve {
composite: bit_array::BitArray::new(limit / 2),
};
let mut p = 3;
while p * p <= limit {
if !sieve.composite.get(p / 2 - 1) {
let inc = p * 2;
let mut q = p * p;
while q <= limit {
sieve.composite.set(q / 2 - 1, true);
q += inc;
}
}
p += 2;
}
sieve
}
pub fn is_prime(&self, n: usize) -> bool {
if n < 2 {
return false;
}
if n % 2 == 0 {
return n == 2;
}
!self.composite.get(n / 2 - 1)
}
}</syntaxhighlight>
 
<syntaxhighlight lang="rust">// bit_array.rs
pub struct BitArray {
array: Vec<u32>,
}
 
impl BitArray {
pub fn new(size: usize) -> BitArray {
BitArray {
array: vec![0; (size + 31) / 32],
}
}
pub fn get(&self, index: usize) -> bool {
let bit = 1 << (index & 31);
(self.array[index >> 5] & bit) != 0
}
pub fn set(&mut self, index: usize, new_val: bool) {
let bit = 1 << (index & 31);
if new_val {
self.array[index >> 5] |= bit;
} else {
self.array[index >> 5] &= !bit;
}
}
}</syntaxhighlight>
 
{{out}}
Execution time is just over 1.5 seconds on my system (macOS 10.15, 3.2 GHz Quad-Core Intel Core i5)
<pre>
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
Number of long primes up to 500: 35
Number of long primes up to 1000: 60
Number of long primes up to 2000: 116
Number of long primes up to 4000: 218
Number of long primes up to 8000: 390
Number of long primes up to 16000: 716
Number of long primes up to 32000: 1300
Number of long primes up to 64000: 2430
Number of long primes up to 128000: 4498
Number of long primes up to 256000: 8434
Number of long primes up to 512000: 15920
Number of long primes up to 1024000: 30171
Number of long primes up to 2048000: 57115
Number of long primes up to 4096000: 108381
Number of long primes up to 8192000: 206594
</pre>
===Rust FP===
<syntaxhighlight lang="rust">fn is_oddprime(n: u64) -> bool {
let limit = (n as f64).sqrt().ceil() as u64;
(3..=limit).step_by(2).all(|a| n % a > 0)
}
 
fn divisors(n: u64) -> Vec<u64> {
let list1: Vec<u64> = (1..=(n as f64).sqrt().floor() as u64)
.filter(|d| n % d == 0).collect();
let list2: Vec<u64> = list1.iter().rev()
.skip_while(|&d| d * d == n).map(|d| n / d).collect();
[list1, list2].concat()
}
 
fn power_mod(base: u64, exp: u64, modulo: u64) -> u64 {
fn iter(base: u64, modu: &u64, exp: u64, res: u64) -> u64 {
if exp > 0 {
let base1 = (base * base) % modu;
let res1 = if exp & 1 > 0 {(base * res) % modu} else {res};
iter(base1, modu, exp >> 1, res1)
}
else {res}
}
iter(base, &modulo, exp, 1)
}
 
// the smallest divisor d of p-1 such that 10^d = 1 (mod p)
// is the length of the period of the decimal expansion of 1/p
fn is_longprime(p: u64) -> bool {
match divisors(p - 1).into_iter()
.skip_while(|&d| power_mod(10, d, p) != 1)
.next() {
Some(d) => d + 1 == p,
None => false
}
}
 
fn long_primes() -> impl Iterator<Item = u64> {
(7..).step_by(2).filter(|&p|is_oddprime(p))
.filter(|&p| is_longprime(p))
}
 
fn main() {
println!("long primes up to 500:");
let list500: Vec<u64> = long_primes()
.take_while(|&p| p <= 500)
.collect();
println!("{:?}\n", list500);
let limits: Vec<u64> = (0..8).map(|n| 2u64.pow(n) * 500).collect();
for limit in limits {
let start = std::time::Instant::now();
let count = long_primes().take_while(|&p| p <= limit).count();
let duration = start.elapsed().as_millis();
println!("there are {:4} long primes up to {:5} [time(ms) {:3}]",
count, limit, duration);
}
}</syntaxhighlight>
{{out}}
<pre>
long primes up to 500:
[7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499]
 
there are 35 long primes up to 500 [time(ms) 0]
there are 60 long primes up to 1000 [time(ms) 1]
there are 116 long primes up to 2000 [time(ms) 2]
there are 218 long primes up to 4000 [time(ms) 5]
there are 390 long primes up to 8000 [time(ms) 13]
there are 716 long primes up to 16000 [time(ms) 31]
there are 1300 long primes up to 32000 [time(ms) 36]
there are 2430 long primes up to 64000 [time(ms) 41]
</pre>
 
