Least common multiple: Difference between revisions

From Rosetta Code
Content added Content deleted
(Replaced content with "=={{header|Arturo}}== <lang rebol>lcm: function [x,y][ x * y / gcd @[x y] ] print lcm 12 18</lang> {{out}} <pre>36</pre>")
Line 1: Line 1:
=={{header|Arturo}}==
[[Category:Recursion]]
<lang rebol>lcm: function [x,y][
x * y / gcd @[x y]
]


print lcm 12 18</lang>
{{task}}

;Task:
Compute the &nbsp; least common multiple &nbsp; (LCM) &nbsp; of two integers.

Given &nbsp; ''m'' &nbsp; and &nbsp; ''n'', &nbsp; the least common multiple is the smallest positive integer that has both &nbsp; ''m'' &nbsp; and &nbsp; ''n'' &nbsp; as factors.


;Example:
The least common multiple of &nbsp; '''12''' &nbsp; and &nbsp; '''18''' &nbsp; is &nbsp; '''36''', &nbsp; &nbsp; &nbsp; because:
:* &nbsp; '''12''' &nbsp; is a factor &nbsp; &nbsp; ('''12''' &times; '''3''' = '''36'''), &nbsp; &nbsp; and
:* &nbsp; '''18''' &nbsp; is a factor &nbsp; &nbsp; ('''18''' &times; '''2''' = '''36'''), &nbsp; &nbsp; and
:* &nbsp; there is no positive integer less than &nbsp; '''36''' &nbsp; that has both factors.


As a special case, &nbsp; if either &nbsp; ''m'' &nbsp; or &nbsp; ''n'' &nbsp; is zero, &nbsp; then the least common multiple is zero.


One way to calculate the least common multiple is to iterate all the multiples of &nbsp; ''m'', &nbsp; until you find one that is also a multiple of &nbsp; ''n''.

If you already have &nbsp; ''gcd'' &nbsp; for [[greatest common divisor]], &nbsp; then this formula calculates &nbsp; ''lcm''.

<big>
:::: <math>\operatorname{lcm}(m, n) = \frac{|m \times n|}{\operatorname{gcd}(m, n)}</math>
</big>

One can also find &nbsp; ''lcm'' &nbsp; by merging the [[prime decomposition]]s of both &nbsp; ''m'' &nbsp; and &nbsp; ''n''.


;Related task
:* &nbsp; [https://rosettacode.org/wiki/Greatest_common_divisor greatest common divisor].


;See also:
* &nbsp; MathWorld entry: &nbsp; [http://mathworld.wolfram.com/LeastCommonMultiple.html Least Common Multiple].
* &nbsp; Wikipedia entry: &nbsp; [[wp:Least common multiple|Least common multiple]].
<br><br>

=={{header|11l}}==
<lang 11l>F gcd(=a, =b)
L b != 0
(a, b) = (b, a % b)
R a

F lcm(m, n)
R m I/ gcd(m, n) * n

print(lcm(12, 18))</lang>

{{out}}
<pre>
36
</pre>

=={{header|360 Assembly}}==
{{trans|PASCAL}}
For maximum compatibility, this program uses only the basic instruction set (S/360)
with 2 ASSIST macros (XDECO,XPRNT).
<lang 360asm>LCM CSECT
USING LCM,R15 use calling register
L R6,A a
L R7,B b
LR R8,R6 c=a
LOOPW LR R4,R8 c
SRDA R4,32 shift to next reg
DR R4,R7 c/b
LTR R4,R4 while c mod b<>0
BZ ELOOPW leave while
AR R8,R6 c+=a
B LOOPW end while
ELOOPW LPR R9,R6 c=abs(u)
L R1,A a
XDECO R1,XDEC edit a
MVC PG+4(5),XDEC+7 move a to buffer
L R1,B b
XDECO R1,XDEC edit b
MVC PG+10(5),XDEC+7 move b to buffer
XDECO R8,XDEC edit c
MVC PG+17(10),XDEC+2 move c to buffer
XPRNT PG,80 print buffer
XR R15,R15 return code =0
BR R14 return to caller
A DC F'1764' a
B DC F'3920' b
PG DC CL80'lcm(00000,00000)=0000000000' buffer
XDEC DS CL12 temp for edit
YREGS
END LCM</lang>
{{out}}
<pre>
lcm( 1764, 3920)= 35280
</pre>

=={{header|8th}}==
<lang forth>
: gcd \ a b -- gcd
dup 0 n:= if drop ;; then
tuck \ b a b
n:mod \ b a-mod-b
recurse ;

: lcm \ m n
2dup \ m n m n
n:* \ m n m*n
n:abs \ m n abs(m*n)
-rot \ abs(m*n) m n
gcd \ abs(m*n) gcd(m.n)
n:/mod \ abs / gcd
nip \ abs div gcd
;

: demo \ n m --
2dup "LCM of " . . " and " . . " = " . lcm . ;

12 18 demo cr
-6 14 demo cr
35 0 demo cr


bye</lang>
{{out}}
<pre>LCM of 18 and 12 = 36
LCM of 14 and -6 = 42
LCM of 0 and 35 = 0
</pre>

=={{header|Ada}}==
lcm_test.adb:
<lang Ada>with Ada.Text_IO; use Ada.Text_IO;

procedure Lcm_Test is
function Gcd (A, B : Integer) return Integer is
M : Integer := A;
N : Integer := B;
T : Integer;
begin
while N /= 0 loop
T := M;
M := N;
N := T mod N;
end loop;
return M;
end Gcd;

function Lcm (A, B : Integer) return Integer is
begin
if A = 0 or B = 0 then
return 0;
end if;
return abs (A) * (abs (B) / Gcd (A, B));
end Lcm;
begin
Put_Line ("LCM of 12, 18 is" & Integer'Image (Lcm (12, 18)));
Put_Line ("LCM of -6, 14 is" & Integer'Image (Lcm (-6, 14)));
Put_Line ("LCM of 35, 0 is" & Integer'Image (Lcm (35, 0)));
end Lcm_Test;</lang>

Output:
<pre>LCM of 12, 18 is 36
LCM of -6, 14 is 42
LCM of 35, 0 is 0</pre>

=={{header|ALGOL 68}}==
<lang algol68>
BEGIN
PROC gcd = (INT m, n) INT :
BEGIN
INT a := ABS m, b := ABS n;
IF a=0 OR b=0 THEN 0 ELSE
WHILE b /= 0 DO INT t = b; b := a MOD b; a := t OD;
a
FI
END;
PROC lcm = (INT m, n) INT : ( m*n = 0 | 0 | ABS (m*n) % gcd (m, n));
INT m=12, n=18;
printf (($gxg(0)3(xgxg(0))l$,
"The least common multiple of", m, "and", n, "is", lcm(m,n),
"and their greatest common divisor is", gcd(m,n)))
END
</lang>
{{out}}
<pre>
The least common multiple of 12 and 18 is 36 and their greatest common divisor is 6

</pre>

Note that either or both PROCs could just as easily be implemented as OPs but then the operator priorities would also have to be declared.

=={{header|ALGOL W}}==
<lang algolw>begin
integer procedure gcd ( integer value a, b ) ;
if b = 0 then a else gcd( b, a rem abs(b) );

integer procedure lcm( integer value a, b ) ;
abs( a * b ) div gcd( a, b );

write( lcm( 15, 20 ) );
end.</lang>

=={{header|APL}}==
APL provides this function.
<lang apl> 12^18
36</lang>
If for any reason we wanted to reimplement it, we could do so in terms of the greatest common divisor by transcribing the formula set out in the task specification into APL notation:
<lang apl> LCM←{(|⍺×⍵)÷⍺∨⍵}
12 LCM 18
36</lang>

=={{header|AppleScript}}==

<lang AppleScript>------------------ LEAST COMMON MULTIPLE -----------------

-- lcm :: Integral a => a -> a -> a
on lcm(x, y)
if 0 = x or 0 = y then
0
else
abs(x div (gcd(x, y)) * y)
end if
end lcm


--------------------------- TEST -------------------------
on run
lcm(12, 18)
--> 36
end run


-------------------- GENERIC FUNCTIONS -------------------

-- abs :: Num a => a -> a
on abs(x)
if 0 > x then
-x
else
x
end if
end abs


-- gcd :: Integral a => a -> a -> a
on gcd(x, y)
script
on |λ|(a, b)
if 0 = b then
a
else
|λ|(b, a mod b)
end if
end |λ|
end script
result's |λ|(abs(x), abs(y))
end gcd</lang>
{{Out}}
<lang AppleScript>36</lang>

=={{header|Arendelle}}==

For GCD function check out [http://rosettacode.org/wiki/Greatest_common_divisor#Arendelle here]

<pre>&lt; a , b &gt;

( return ,

abs ( @a * @b ) /
!gcd( @a , @b )

)</pre>

=={{header|Assembly}}==
==={{header|x86 Assembly}}===
<lang asm>
; lcm.asm: calculates the least common multiple
; of two positive integers
;
; nasm x86_64 assembly (linux) with libc
; assemble: nasm -felf64 lcm.asm; gcc lcm.o
; usage: ./a.out [number1] [number2]

global main
extern printf ; c function: prints formatted output
extern strtol ; c function: converts strings to longs

section .text

main:
push rbp ; set up stack frame

; rdi contains argc
; if less than 3, exit
cmp rdi, 3
jl incorrect_usage

; push first argument as number
push rsi
mov rdi, [rsi+8]
mov rsi, 0
mov rdx, 10 ; base 10
call strtol
pop rsi
push rax

; push second argument as number
push rsi
mov rdi, [rsi+16]
mov rsi, 0
mov rdx, 10 ; base 10
call strtol
pop rsi
push rax

; pop arguments and call get_gcd
pop rdi
pop rsi
call get_gcd

; print value
mov rdi, print_number
mov rsi, rax
call printf

; exit
mov rax, 0 ; 0--exit success
pop rbp
ret

incorrect_usage:
mov rdi, bad_use_string
; rsi already contains argv
mov rsi, [rsi]
call printf
mov rax, 0 ; 0--exit success
pop rbp
ret

bad_use_string:
db "Usage: %s [number1] [number2]",10,0

print_number:
db "%d",10,0

get_gcd:
push rbp ; set up stack frame
mov rax, 0
jmp loop

loop:
; keep adding the first argument
; to itself until a multiple
; is found. then, return
add rax, rdi
push rax
mov rdx, 0
div rsi
cmp rdx, 0
pop rax
je gcd_found
jmp loop

gcd_found:
pop rbp
ret

</lang>

=={{header|AutoHotkey}}==
<lang autohotkey>LCM(Number1,Number2)
{
If (Number1 = 0 || Number2 = 0)
Return
Var := Number1 * Number2
While, Number2
Num := Number2, Number2 := Mod(Number1,Number2), Number1 := Num
Return, Var // Number1
}

Num1 = 12
Num2 = 18
MsgBox % LCM(Num1,Num2)</lang>

=={{header|AutoIt}}==
<lang AutoIt>
Func _LCM($a, $b)
Local $c, $f, $m = $a, $n = $b
$c = 1
While $c <> 0
$f = Int($a / $b)
$c = $a - $b * $f
If $c <> 0 Then
$a = $b
$b = $c
EndIf
WEnd
Return $m * $n / $b
EndFunc ;==>_LCM
</lang>
Example
<lang AutoIt>
ConsoleWrite(_LCM(12,18) & @LF)
ConsoleWrite(_LCM(-5,12) & @LF)
ConsoleWrite(_LCM(13,0) & @LF)
</lang>
<pre>
36
60
0
</pre>
--[[User:BugFix|BugFix]] ([[User talk:BugFix|talk]]) 14:32, 15 November 2013 (UTC)

=={{header|AWK}}==
<lang awk># greatest common divisor
function gcd(m, n, t) {
# Euclid's method
while (n != 0) {
t = m
m = n
n = t % n
}
return m
}

# least common multiple
function lcm(m, n, r) {
if (m == 0 || n == 0)
return 0
r = m * n / gcd(m, n)
return r < 0 ? -r : r
}

# Read two integers from each line of input.
# Print their least common multiple.
{ print lcm($1, $2) }</lang>

Example input and output: <pre>$ awk -f lcd.awk
12 18
36
-6 14
42
35 0
0
</pre>

=={{header|BASIC}}==

==={{header|Applesoft BASIC}}===
ported from BBC BASIC
<lang ApplesoftBasic>10 DEF FN MOD(A) = INT((A / B - INT(A / B)) * B + .05) * SGN(A / B)
20 INPUT"M=";M%
30 INPUT"N=";N%
40 GOSUB 100
50 PRINT R
60 END

100 REM LEAST COMMON MULTIPLE M% N%
110 R = 0
120 IF M% = 0 OR N% = 0 THEN RETURN
130 A% = M% : B% = N% : GOSUB 200"GCD
140 R = ABS(M%*N%)/R
150 RETURN

200 REM GCD ITERATIVE EUCLID A% B%
210 FOR B = B% TO 0 STEP 0
220 C% = A%
230 A% = B
240 B = FN MOD(C%)
250 NEXT B
260 R = ABS(A%)
270 RETURN</lang>

==={{header|BBC BASIC}}===
{{Works with|BBC BASIC for Windows}}
<lang BBC BASIC>
DEF FN_LCM(M%,N%)
IF M%=0 OR N%=0 THEN =0 ELSE =ABS(M%*N%)/FN_GCD_Iterative_Euclid(M%, N%)
DEF FN_GCD_Iterative_Euclid(A%, B%)
LOCAL C%
WHILE B%
C% = A%
A% = B%
B% = C% MOD B%
ENDWHILE
= ABS(A%)
</lang>

==={{header|IS-BASIC}}===
<lang IS-BASIC>100 DEF LCM(A,B)=(A*B)/GCD(A,B)
110 DEF GCD(A,B)
120 DO WHILE B>0
130 LET T=B:LET B=MOD(A,B):LET A=T
140 LOOP
150 LET GCD=A
160 END DEF
170 PRINT LCM(12,18)</lang>

==={{header|Tiny BASIC}}===
<lang Tiny BASIC>10 PRINT "First number"
20 INPUT A
30 PRINT "Second number"
40 INPUT B
42 LET Q = A
44 LET R = B
50 IF Q<0 THEN LET Q=-Q
60 IF R<0 THEN LET R=-R
70 IF Q>R THEN GOTO 130
80 LET R = R - Q
90 IF Q=0 THEN GOTO 110
100 GOTO 50
110 LET U = (A*B)/R
111 IF U < 0 THEN LET U = - U
112 PRINT U
120 END
130 LET C=Q
140 LET Q=R
150 LET R=C
160 GOTO 70</lang>

=={{header|Batch File}}==
<lang dos>@echo off
setlocal enabledelayedexpansion
set num1=12
set num2=18

call :lcm %num1% %num2%
exit /b

:lcm <input1> <input2>
if %2 equ 0 (
set /a lcm = %num1%*%num2%/%1
echo LCM = !lcm!
pause>nul
goto :EOF
)
set /a res = %1 %% %2
call :lcm %2 %res%
goto :EOF</lang>
{{Out}}
<pre>LCM = 36</pre>

=={{header|bc}}==
{{trans|AWK}}
<lang bc>/* greatest common divisor */
define g(m, n) {
auto t

/* Euclid's method */
while (n != 0) {
t = m
m = n
n = t % n
}
return (m)
}

/* least common multiple */
define l(m, n) {
auto r

if (m == 0 || n == 0) return (0)
r = m * n / g(m, n)
if (r < 0) return (-r)
return (r)
}</lang>

=={{header|Befunge}}==

Inputs are limited to signed 16-bit integers.

<lang befunge>&>:0`2*1-*:&>:#@!#._:0`2*1v
>28*:*:**+:28*>:*:*/\:vv*-<
|<:%/*:*:*82\%*:*:*82<<>28v
>$/28*:*:*/*.@^82::+**:*:*<</lang>

{{in}}
<pre>12345
-23044</pre>

{{out}}
{{out}}
<pre>345660</pre>


=={{header|Bracmat}}==
We utilize the fact that Bracmat simplifies fractions (using Euclid's algorithm). The function <code>den$<i>number</i></code> returns the denominator of a number.
<lang bracmat>(gcd=
a b
. !arg:(?a.?b)
& den$(!a*!b^-1)
* (!a:<0&-1|1)
* !a
);
out$(gcd$(12.18) gcd$(-6.14) gcd$(35.0) gcd$(117.18))</lang>
Output:
<pre>36 42 35 234</pre>

=={{header|Brat}}==
<lang brat>
gcd = { a, b |
true? { a == 0 }
{ b }
{ gcd(b % a, a) }
}

lcm = { a, b |
a * b / gcd(a, b)
}

p lcm(12, 18) # 36
p lcm(14, 21) # 42
</lang>

=={{header|C}}==
<lang C>#include <stdio.h>

int gcd(int m, int n)
{
int tmp;
while(m) { tmp = m; m = n % m; n = tmp; }
return n;
}

int lcm(int m, int n)
{
return m / gcd(m, n) * n;
}

int main()
{
printf("lcm(35, 21) = %d\n", lcm(21,35));
return 0;
}</lang>

=={{header|C sharp|C#}}==
<lang csharp>Using System;
class Program
{
static int gcd(int m, int n)
{
return n == 0 ? Math.Abs(m) : gcd(n, n % m);
}
static int lcm(int m, int n)
{
return Math.Abs(m * n) / gcd(m, n);
}
static void Main()
{
Console.WriteLine("lcm(12,18)=" + lcm(12,18));
}
}
</lang>
{{out}}
<pre>lcm(12,18)=36</pre>

=={{header|C++}}==
{{libheader|Boost}}
<lang cpp>#include <boost/math/common_factor.hpp>
#include <iostream>

int main( ) {
std::cout << "The least common multiple of 12 and 18 is " <<
boost::math::lcm( 12 , 18 ) << " ,\n"
<< "and the greatest common divisor " << boost::math::gcd( 12 , 18 ) << " !" << std::endl ;
return 0 ;
}</lang>

{{out}}
<pre>The least common multiple of 12 and 18 is 36 ,
and the greatest common divisor 6 !
</pre>

=== Alternate solution ===
{{works with|C++11}}
<lang cpp>
#include <cstdlib>
#include <iostream>
#include <tuple>
int gcd(int a, int b) {
a = abs(a);
b = abs(b);
while (b != 0) {
std::tie(a, b) = std::make_tuple(b, a % b);
}
return a;
}
int lcm(int a, int b) {
int c = gcd(a, b);
return c == 0 ? 0 : a / c * b;
}
int main() {
std::cout << "The least common multiple of 12 and 18 is " << lcm(12, 18) << ",\n"
<< "and their greatest common divisor is " << gcd(12, 18) << "!"
<< std::endl;
return 0;
}
</lang>

=={{header|Clojure}}==
<lang Clojure>(defn gcd
[a b]
(if (zero? b)
a
(recur b, (mod a b))))

(defn lcm
[a b]
(/ (* a b) (gcd a b)))
;; to calculate the lcm for a variable number of arguments
(defn lcmv [& v] (reduce lcm v))
</lang>

=={{header|COBOL}}==
<lang cobol> IDENTIFICATION DIVISION.
PROGRAM-ID. show-lcm.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
FUNCTION lcm
.
PROCEDURE DIVISION.
DISPLAY "lcm(35, 21) = " FUNCTION lcm(35, 21)
GOBACK
.
END PROGRAM show-lcm.