=={{header|Scala}}==
<syntaxhighlight lang="scala">object LongPrimes extends App {
def primeStream = LazyList.from(3, 2)
.filter(p => (3 to math.sqrt(p).ceil.toInt by 2).forall(p % _ > 0))
def longPeriod(p: Int): Boolean = {
val mstart = 10 % p
@annotation.tailrec
def iter(mod: Int, period: Int): Int = {
val mod1 = (10 * mod) % p
if (mod1 == mstart) period
else iter(mod1, period + 1)
}
iter(mstart, 1) == p - 1
}
 
val longPrimes = primeStream.filter(longPeriod(_))
println("long primes up to 500:")
println(longPrimes.takeWhile(_ <= 500).mkString(" "))
println
val limitList = Seq.tabulate(8)(math.pow(2, _).toInt * 500)
for (limit <- limitList) {
val count = longPrimes.takeWhile(_ <= limit).length
println(f"there are $count%4d long primes up to $limit%5d")
}
}</syntaxhighlight>
{{out}}
<pre>
long primes up to 500:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
 
there are 35 long primes up to 500
there are 60 long primes up to 1000
there are 116 long primes up to 2000
there are 218 long primes up to 4000
there are 390 long primes up to 8000
there are 716 long primes up to 16000
there are 1300 long primes up to 32000
there are 2430 long primes up to 64000
</pre>
 
=={{header|Sidef}}==
The smallest divisor d of p-1 such that 10^d = 1 (mod p), is the length of the period of the decimal expansion of 1/p.
<langsyntaxhighlight lang="ruby">func is_long_prime(p) {
 
for d in (divisors(p-1)) {
Line 1,427 ⟶ 3,716:
for n in ([500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]) {
say ("Number of long primes ≤ #{n}: ", primes(n).count_by(is_long_prime))
}</langsyntaxhighlight>
{{out}}
<pre>
Line 1,444 ⟶ 3,733:
Alternatively, we can implement the ''is_long_prime(p)'' function using the `znorder(a, p)` built-in method, which is considerably faster:
 
<langsyntaxhighlight lang="ruby">func is_long_prime(p) {
znorder(10, p) == p-1
}</langsyntaxhighlight>
 
=={{header|Swift}}==
 
<syntaxhighlight lang="swift">public struct Eratosthenes: Sequence, IteratorProtocol {
private let n: Int
private let limit: Int
 
private var i = 2
private var sieve: [Int]
 
public init(upTo: Int) {
if upTo <= 1 {
self.n = 0
self.limit = -1
self.sieve = []
} else {
self.n = upTo
self.limit = Int(Double(n).squareRoot())
self.sieve = Array(0...n)
}
}
 
public mutating func next() -> Int? {
while i < n {
defer { i += 1 }
 
if sieve[i] != 0 {
if i <= limit {
for notPrime in stride(from: i * i, through: n, by: i) {
sieve[notPrime] = 0
}
}
 
return i
}
}
 
return nil
}
}
 
func findPeriod(n: Int) -> Int {
let r = (1...n+1).reduce(1, {res, _ in (10 * res) % n })
var rr = r
var period = 0
 
repeat {
rr = (10 * rr) % n
period += 1
} while r != rr
 
return period
}
 
let longPrimes = Eratosthenes(upTo: 64000).dropFirst().lazy.filter({ findPeriod(n: $0) == $0 - 1 })
 
print("Long primes less than 500: \(Array(longPrimes.prefix(while: { $0 <= 500 })))")
 
let counts =
longPrimes.reduce(into: [500: 0, 1000: 0, 2000: 0, 4000: 0, 8000: 0, 16000: 0, 32000: 0, 64000: 0], {counts, n in
for key in counts.keys where n < key {
counts[key]! += 1
}
})
 
for key in counts.keys.sorted() {
print("There are \(counts[key]!) long primes less than \(key)")
}</syntaxhighlight>
 