IDENTIFICATION DIVISION.
FUNCTION-ID. lcm.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
REPOSITORY.
FUNCTION gcd
.
DATA DIVISION.
LINKAGE SECTION.
01 m PIC S9(8).
01 n PIC S9(8).
01 ret PIC S9(8).

PROCEDURE DIVISION USING VALUE m, n RETURNING ret.
COMPUTE ret = FUNCTION ABS(m * n) / FUNCTION gcd(m, n)
GOBACK
.
END FUNCTION lcm.
IDENTIFICATION DIVISION.
FUNCTION-ID. gcd.

DATA DIVISION.
LOCAL-STORAGE SECTION.
01 temp PIC S9(8).

01 x PIC S9(8).
01 y PIC S9(8).

LINKAGE SECTION.
01 m PIC S9(8).
01 n PIC S9(8).
01 ret PIC S9(8).

PROCEDURE DIVISION USING VALUE m, n RETURNING ret.
MOVE m to x
MOVE n to y

PERFORM UNTIL y = 0
MOVE x TO temp
MOVE y TO x
MOVE FUNCTION MOD(temp, y) TO Y
END-PERFORM

MOVE FUNCTION ABS(x) TO ret
GOBACK
.
END FUNCTION gcd.</lang>

=={{header|Common Lisp}}==
Common Lisp provides the <tt>lcm</tt> function. It can accept two or more (or less) parameters.

<lang lisp>CL-USER> (lcm 12 18)
36
CL-USER> (lcm 12 18 22)
396</lang>

Here is one way to reimplement it.

<lang lisp>CL-USER> (defun my-lcm (&rest args)
(reduce (lambda (m n)
(cond ((or (= m 0) (= n 0)) 0)
(t (abs (/ (* m n) (gcd m n))))))
args :initial-value 1))
MY-LCM
CL-USER> (my-lcm 12 18)
36
CL-USER> (my-lcm 12 18 22)
396</lang>

In this code, the <tt>lambda</tt> finds the least common multiple of two integers, and the <tt>reduce</tt> transforms it to accept any number of parameters. The <tt>reduce</tt> operation exploits how ''lcm'' is associative, <tt>(lcm a b c) == (lcm (lcm a b) c)</tt>; and how 1 is an identity, <tt>(lcm 1 a) == a</tt>.

=={{header|D}}==
<lang d>import std.stdio, std.bigint, std.math;

T gcd(T)(T a, T b) pure nothrow {
while (b) {
immutable t = b;
b = a % b;
a = t;
}
return a;
}

T lcm(T)(T m, T n) pure nothrow {
if (m == 0) return m;
if (n == 0) return n;
return abs((m * n) / gcd(m, n));
}

void main() {
lcm(12, 18).writeln;
lcm("2562047788015215500854906332309589561".BigInt,
"6795454494268282920431565661684282819".BigInt).writeln;
}</lang>
{{out}}
<pre>36
15669251240038298262232125175172002594731206081193527869</pre>

=={{header|Dart}}==
<lang dart>
main() {
int x=8;
int y=12;
int z= gcd(x,y);
var lcm=(x*y)/z;
print('$lcm');
}

int gcd(int a,int b)
{
if(b==0)
return a;
if(b!=0)
return gcd(b,a%b);
}
</lang>

=={{header|DWScript}}==
<lang delphi>PrintLn(Lcm(12, 18));</lang>
Output:
<pre>36</pre>
<pre>36</pre>

=={{header|EchoLisp}}==
(lcm a b) is already here as a two arguments function. Use foldl to find the lcm of a list of numbers.
<lang lisp>
(lcm 0 9) → 0
(lcm 444 888)→ 888
(lcm 888 999) → 7992

(define (lcm* list) (foldl lcm (first list) list)) → lcm*
(lcm* '(444 888 999)) → 7992
</lang>

=={{header|Elena}}==
{{trans|C#}}
ELENA 4.x :
<lang elena>import extensions;
import system'math;
gcd = (m,n => (n == 0) ? (m.Absolute) : (gcd(n,n.mod:m)));
lcm = (m,n => (m * n).Absolute / gcd(m,n));
public program()
{
console.printLine("lcm(12,18)=",lcm(12,18))
}</lang>
{{out}}
<pre>
lcm(12,18)=36
</pre>

=={{header|Elixir}}==
<lang elixir>defmodule RC do
def gcd(a,0), do: abs(a)
def gcd(a,b), do: gcd(b, rem(a,b))
def lcm(a,b), do: div(abs(a*b), gcd(a,b))
end

IO.puts RC.lcm(-12,15)</lang>

{{out}}
<pre>
60
</pre>

=={{header|Erlang}}==
<lang erlang>% Implemented by Arjun Sunel
-module(lcm).
-export([main/0]).

main() ->
lcm(-3,4).
gcd(A, 0) ->
A;

gcd(A, B) ->
gcd(B, A rem B).

lcm(A,B) ->
abs(A*B div gcd(A,B)).</lang>

{{out}}
<pre>12
</pre>

=={{header|ERRE}}==
<lang ERRE>PROGRAM LCM

PROCEDURE GCD(A,B->GCD)
LOCAL C
WHILE B DO
C=A
A=B
B=C MOD B
END WHILE
GCD=ABS(A)
END PROCEDURE

PROCEDURE LCM(M,N->LCM)
IF M=0 OR N=0 THEN
LCM=0
EXIT PROCEDURE
ELSE
GCD(M,N->GCD)
LCM=ABS(M*N)/GCD
END IF
END PROCEDURE

BEGIN
LCM(18,12->LCM)
PRINT("LCM of 18 AND 12 =";LCM)
LCM(14,-6->LCM)
PRINT("LCM of 14 AND -6 =";LCM)
LCM(0,35->LCM)
PRINT("LCM of 0 AND 35 =";LCM)
END PROGRAM</lang>

{{out}}
<pre>LCM of 18 and 12 = 36
LCM of 14 and -6 = 42
LCM of 0 and 35 = 0
</pre>

=={{header|Euphoria}}==
<lang euphoria>function gcd(integer m, integer n)
integer tmp
while m do
tmp = m
m = remainder(n,m)
n = tmp
end while
return n
end function

function lcm(integer m, integer n)
return m / gcd(m, n) * n
end function</lang>

=={{header|Excel}}==
Excel's LCM can handle multiple values. Type in a cell:
<lang excel>=LCM(A1:J1)</lang>
This will get the LCM on the first 10 cells in the first row. Thus :
<pre>12 3 5 23 13 67 15 9 4 2

3605940</pre>

=={{header|Ezhil}}==
<lang src="Ezhil">
## இந்த நிரல் இரு எண்களுக்கு இடையிலான மீச்சிறு பொது மடங்கு (LCM), மீப்பெரு பொது வகுத்தி (GCD) என்ன என்று கணக்கிடும்

நிரல்பாகம் மீபொம(எண்1, எண்2)

@(எண்1 == எண்2) ஆனால்

## இரு எண்களும் சமம் என்பதால், மீபொம அந்த எண்ணேதான்

பின்கொடு எண்1

@(எண்1 > எண்2) இல்லைஆனால்

சிறியது = எண்2
பெரியது = எண்1

இல்லை
சிறியது = எண்1
பெரியது = எண்2

முடி

மீதம் = பெரியது % சிறியது

@(மீதம் == 0) ஆனால்
## பெரிய எண்ணில் சிறிய எண் மீதமின்றி வகுபடுவதால், பெரிய எண்தான் மீபொம

பின்கொடு பெரியது

இல்லை

தொடக்கம் = பெரியது + 1
நிறைவு = சிறியது * பெரியது

@(எண் = தொடக்கம், எண் <= நிறைவு, எண் = எண் + 1) ஆக

## ஒவ்வோர் எண்ணாக எடுத்துக்கொண்டு தரப்பட்ட இரு எண்களாலும் வகுத்துப் பார்க்கின்றோம். முதலாவதாக இரண்டாலும் மீதமின்றி வகுபடும் எண்தான் மீபொம

மீதம்1 = எண் % சிறியது
மீதம்2 = எண் % பெரியது

@((மீதம்1 == 0) && (மீதம்2 == 0)) ஆனால்
பின்கொடு எண்
முடி

முடி

முடி

முடி

அ = int(உள்ளீடு("ஓர் எண்ணைத் தாருங்கள் "))
ஆ = int(உள்ளீடு("இன்னோர் எண்ணைத் தாருங்கள் "))

பதிப்பி "நீங்கள் தந்த இரு எண்களின் மீபொம (மீச்சிறு பொது மடங்கு, LCM) = ", மீபொம(அ, ஆ)
</lang>

=={{header|F_Sharp|F#}}==
<lang fsharp>let rec gcd x y = if y = 0 then abs x else gcd y (x % y)

let lcm x y = x * y / (gcd x y)</lang>

=={{header|Factor}}==
The vocabulary ''math.functions'' already provides ''lcm''.