{{out}}
 
<pre>Long primes less than 500: [7, 17, 19, 23, 29, 47, 59, 61, 97, 109, 113, 131, 149, 167, 179, 181, 193, 223, 229, 233, 257, 263, 269, 313, 337, 367, 379, 383, 389, 419, 433, 461, 487, 491, 499]
There are 35 long primes less than 500
There are 60 long primes less than 1000
There are 116 long primes less than 2000
There are 218 long primes less than 4000
There are 390 long primes less than 8000
There are 716 long primes less than 16000
There are 1300 long primes less than 32000
There are 2430 long primes less than 64000</pre>
 
=={{header|Visual Basic .NET}}==
{{trans|C#}}
<syntaxhighlight lang="vbnet">Imports System, System.Collections.Generic, System.Linq, System.Console
 
Module LongPrimes
 
Function Period(ByVal n As Integer) As Integer
Dim m As Integer, r As Integer = 1
For i As Integer = 0 To n : r = 10 * r Mod n : Next
m = r : Period = 1 : While True
r = (10 * r) Mod n : If r = m Then Return Period
Period += 1 : End While
End Function
 
Sub Main()
Dim primes As IEnumerable(Of Integer) = SomePrimeGenerator.Primes(64000).Skip(1).Where(Function(p) Period(p) = p - 1).Append(99999)
Dim count As Integer = 0, limit As Integer = 500
WriteLine(String.Join(" ", primes.TakeWhile(Function(p) p <= limit)))
For Each prime As Integer In primes
If prime > limit Then
WriteLine($"There are {count} long primes below {limit}")
limit <<= 1 : End If : count += 1 : Next
End Sub
 
End Module
 
Module SomePrimeGenerator
 
Iterator Function Primes(lim As Integer) As IEnumerable(Of Integer)
Dim flags As Boolean() = New Boolean(lim) {},
j As Integer = 2, d As Integer = 3, sq As Integer = 4
While sq <= lim
If Not flags(j) Then
Yield j : For k As Integer = sq To lim step j
flags(k) = True : Next
End If : j += 1 : d += 2 : sq += d
End While : While j <= lim
If Not flags(j) Then Yield j
j += 1 : End While
End Function
 
End Module</syntaxhighlight>
{{out}}
Same output as C#.
 
=={{header|Wren}}==
{{trans|Go}}
{{libheader|Wren-fmt}}
{{libheader|Wren-math}}
<syntaxhighlight lang="wren">import "./fmt" for Fmt
import "./math" for Int
// finds the period of the reciprocal of n
var findPeriod = Fn.new { |n|
var r = 1
for (i in 1..n+1) r = (10*r) % n
var rr = r
var period = 0
var ok = true
while (ok) {
r = (10*r) % n
period = period + 1
ok = (r != rr)
}
return period
}
var primes = Int.primeSieve(64000).skip(1)
var longPrimes = []
for (prime in primes) {
if (findPeriod.call(prime) == prime - 1) longPrimes.add(prime)
}
var numbers = [500, 1000, 2000, 4000, 8000, 16000, 32000, 64000]
var index = 0
var count = 0
var totals = List.filled(numbers.count, 0)
for (longPrime in longPrimes) {
if (longPrime > numbers[index]) {
totals[index] = count
index = index + 1
}
count = count + 1
}
totals[-1] = count
System.print("The long primes up to %(numbers[0]) are: ")
System.print(longPrimes[0...totals[0]].join(" "))
System.print("\nThe number of long primes up to: ")
var i = 0
for (total in totals) {
Fmt.print(" $5d is $d", numbers[i], total)
i = i + 1
}</syntaxhighlight>
 
{{out}}
<pre>
The long primes up to 500 are:
7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
</pre>
 
=={{header|XBasic}}==
{{trans|C}}
{{works with|Windows XBasic}}
<syntaxhighlight lang="xbasic">
PROGRAM "longprimes"
VERSION "0.0002"
 
DECLARE FUNCTION Entry()
INTERNAL FUNCTION Sieve(limit&, primes&[], count%)
INTERNAL FUNCTION FindPeriod(n&)
 