<lang factor>USING: math.functions prettyprint ;
26 28 lcm .</lang>

This program outputs ''364''.

One can also reimplement ''lcm''.

<lang factor>USING: kernel math prettyprint ;
IN: script

: gcd ( a b -- c )
[ abs ] [
[ nip ] [ mod ] 2bi gcd
] if-zero ;

: lcm ( a b -- c )
[ * abs ] [ gcd ] 2bi / ;

26 28 lcm .</lang>

=={{header|Forth}}==
<lang forth>: gcd ( a b -- n )
begin dup while tuck mod repeat drop ;

: lcm ( a b -- n )
over 0= over 0= or if 2drop 0 exit then
2dup gcd abs */ ;</lang>

=={{header|Fortran}}==
This solution is written as a combination of 2 functions, but a subroutine implementation would work great as well.
<lang Fortran>
integer function lcm(a,b)
integer:: a,b
lcm = a*b / gcd(a,b)
end function lcm

integer function gcd(a,b)
integer :: a,b,t
do while (b/=0)
t = b
b = mod(a,b)
a = t
end do
gcd = abs(a)
end function gcd
</lang>

=={{header|FreeBASIC}}==
===Iterative solution===
<lang freebasic>' FB 1.05.0 Win64

Function lcm (m As Integer, n As Integer) As Integer
If m = 0 OrElse n = 0 Then Return 0
If m < n Then Swap m, n '' to minimize iterations needed
Var count = 0
Do
count +=1
Loop Until (m * count) Mod n = 0
Return m * count
End Function

Print "lcm(12, 18) ="; lcm(12, 18)
Print "lcm(15, 12) ="; lcm(15, 12)
Print "lcm(10, 14) ="; lcm(10, 14)
Print
Print "Press any key to quit"
Sleep</lang>

{{out}}
<pre>
lcm(12, 18) = 36
lcm(15, 12) = 60
lcm(10, 14) = 70
</pre>

===Recursive solution===
Reuses code from [[Greatest_common_divisor#Recursive_solution]] and correctly handles negative arguments
<lang freebasic>function gcdp( a as uinteger, b as uinteger ) as uinteger
if b = 0 then return a
return gcdp( b, a mod b )
end function
function gcd(a as integer, b as integer) as uinteger
return gcdp( abs(a), abs(b) )
end function
function lcm(a as integer, b as integer) as uinteger
return abs(a*b)/gcd(a,b)
end function

print "lcm( 12, -18) = "; lcm(12, -18)
print "lcm( 15, 12) = "; lcm(15, 12)
print "lcm(-10, -14) = "; lcm(-10, -14)
print "lcm( 0, 1) = "; lcm(0,1)</lang>

{{out}}
<pre>
lcm( 12, -18) = 36
lcm( 15, 12) = 60
lcm(-10, -14) = 70
lcm( 0, 1) = 0
</pre>

=={{header|Frink}}==
Frink has a built-in LCM function that handles arbitrarily-large integers.
<lang frink>
println[lcm[2562047788015215500854906332309589561, 6795454494268282920431565661684282819]]
</lang>

=={{header|FunL}}==
FunL has function <code>lcm</code> in module <code>integers</code> with the following definition:

<lang funl>def
lcm( _, 0 ) = 0
lcm( 0, _ ) = 0
lcm( x, y ) = abs( (x\gcd(x, y)) y )</lang>

=={{header|GAP}}==
<lang gap># Built-in
LcmInt(12, 18);
# 36</lang>

=={{header|Go}}==
<lang go>package main

import (
"fmt"
"math/big"
)

var m, n, z big.Int

func init() {
m.SetString("2562047788015215500854906332309589561", 10)
n.SetString("6795454494268282920431565661684282819", 10)
}

func main() {
fmt.Println(z.Mul(z.Div(&m, z.GCD(nil, nil, &m, &n)), &n))
}</lang>
{{out}}
<pre>
15669251240038298262232125175172002594731206081193527869
</pre>

=={{header|Groovy}}==
<lang groovy>def gcd
gcd = { m, n -> m = m.abs(); n = n.abs(); n == 0 ? m : m%n == 0 ? n : gcd(n, m % n) }

def lcd = { m, n -> Math.abs(m * n) / gcd(m, n) }

[[m: 12, n: 18, l: 36],
[m: -6, n: 14, l: 42],
[m: 35, n: 0, l: 0]].each { t ->
println "LCD of $t.m, $t.n is $t.l"
assert lcd(t.m, t.n) == t.l
}</lang>
{{out}}
<pre>LCD of 12, 18 is 36
LCD of -6, 14 is 42
LCD of 35, 0 is 0</pre>

=={{header|GW-BASIC}}==
{{trans|C}}
{{works with|PC-BASIC|any}}
<lang qbasic>
10 PRINT "LCM(35, 21) = ";
20 LET MLCM = 35
30 LET NLCM = 21
40 GOSUB 200: ' Calculate LCM
50 PRINT LCM
60 END

195 ' Calculate LCM
200 LET MGCD = MLCM
210 LET NGCD = NLCM
220 GOSUB 400: ' Calculate GCD
230 LET LCM = MLCM / GCD * NLCM
240 RETURN
395 ' Calculate GCD
400 WHILE MGCD <> 0
410 LET TMP = MGCD
420 LET MGCD = NGCD MOD MGCD
430 LET NGCD = TMP
440 WEND
450 LET GCD = NGCD
460 RETURN
</lang>

=={{header|Haskell}}==

That is already available as the function ''lcm'' in the Prelude. Here's the implementation:

<lang haskell>lcm :: (Integral a) => a -> a -> a
lcm _ 0 = 0
lcm 0 _ = 0
lcm x y = abs ((x `quot` (gcd x y)) * y)</lang>

=={{header|Icon}} and {{header|Unicon}}==
The lcm routine from the Icon Programming Library uses gcd. The routine is

<lang Icon>link numbers
procedure main()
write("lcm of 18, 36 = ",lcm(18,36))
write("lcm of 0, 9 = ",lcm(0,9))
end</lang>

{{libheader|Icon Programming Library}}
[http://www.cs.arizona.edu/icon/library/src/procs/numbers.icn numbers provides lcm and gcd] and looks like this:
<lang Icon>procedure lcm(i, j) #: least common multiple
if (i = 0) | (j = 0) then return 0
return abs(i * j) / gcd(i, j)
end</lang>

=={{header|J}}==
J provides the dyadic verb <code>*.</code> which returns the least common multiple of its left and right arguments.

<lang j> 12 *. 18
36
12 *. 18 22
36 132
*./ 12 18 22
396
0 1 0 1 *. 0 0 1 1 NB. for truth valued arguments (0 and 1) it is equivalent to "and"
0 0 0 1
*./~ 0 1
0 0
0 1</lang>

Note: least common multiple is the original boolean multiplication. Constraining the universe of values to 0 and 1 allows us to additionally define logical negation (and boolean algebra was redefined to include this constraint in the early 1900s - the original concept of boolean algebra is now known as a boolean ring).

=={{header|Java}}==
<lang java>import java.util.Scanner;

public class LCM{
public static void main(String[] args){
Scanner aScanner = new Scanner(System.in);
//prompts user for values to find the LCM for, then saves them to m and n
System.out.print("Enter the value of m:");
int m = aScanner.nextInt();
System.out.print("Enter the value of n:");
int n = aScanner.nextInt();
int lcm = (n == m || n == 1) ? m :(m == 1 ? n : 0);
/* this section increases the value of mm until it is greater
/ than or equal to nn, then does it again when the lesser
/ becomes the greater--if they aren't equal. If either value is 1,
/ no need to calculate*/
if (lcm == 0) {
int mm = m, nn = n;
while (mm != nn) {
while (mm < nn) { mm += m; }
while (nn < mm) { nn += n; }
}
lcm = mm;
}
System.out.println("lcm(" + m + ", " + n + ") = " + lcm);
}
}</lang>

=={{header|JavaScript}}==

===ES5===
Computing the least common multiple of an integer array, using the associative law:

<math>\operatorname{lcm}(a,b,c)=\operatorname{lcm}(\operatorname{lcm}(a,b),c),</math>

<math>\operatorname{lcm}(a_1,a_2,\ldots,a_n) = \operatorname{lcm}(\operatorname{lcm}(a_1,a_2,\ldots,a_{n-1}),a_n).</math>

<lang javascript>function LCM(A) // A is an integer array (e.g. [-50,25,-45,-18,90,447])
{
var n = A.length, a = Math.abs(A[0]);
for (var i = 1; i < n; i++)
{ var b = Math.abs(A[i]), c = a;
while (a && b){ a > b ? a %= b : b %= a; }
a = Math.abs(c*A[i])/(a+b);
}
return a;
}

/* For example:
LCM([-50,25,-45,-18,90,447]) -> 67050
*/</lang>


===ES6===
{{Trans|Haskell}}
<lang JavaScript>(() => {
'use strict';

// gcd :: Integral a => a -> a -> a
let gcd = (x, y) => {
let _gcd = (a, b) => (b === 0 ? a : _gcd(b, a % b)),
abs = Math.abs;
return _gcd(abs(x), abs(y));
}

// lcm :: Integral a => a -> a -> a
let lcm = (x, y) =>
x === 0 || y === 0 ? 0 : Math.abs(Math.floor(x / gcd(x, y)) * y);

// TEST
return lcm(12, 18);

})();</lang>

{{Out}}
<pre>36</pre>

=={{header|jq}}==
Direct method
<lang jq># Define the helper function to take advantage of jq's tail-recursion optimization
def lcm(m; n):
def _lcm:
# state is [m, n, i]
if (.[2] % .[1]) == 0 then .[2] else (.[0:2] + [.[2] + m]) | _lcm end;
[m, n, m] | _lcm; </lang>

=={{header|Julia}}==
Built-in function:
<lang julia>lcm(m,n)</lang>

=={{header|K}}==
<lang K> gcd:{:[~x;y;_f[y;x!y]]}
lcm:{_abs _ x*y%gcd[x;y]}

lcm .'(12 18; -6 14; 35 0)
36 42 0

lcm/1+!20
232792560</lang>

=={{header|Klingphix}}==
<lang Klingphix>:gcd { u v -- n }
abs int swap abs int swap
[over over mod rot drop]
[dup]
while
drop
;
:lcm { m n -- n }
over over gcd rot swap div mult
;
12 18 lcm print nl { 36 }

"End " input</lang>

=={{header|Kotlin}}==
<lang scala>fun main(args: Array<String>) {
fun gcd(a: Long, b: Long): Long = if (b == 0L) a else gcd(b, a % b)
fun lcm(a: Long, b: Long): Long = a / gcd(a, b) * b
println(lcm(15, 9))
}
</lang>

=={{header|LabVIEW}}==
Requires [[Greatest common divisor#LabVIEW|GCD]]. {{VI solution|LabVIEW_Least_common_multiple.png}}

=={{header|Lasso}}==
<lang Lasso>define gcd(a,b) => {
while(#b != 0) => {
local(t = #b)
#b = #a % #b
#a = #t
}
return #a
}
define lcm(m,n) => {
#m == 0 || #n == 0 ? return 0
local(r = (#m * #n) / decimal(gcd(#m, #n)))
return integer(#r)->abs
}

lcm(-6, 14)
lcm(2, 0)
lcm(12, 18)
lcm(12, 22)
lcm(7, 31)</lang>
{{out}}
<pre>42
0
36
132
217</pre>

=={{header|Liberty BASIC}}==
<lang lb>print "Least Common Multiple of 12 and 18 is "; LCM(12, 18)
end

function LCM(m, n)
LCM = abs(m * n) / GCD(m, n)
end function

function GCD(a, b)
while b
c = a
a = b
b = c mod b
wend
GCD = abs(a)
end function
</lang>

=={{header|Logo}}==
<lang logo>to abs :n
output sqrt product :n :n
end

to gcd :m :n
output ifelse :n = 0 [ :m ] [ gcd :n modulo :m :n ]
end

to lcm :m :n
output quotient (abs product :m :n) gcd :m :n
end</lang>

Demo code:

<lang logo>print lcm 38 46</lang>

Output:

<pre>874</pre>

=={{header|Lua}}==
<lang lua>function gcd( m, n )
while n ~= 0 do
local q = m
m = n
n = q % n
end
return m
end

function lcm( m, n )
return ( m ~= 0 and n ~= 0 ) and m * n / gcd( m, n ) or 0
end

print( lcm(12,18) )</lang>

=={{header|Maple}}==
The least common multiple of two integers is computed by the built-in procedure ilcm in Maple. This should not be confused with lcm, which computes the least common multiple of polynomials.
<lang Maple>> ilcm( 12, 18 );
36
</lang>

=={{header|Mathematica}}==

<lang Mathematica>LCM[18,12]
-> 36</lang>

=={{header|MATLAB}} / {{header|Octave}}==
<lang Matlab> lcm(a,b) </lang>

=={{header|Maxima}}==
<lang maxima>lcm(a, b); /* a and b may be integers or polynomials */

/* In Maxima the gcd of two integers is always positive, and a * b = gcd(a, b) * lcm(a, b),
so the lcm may be negative. To get a positive lcm, simply do */

abs(lcm(a, b))</lang>

=={{header|Microsoft Small Basic}}==
{{trans|C}}
<lang microsoftsmallbasic>
Textwindow.Write("LCM(35, 21) = ")
mlcm = 35
nlcm = 21
CalculateLCM()
TextWindow.WriteLine(lcm)

Sub CalculateLCM
mgcd = mlcm
ngcd = nlcm
CalculateGCD()
lcm = mlcm / gcd * nlcm
EndSub

Sub CalculateGCD
While mgcd <> 0
tmp = mgcd
mgcd = Math.Remainder(ngcd, mgcd)
ngcd = tmp
EndWhile
gcd = ngcd
EndSub
</lang>

=={{header|min}}==
{{works with|min|0.19.6}}
<lang min>((0 <) (-1 *) when) :abs
((dup 0 ==) (pop abs) (swap over mod) () linrec) :gcd
(over over gcd '* dip div) :lcm</lang>

=={{header|МК-61/52}}==
<lang>ИПA ИПB * |x| ПC ИПA ИПB / [x] П9
ИПA ИПB ПA ИП9 * - ПB x=0 05 ИПC
ИПA / С/П</lang>

=={{header|ML}}==
==={{header|mLite}}===
<lang ocaml>fun gcd (a, 0) = a
| (0, b) = b
| (a, b) where (a < b)
= gcd (a, b rem a)
| (a, b) = gcd (b, a rem b)

fun lcm (a, b) = let val d = gcd (a, b)
in a * b div d
end
</lang>

=={{header|Modula-2}}==
{{trans|C}}
{{works with|ADW Modula-2|any (Compile with the linker option ''Console Application'').}}
<lang modula2>
MODULE LeastCommonMultiple;

FROM STextIO IMPORT
WriteString, WriteLn;
FROM SWholeIO IMPORT
WriteInt;

PROCEDURE GCD(M, N: INTEGER): INTEGER;
VAR
Tmp: INTEGER;
BEGIN
WHILE M <> 0 DO
Tmp := M;
M := N MOD M;
N := Tmp;
END;
RETURN N;
END GCD;

PROCEDURE LCM(M, N: INTEGER): INTEGER;
BEGIN
RETURN M / GCD(M, N) * N;
END LCM;

BEGIN
WriteString("LCM(35, 21) = ");
WriteInt(LCM(35, 21), 1);
WriteLn;
END LeastCommonMultiple.
</lang>

=={{header|Nanoquery}}==
<lang Nanoquery>def gcd(a, b)
if (a < 1) or (b < 1)
throw new(InvalidNumberException, "gcd cannot be calculated on values < 1")
end

c = 0
while b != 0
c = a
a = b
b = c % b
end

return a
end

def lcm(m, n)
return (m * n) / gcd(m, n)
end

println lcm(12, 18)
println lcm(6, 14)
println lcm(1,2) = lcm(2,1)</lang>

{{out}}
<pre>36
42
true</pre>

=={{header|NetRexx}}==
<lang NetRexx>/* NetRexx */
options replace format comments java crossref symbols nobinary

numeric digits 3000

runSample(arg)
return

-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method lcm(m_, n_) public static
L_ = m_ * n_ % gcd(m_, n_)
return L_

-- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
-- Euclid's algorithm - iterative implementation
method gcd(m_, n_) public static
loop while n_ > 0
c_ = m_ // n_
m_ = n_
n_ = c_
end
return m_

-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
parse arg samples
if samples = '' | samples = '.' then
samples = '-6 14 = 42 |' -
'3 4 = 12 |' -
'18 12 = 36 |' -
'2 0 = 0 |' -
'0 85 = 0 |' -
'12 18 = 36 |' -
'5 12 = 60 |' -
'12 22 = 132 |' -
'7 31 = 217 |' -
'117 18 = 234 |' -
'38 46 = 874 |' -
'18 12 -5 = 180 |' -
'-5 18 12 = 180 |' - -- confirm that other permutations work
'12 -5 18 = 180 |' -
'18 12 -5 97 = 17460 |' -
'30 42 = 210 |' -
'30 42 = . |' - -- 210; no verification requested
'18 12' -- 36

loop while samples \= ''
parse samples sample '|' samples
loop while sample \= ''
parse sample mnvals '=' chk sample
if chk = '' then chk = '.'
mv = mnvals.word(1)
loop w_ = 2 to mnvals.words mnvals
nv = mnvals.word(w_)
mv = mv.abs
nv = nv.abs
mv = lcm(mv, nv)
end w_
lv = mv
select case chk
when '.' then state = ''
when lv then state = '(verified)'
otherwise state = '(failed)'
end
mnvals = mnvals.space(1, ',').changestr(',', ', ')
say 'lcm of' mnvals.right(15.max(mnvals.length)) 'is' lv.right(5.max(lv.length)) state
end
end

return
</lang>
{{out}}
<pre>
lcm of -6, 14 is 42 (verified)
lcm of 3, 4 is 12 (verified)
lcm of 18, 12 is 36 (verified)
lcm of 2, 0 is 0 (verified)
lcm of 0, 85 is 0 (verified)
lcm of 12, 18 is 36 (verified)
lcm of 5, 12 is 60 (verified)
lcm of 12, 22 is 132 (verified)
lcm of 7, 31 is 217 (verified)
lcm of 117, 18 is 234 (verified)
lcm of 38, 46 is 874 (verified)
lcm of 18, 12, -5 is 180 (verified)
lcm of -5, 18, 12 is 180 (verified)
lcm of 12, -5, 18 is 180 (verified)
lcm of 18, 12, -5, 97 is 17460 (verified)
lcm of 30, 42 is 210 (verified)
lcm of 30, 42 is 210
lcm of 18, 12 is 36
</pre>