FUNCTION Entry()
DIM numbers&[7]
numbers&[0] = 500
numbers&[1] = 1000
numbers&[2] = 2000
numbers&[3] = 4000
numbers&[4] = 8000
numbers&[5] = 16000
numbers&[6] = 32000
numbers&[7] = 64000
numberUpperBound% = UBOUND(numbers&[])
DIM totals%[numberUpperBound%]
DIM primes&[6499]
PRINT "Please wait."
PRINT
Sieve(64000, @primes&[], @primeCount%)
DIM longPrimes&[primeCount% - 1] ' Surely longCount% < primeCount%
longCount% = 0
FOR i% = 0 TO primeCount% - 1
prime& = primes&[i%]
IF FindPeriod(prime&) = prime& - 1 THEN
longPrimes&[longCount%] = prime&
INC longCount%
END IF
NEXT i%
count% = 0
index% = 0
FOR i% = 0 TO longCount% - 1
IF longPrimes&[i%] > numbers&[index%] THEN
totals%[index%] = count%
INC index%
END IF
INC count%
NEXT i%
totals%[numberUpperBound%] = count%
PRINT "The long primes up to"; numbers&[0]; " are:"
PRINT "[";
FOR i% = 0 TO totals%[0] - 2
PRINT STRING$(longPrimes&[i%]); " ";
NEXT i%
IF totals%[0] > 0 THEN
PRINT STRING$(longPrimes&[totals%[0] - 1]);
END IF
PRINT "]"
PRINT
PRINT "The number of long primes up to:"
FOR i% = 0 TO numberUpperBound%
PRINT FORMAT$(" #####", numbers&[i%]); " is"; totals%[i%]
NEXT i%
END FUNCTION
 
FUNCTION Sieve(limit&, primes&[], count%)
DIM c@[limit&]
FOR i& = 0 TO limit&
c@[i&] = 0
NEXT i&
' No need to process even numbers
p% = 3
n% = 0
p2& = p% * p%
DO WHILE p2& <= limit&
FOR i& = p2& TO limit& STEP 2 * p%
c@[i&] = 1
NEXT i&
DO
p% = p% + 2
LOOP UNTIL !c@[p%]
p2& = p% * p%
LOOP
FOR i& = 3 TO limit& STEP 2
IFZ c@[i&] THEN
primes&[n%] = i&
INC n%
END IF
NEXT i&
count% = n%
END FUNCTION
 
' Finds the period of the reciprocal of n&
FUNCTION FindPeriod(n&)
r& = 1
period& = 0
FOR i& = 1 TO n& + 1
r& = (10 * r&) MOD n&
NEXT i&
rr& = r&
DO
r& = (10 * r&) MOD n&
INC period&
LOOP UNTIL r& = rr&
END FUNCTION period&
 
END PROGRAM
</syntaxhighlight>
{{out}}
<pre>
Please wait.
 
The long primes up to 500 are:
[7 17 19 23 29 47 59 61 97 109 113 131 149 167 179 181 193 223 229 233 257 263 269 313 337 367 379 383 389 419 433 461 487 491 499]
 
The number of long primes up to:
500 is 35
1000 is 60
2000 is 116
4000 is 218
8000 is 390
16000 is 716
32000 is 1300
64000 is 2430
</pre>
 
=={{header|zkl}}==
Using GMP (GNU Multiple Precision Arithmetic Library, probabilistic
primes), because it is easy and fast to generate primes.
<langsyntaxhighlight lang="zkl">var [const] BN=Import("zklBigNum"); // libGMP
primes,p := List.createLong(7_000), BN(3); // one big alloc vs lots of allocs
while(p.nextPrime()<=64_000){ primes.append(p.toInt()) } // 6412 of them, skipped 2
Line 1,467 ⟶ 4,069:
}
period
}</langsyntaxhighlight>
 
<langsyntaxhighlight lang="zkl">fiveHundred:=longPrimes.filter('<(500));
println("The long primes up to 500 are:\n",longPrimes.filter('<(500)).concat(","));
 
Line 1,475 ⟶ 4,077:
foreach n in (T(500, 1000, 2000, 4000, 8000, 16000, 32000, 64000)){
println(" %5d is %d".fmt( n, longPrimes.filter1n('>(n)) ));
}</langsyntaxhighlight>
{{out}}
<pre>
3,038

edits