=={{header|Nim}}==
The standard module "math" provides a function "lcm" for two integers and for an open array of integers. If we absolutely want to compute the least common multiple with our own procedure, it can be done this way (less efficient than the function in the standard library which avoids the modulo):
<lang nim>proc gcd(u, v: int): auto =
var
u = u
v = v
while v != 0:
u = u %% v
swap u, v
abs(u)

proc lcm(a, b: int): auto = abs(a * b) div gcd(a, b)

echo lcm(12, 18)
echo lcm(-6, 14)</lang>

{{out}}
<pre>36
42</pre>

=={{header|Objeck}}==
{{trans|C}}
<lang objeck>
class LCM {
function : Main(args : String[]) ~ Nil {
IO.Console->Print("lcm(35, 21) = ")->PrintLine(lcm(21,35));
}
function : lcm(m : Int, n : Int) ~ Int {
return m / gcd(m, n) * n;
}
function : gcd(m : Int, n : Int) ~ Int {
tmp : Int;
while(m <> 0) { tmp := m; m := n % m; n := tmp; };
return n;
}
}
</lang>

=={{header|OCaml}}==

<lang ocaml>let rec gcd u v =
if v <> 0 then (gcd v (u mod v))
else (abs u)

let lcm m n =
match m, n with
| 0, _ | _, 0 -> 0
| m, n -> abs (m * n) / (gcd m n)

let () =
Printf.printf "lcm(35, 21) = %d\n" (lcm 21 35)</lang>

=={{header|Oforth}}==

lcm is already defined into Integer class :
<lang Oforth>12 18 lcm</lang>

=={{header|ooRexx}}==
<lang ooRexx>
say lcm(18, 12)

-- calculate the greatest common denominator of a numerator/denominator pair
::routine gcd private
use arg x, y

loop while y \= 0
-- check if they divide evenly
temp = x // y
x = y
y = temp
end
return x

-- calculate the least common multiple of a numerator/denominator pair
::routine lcm private
use arg x, y
return x / gcd(x, y) * y
</lang>

=={{header|Order}}==
{{trans|bc}}
<lang c>#include <order/interpreter.h>

#define ORDER_PP_DEF_8gcd ORDER_PP_FN( \
8fn(8U, 8V, \
8if(8isnt_0(8V), 8gcd(8V, 8remainder(8U, 8V)), 8U)))

#define ORDER_PP_DEF_8lcm ORDER_PP_FN( \
8fn(8X, 8Y, \
8if(8or(8is_0(8X), 8is_0(8Y)), \
0, \
8quotient(8times(8X, 8Y), 8gcd(8X, 8Y)))))
// No support for negative numbers

ORDER_PP( 8to_lit(8lcm(12, 18)) ) // 36</lang>

=={{header|PARI/GP}}==
Built-in function:
<lang parigp>lcm</lang>

=={{header|Pascal}}==
<lang pascal>Program LeastCommonMultiple(output);

function lcm(a, b: longint): longint;
begin
lcm := a;
while (lcm mod b) <> 0 do
inc(lcm, a);
end;

begin
writeln('The least common multiple of 12 and 18 is: ', lcm(12, 18));
end.</lang>
Output:
<pre>The least common multiple of 12 and 18 is: 36
</pre>

=={{header|Perl}}==
Using GCD:
<lang Perl>sub gcd {
my ($x, $y) = @_;
while ($x) { ($x, $y) = ($y % $x, $x) }
$y
}

sub lcm {
my ($x, $y) = @_;
($x && $y) and $x / gcd($x, $y) * $y or 0
}

print lcm(1001, 221);</lang>
Or by repeatedly increasing the smaller of the two until LCM is reached:<lang perl>sub lcm {
use integer;
my ($x, $y) = @_;
my ($f, $s) = @_;
while ($f != $s) {
($f, $s, $x, $y) = ($s, $f, $y, $x) if $f > $s;
$f = $s / $x * $x;
$f += $x if $f < $s;
}
$f
}

print lcm(1001, 221);</lang>

=={{header|Phix}}==
<lang Phix>function lcm(integer m, integer n)
return m / gcd(m, n) * n
end function</lang>

=={{header|Phixmonti}}==
<lang Phixmonti>def gcd /# u v -- n #/
abs int swap abs int swap

dup
while
over over mod rot drop dup
endwhile
drop
enddef

def lcm /# m n -- n #/
over over gcd rot swap / *
enddef

12345 50 lcm print</lang>

=={{header|PHP}}==
{{trans|D}}
<lang php>echo lcm(12, 18) == 36;

function lcm($m, $n) {
if ($m == 0 || $n == 0) return 0;
$r = ($m * $n) / gcd($m, $n);
return abs($r);
}

function gcd($a, $b) {
while ($b != 0) {
$t = $b;
$b = $a % $b;
$a = $t;
}
return $a;
}</lang>

=={{header|PicoLisp}}==
Using 'gcd' from [[Greatest common divisor#PicoLisp]]:
<lang PicoLisp>(de lcm (A B)
(abs (*/ A B (gcd A B))) )</lang>

=={{header|PL/I}}==
<lang PL/I>
/* Calculate the Least Common Multiple of two integers. */

LCM: procedure options (main); /* 16 October 2013 */
declare (m, n) fixed binary (31);

get (m, n);
put edit ('The LCM of ', m, ' and ', n, ' is', LCM(m, n)) (a, x(1));

LCM: procedure (m, n) returns (fixed binary (31));
declare (m, n) fixed binary (31) nonassignable;

if m = 0 | n = 0 then return (0);
return (abs(m*n) / GCD(m, n));
end LCM;

GCD: procedure (a, b) returns (fixed binary (31)) recursive;
declare (a, b) fixed binary (31);

if b = 0 then return (a);

return (GCD (b, mod(a, b)) );

end GCD;
end LCM;
</lang>
<pre>
The LCM of 14 and 35 is 70
</pre>

=={{header|PowerShell}}==
===version 1===
<lang PowerShell>
function gcd ($a, $b) {
function pgcd ($n, $m) {
if($n -le $m) {
if($n -eq 0) {$m}
else{pgcd $n ($m-$n)}
}
else {pgcd $m $n}
}
$n = [Math]::Abs($a)
$m = [Math]::Abs($b)
(pgcd $n $m)
}
function lcm ($a, $b) {
[Math]::Abs($a*$b)/(gcd $a $b)
}
lcm 12 18
</lang>

===version 2===
version2 is faster than version1

<lang PowerShell>
function gcd ($a, $b) {
function pgcd ($n, $m) {
if($n -le $m) {
if($n -eq 0) {$m}
else{pgcd $n ($m%$n)}
}
else {pgcd $m $n}
}
$n = [Math]::Abs($a)
$m = [Math]::Abs($b)
(pgcd $n $m)
}
function lcm ($a, $b) {
[Math]::Abs($a*$b)/(gcd $a $b)
}
lcm 12 18
</lang>

<b>Output:</b>
<pre>
36
</pre>

=={{header|Prolog}}==
SWI-Prolog knows gcd.
<lang Prolog>lcm(X, Y, Z) :-
Z is abs(X * Y) / gcd(X,Y).</lang>

Example:
<pre> ?- lcm(18,12, Z).
Z = 36.
</pre>

=={{header|PureBasic}}==
<lang PureBasic>Procedure GCDiv(a, b); Euclidean algorithm
Protected r
While b
r = b
b = a%b
a = r
Wend
ProcedureReturn a
EndProcedure

Procedure LCM(m,n)
Protected t
If m And n
t=m*n/GCDiv(m,n)
EndIf
ProcedureReturn t*Sign(t)
EndProcedure</lang>

=={{header|Python}}==
===Functional===
====gcd====
Using the fractions libraries [http://docs.python.org/library/fractions.html?highlight=fractions.gcd#fractions.gcd gcd] function:
<lang python>>>> import fractions
>>> def lcm(a,b): return abs(a * b) / fractions.gcd(a,b) if a and b else 0

>>> lcm(12, 18)
36
>>> lcm(-6, 14)
42
>>> assert lcm(0, 2) == lcm(2, 0) == 0
>>> </lang>

Or, for compositional flexibility, a curried '''lcm''', expressed in terms of our own '''gcd''' function:
<lang python>'''Least common multiple'''

from inspect import signature


# lcm :: Int -> Int -> Int
def lcm(x):
'''The smallest positive integer divisible
without remainder by both x and y.
'''
return lambda y: 0 if 0 in (x, y) else abs(
y * (x // gcd_(x)(y))
)


# gcd_ :: Int -> Int -> Int
def gcd_(x):
'''The greatest common divisor in terms of
the divisibility preordering.
'''
def go(a, b):
return go(b, a % b) if 0 != b else a
return lambda y: go(abs(x), abs(y))


# TEST ----------------------------------------------------
# main :: IO ()
def main():
'''Tests'''

print(
fTable(
__doc__ + 's of 60 and [12..20]:'
)(repr)(repr)(
lcm(60)
)(enumFromTo(12)(20))
)

pairs = [(0, 2), (2, 0), (-6, 14), (12, 18)]
print(
fTable(
'\n\n' + __doc__ + 's of ' + repr(pairs) + ':'
)(repr)(repr)(
uncurry(lcm)
)(pairs)
)


# GENERIC -------------------------------------------------

# enumFromTo :: (Int, Int) -> [Int]
def enumFromTo(m):
'''Integer enumeration from m to n.'''
return lambda n: list(range(m, 1 + n))


# uncurry :: (a -> b -> c) -> ((a, b) -> c)
def uncurry(f):
'''A function over a tuple, derived from
a vanilla or curried function.
'''
if 1 < len(signature(f).parameters):
return lambda xy: f(*xy)
else:
return lambda xy: f(xy[0])(xy[1])


# unlines :: [String] -> String
def unlines(xs):
'''A single string derived by the intercalation
of a list of strings with the newline character.
'''
return '\n'.join(xs)


# FORMATTING ----------------------------------------------

# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
'''Heading -> x display function -> fx display function ->
f -> xs -> tabular string.
'''
def go(xShow, fxShow, f, xs):
ys = [xShow(x) for x in xs]
w = max(map(len, ys))
return s + '\n' + '\n'.join(map(
lambda x, y: y.rjust(w, ' ') + ' -> ' + fxShow(f(x)),
xs, ys
))
return lambda xShow: lambda fxShow: lambda f: lambda xs: go(
xShow, fxShow, f, xs
)


# MAIN ---
if __name__ == '__main__':
main()</lang>
{{Out}}
<pre>Least common multiples of 60 and [12..20]:
12 -> 60
13 -> 780
14 -> 420
15 -> 60
16 -> 240
17 -> 1020
18 -> 180
19 -> 1140
20 -> 60

Least common multiples of [(0, 2), (2, 0), (-6, 14), (12, 18)]:
(0, 2) -> 0
(2, 0) -> 0
(-6, 14) -> 42
(12, 18) -> 36</pre>

===Procedural===
====Prime decomposition====
This imports [[Prime decomposition#Python]]
<lang python>from prime_decomposition import decompose
try:
reduce
except NameError:
from functools import reduce
def lcm(a, b):
mul = int.__mul__
if a and b:
da = list(decompose(abs(a)))
db = list(decompose(abs(b)))
merge= da
for d in da:
if d in db: db.remove(d)
merge += db
return reduce(mul, merge, 1)
return 0
if __name__ == '__main__':
print( lcm(12, 18) ) # 36
print( lcm(-6, 14) ) # 42
assert lcm(0, 2) == lcm(2, 0) == 0</lang>

====Iteration over multiples====
<lang python>>>> def lcm(*values):
values = set([abs(int(v)) for v in values])
if values and 0 not in values:
n = n0 = max(values)
values.remove(n)
while any( n % m for m in values ):
n += n0
return n
return 0

>>> lcm(-6, 14)
42
>>> lcm(2, 0)
0
>>> lcm(12, 18)
36
>>> lcm(12, 18, 22)
396
>>> </lang>

====Repeated modulo====
{{trans|Tcl}}
<lang python>>>> def lcm(p,q):
p, q = abs(p), abs(q)
m = p * q
if not m: return 0
while True:
p %= q
if not p: return m // q
q %= p
if not q: return m // p

>>> lcm(-6, 14)
42
>>> lcm(12, 18)
36
>>> lcm(2, 0)
0
>>> </lang>

=={{header|Qi}}==
<lang qi>
(define gcd
A 0 -> A
A B -> (gcd B (MOD A B)))

(define lcm A B -> (/ (* A B) (gcd A B)))
</lang>

=={{header|Quackery}}==

<lang Quackery>[ [ dup while
tuck mod again ]
drop abs ] is gcd ( n n --> n )

[ 2dup and iff
[ 2dup gcd
/ * abs ]
else
[ 2drop 0 ] ] is lcm ( n n --> n )</lang>

=={{header|R}}==
<lang R>
"%gcd%" <- function(u, v) {ifelse(u %% v != 0, v %gcd% (u%%v), v)}

"%lcm%" <- function(u, v) { abs(u*v)/(u %gcd% v)}

print (50 %lcm% 75)
</lang>

=={{header|Racket}}==
Racket already has defined both lcm and gcd funtions:
<lang Racket>#lang racket
(lcm 3 4 5 6) ;returns 60
(lcm 8 108) ;returns 216
(gcd 8 108) ;returns 4
(gcd 108 216 432) ;returns 108</lang>

=={{header|Raku}}==
(formerly Perl 6)
This function is provided as an infix so that it can be used productively with various metaoperators.
<lang perl6>say 3 lcm 4; # infix
say [lcm] 1..20; # reduction
say ~(1..10 Xlcm 1..10) # cross</lang>
{{out}}
<pre>12
232792560
1 2 3 4 5 6 7 8 9 10 2 2 6 4 10 6 14 8 18 10 3 6 3 12 15 6 21 24 9 30 4 4 12 4 20 12 28 8 36 20 5 10 15 20 5 30 35 40 45 10 6 6 6 12 30 6 42 24 18 30 7 14 21 28 35 42 7 56 63 70 8 8 24 8 40 24 56 8 72 40 9 18 9 36 45 18 63 72 9 90 10 10 30 20 10 30 70 40 90 10</pre>

=={{header|Retro}}==
This is from the math extensions library included with Retro.

<lang Retro>: gcd ( ab-n ) [ tuck mod dup ] while drop ;
: lcm ( ab-n ) 2over gcd [ * ] dip / ;</lang>

=={{header|REXX}}==
===version 1===
The &nbsp; '''lcm''' &nbsp; subroutine can handle any number of integers and/or arguments.

The integers (negative/zero/positive) can be (as per the &nbsp; '''numeric digits''') &nbsp; up to ten thousand digits.

Usage note: &nbsp; the integers can be expressed as a list and/or specified as individual arguments &nbsp; (or as mixed).
<lang rexx>/*REXX program finds the LCM (Least Common Multiple) of any number of integers. */
numeric digits 10000 /*can handle 10k decimal digit numbers.*/
say 'the LCM of 19 and 0 is ───► ' lcm(19 0 )
say 'the LCM of 0 and 85 is ───► ' lcm( 0 85 )
say 'the LCM of 14 and -6 is ───► ' lcm(14, -6 )
say 'the LCM of 18 and 12 is ───► ' lcm(18 12 )
say 'the LCM of 18 and 12 and -5 is ───► ' lcm(18 12, -5 )
say 'the LCM of 18 and 12 and -5 and 97 is ───► ' lcm(18, 12, -5, 97)
say 'the LCM of 2**19-1 and 2**521-1 is ───► ' lcm(2**19-1 2**521-1)
/* [↑] 7th & 13th Mersenne primes.*/
exit /*stick a fork in it, we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
lcm: procedure; parse arg $,_; $=$ _; do i=3 to arg(); $=$ arg(i); end /*i*/
parse var $ x $ /*obtain the first value in args. */
x=abs(x) /*use the absolute value of X. */
do while $\=='' /*process the remainder of args. */
parse var $ ! $; if !<0 then !=-! /*pick off the next arg (ABS val).*/
if !==0 then return 0 /*if zero, then LCM is also zero. */
d=x*! /*calculate part of the LCM here. */
do until !==0; parse value x//! ! with ! x
end /*until*/ /* [↑] this is a short & fast GCD*/
x=d%x /*divide the pre─calculated value.*/
end /*while*/ /* [↑] process subsequent args. */
return x /*return with the LCM of the args.*/</lang>
'''output''' &nbsp; when using the (internal) supplied list:
<pre>
the LCM of 19 and 0 is ───► 0
the LCM of 0 and 85 is ───► 0
the LCM of 14 and -6 is ───► 42
the LCM of 18 and 12 is ───► 36
the LCM of 18 and 12 and -5 is ───► 180
the LCM of 18 and 12 and -5 and 97 is ───► 17460
the LCM of 2**19-1 and 2**521-1 is ───► 3599124170836896975638715824247986405702540425206233163175195063626010878994006898599180426323472024265381751210505324617708575722407440034562999570663839968526337
</pre>

===version 2===
{{trans|REXX version 0}} using different argument handling-
Use as lcm(a,b,c,---)
<lang rexx>lcm2: procedure
x=abs(arg(1))
do k=2 to arg() While x<>0
y=abs(arg(k))
x=x*y/gcd2(x,y)
end
return x

gcd2: procedure
x=abs(arg(1))
do j=2 to arg()
y=abs(arg(j))
If y<>0 Then Do
do until z==0
z=x//y
x=y
y=z
end
end
end
return x</lang>

=={{header|Ring}}==
<lang>
see lcm(24,36)
func lcm m,n
lcm = m*n / gcd(m,n)
return lcm

func gcd gcd, b
while b
c = gcd
gcd = b
b = c % b
end
return gcd
</lang>

=={{header|Ruby}}==
Ruby has an <tt>Integer#lcm</tt> method, which finds the least common multiple of two integers.

<lang ruby>irb(main):001:0> 12.lcm 18
=> 36</lang>

I can also write my own <tt>lcm</tt> method. This one takes any number of arguments.

<lang ruby>def gcd(m, n)
m, n = n, m % n until n.zero?
m.abs
end

def lcm(*args)
args.inject(1) do |m, n|
return 0 if n.zero?
(m * n).abs / gcd(m, n)
end
end

p lcm 12, 18, 22
p lcm 15, 14, -6, 10, 21</lang>

{{out}}
<pre>
396
210
</pre>

=={{header|Run BASIC}}==
{{incorrect|Run BASIC|This example computes GCD not LCM.}}

<lang runbasic>print lcm(22,44)

function lcm(m,n)
while n
t = m
m = n
n = t mod n
wend
lcm = m
end function</lang>

=={{header|Rust}}==
This implementation uses a recursive implementation of Stein's algorithm to calculate the gcd.
<lang rust>use std::cmp::{max, min};

fn gcd(a: usize, b: usize) -> usize {
match ((a, b), (a & 1, b & 1)) {
((x, y), _) if x == y => y,
((0, x), _) | ((x, 0), _) => x,
((x, y), (0, 1)) | ((y, x), (1, 0)) => gcd(x >> 1, y),
((x, y), (0, 0)) => gcd(x >> 1, y >> 1) << 1,
((x, y), (1, 1)) => {
let (x, y) = (min(x, y), max(x, y));
gcd((y - x) >> 1, x)
}
_ => unreachable!(),
}
}

fn lcm(a: usize, b: usize) -> usize {
a * b / gcd(a, b)
}

fn main() {
println!("{}", lcm(6324, 234))
}</lang>

=={{header|Scala}}==
<lang scala>def gcd(a: Int, b: Int):Int=if (b==0) a.abs else gcd(b, a%b)
def lcm(a: Int, b: Int)=(a*b).abs/gcd(a,b)</lang>
<lang scala>lcm(12, 18) // 36
lcm( 2, 0) // 0
lcm(-6, 14) // 42</lang>

=={{header|Scheme}}==
<lang scheme>
>(define gcd (lambda (a b)
(if (zero? b)
a
(gcd b (remainder a b)))))
>(define lcm (lambda (a b)
(if (or (zero? a) (zero? b))
0
(abs (* b (floor (/ a (gcd a b))))))))
>(lcm 12 18)
36</lang>

=={{header|Seed7}}==
<lang seed7>$ include "seed7_05.s7i";

const func integer: gcd (in var integer: a, in var integer: b) is func
result
var integer: gcd is 0;
local
var integer: help is 0;
begin
while a <> 0 do
help := b rem a;
b := a;
a := help;
end while;
gcd := b;
end func;

const func integer: lcm (in integer: a, in integer: b) is
return a div gcd(a, b) * b;

const proc: main is func
begin
writeln("lcm(35, 21) = " <& lcm(21, 35));
end func;</lang>

Original source: [http://seed7.sourceforge.net/algorith/math.htm#lcm]

=={{header|SenseTalk}}==
<lang sensetalk>function gcd m, n
repeat while m is greater than 0
put m into temp
put n modulo m into m
put temp into n
end repeat
return n
end gcd

function lcm m, n
return m divided by gcd(m, n) times n
end lcm</lang>

=={{header|Sidef}}==
Built-in:
<lang ruby>say Math.lcm(1001, 221)</lang>

Using GCD:
<lang ruby>func gcd(a, b) {
while (a) { (a, b) = (b % a, a) }
return b
}

func lcm(a, b) {
(a && b) ? (a / gcd(a, b) * b) : 0
}

say lcm(1001, 221)</lang>
{{out}}
<pre>
17017
</pre>

=={{header|Smalltalk}}==
Smalltalk has a built-in <code>lcm</code> method on <code>SmallInteger</code>:
<lang smalltalk>12 lcm: 18</lang>

=={{header|Sparkling}}==
<lang sparkling>function factors(n) {
var f = {};

for var i = 2; n > 1; i++ {
while n % i == 0 {
n /= i;
f[i] = f[i] != nil ? f[i] + 1 : 1;
}
}

return f;
}

function GCD(n, k) {
let f1 = factors(n);
let f2 = factors(k);

let fs = map(f1, function(factor, multiplicity) {
let m = f2[factor];
return m == nil ? 0 : min(m, multiplicity);
});

let rfs = {};
foreach(fs, function(k, v) {
rfs[sizeof rfs] = pow(k, v);
});

return reduce(rfs, 1, function(x, y) { return x * y; });
}

function LCM(n, k) {
return n * k / GCD(n, k);
}</lang>

=={{header|Swift}}==
Using the Swift GCD function.
<lang Swift>func lcm(a:Int, b:Int) -> Int {
return abs(a * b) / gcd_rec(a, b)
}</lang>

=={{header|Tcl}}==
<lang tcl>proc lcm {p q} {
set m [expr {$p * $q}]
if {!$m} {return 0}
while 1 {
set p [expr {$p % $q}]
if {!$p} {return [expr {$m / $q}]}
set q [expr {$q % $p}]
if {!$q} {return [expr {$m / $p}]}
}
}</lang>
Demonstration
<lang tcl>puts [lcm 12 18]</lang>
Output:
36

=={{header|TI-83 BASIC}}==
<lang ti83b>lcm(12,18
36</lang>

=={{header|TSE SAL}}==
<lang TSESAL>// library: math: get: least: common: multiple <description></description> <version control></version control> <version>1.0.0.0.2</version> <version control></version control> (filenamemacro=getmacmu.s) [<Program>] [<Research>] [kn, ri, su, 20-01-2013 14:36:11]
INTEGER PROC FNMathGetLeastCommonMultipleI( INTEGER x1I, INTEGER x2I )
//
RETURN( x1I * x2I / FNMathGetGreatestCommonDivisorI( x1I, x2I ) )
//
END

// library: math: get: greatest: common: divisor <description>greatest common divisor whole numbers. Euclid's algorithm. Recursive version</description> <version control></version control> <version>1.0.0.0.3</version> <version control></version control> (filenamemacro=getmacdi.s) [<Program>] [<Research>] [kn, ri, su, 20-01-2013 14:22:41]
INTEGER PROC FNMathGetGreatestCommonDivisorI( INTEGER x1I, INTEGER x2I )
//
IF ( x2I == 0 )
//
RETURN( x1I )
//
ENDIF
//
RETURN( FNMathGetGreatestCommonDivisorI( x2I, x1I MOD x2I ) )
//
END

PROC Main()
//
STRING s1[255] = "10"
STRING s2[255] = "20"
REPEAT
IF ( NOT ( Ask( "math: get: least: common: multiple: x1I = ", s1, _EDIT_HISTORY_ ) ) AND ( Length( s1 ) > 0 ) ) RETURN() ENDIF
IF ( NOT ( Ask( "math: get: least: common: multiple: x2I = ", s2, _EDIT_HISTORY_ ) ) AND ( Length( s2 ) > 0 ) ) RETURN() ENDIF
Warn( FNMathGetLeastCommonMultipleI( Val( s1 ), Val( s2 ) ) ) // gives e.g. 10
UNTIL FALSE
END</lang>

=={{header|TXR}}==

<lang bash>$ txr -p '(lcm (expt 2 123) (expt 6 49) 17)'
43259338018880832376582582128138484281161556655442781051813888</lang>

=={{header|uBasic/4tH}}==
{{trans|BBC BASIC}}
<lang>Print "LCM of 12 : 18 = "; FUNC(_LCM(12,18))

End


_GCD_Iterative_Euclid Param(2)
Local (1)
Do While b@
c@ = a@
a@ = b@
b@ = c@ % b@
Loop
Return (ABS(a@))


_LCM Param(2)
If a@*b@
Return (ABS(a@*b@)/FUNC(_GCD_Iterative_Euclid(a@,b@)))
Else
Return (0)
EndIf</lang>
{{out}}
<pre>LCM of 12 : 18 = 36

0 OK, 0:330</pre>

=={{header|UNIX Shell}}==
<math>\operatorname{lcm}(m, n) = \left | \frac{m \times n}{\operatorname{gcd}(m, n)} \right |</math>

{{works with|Bourne Shell}}
<lang bash>gcd() {
# Calculate $1 % $2 until $2 becomes zero.
until test 0 -eq "$2"; do
# Parallel assignment: set -- 1 2
set -- "$2" "`expr "$1" % "$2"`"
done

# Echo absolute value of $1.
test 0 -gt "$1" && set -- "`expr 0 - "$1"`"
echo "$1"
}

lcm() {
set -- "$1" "$2" "`gcd "$1" "$2"`"
set -- "`expr "$1" \* "$2" / "$3"`"
test 0 -gt "$1" && set -- "`expr 0 - "$1"`"
echo "$1"
}

lcm 30 -42
# => 210</lang>

==={{header|C Shell}}===
<lang csh>alias gcd eval \''set gcd_args=( \!*:q ) \\
@ gcd_u=$gcd_args[2] \\
@ gcd_v=$gcd_args[3] \\
while ( $gcd_v != 0 ) \\
@ gcd_t = $gcd_u % $gcd_v \\
@ gcd_u = $gcd_v \\
@ gcd_v = $gcd_t \\
end \\
if ( $gcd_u < 0 ) @ gcd_u = - $gcd_u \\
@ $gcd_args[1]=$gcd_u \\
'\'

alias lcm eval \''set lcm_args=( \!*:q ) \\
@ lcm_m = $lcm_args[2] \\
@ lcm_n = $lcm_args[3] \\
gcd lcm_d $lcm_m $lcm_n \\
@ lcm_r = ( $lcm_m * $lcm_n ) / $lcm_d \\
if ( $lcm_r < 0 ) @ lcm_r = - $lcm_r \\
@ $lcm_args[1] = $lcm_r \\
'\'

lcm result 30 -42
echo $result
# => 210</lang>

=={{header|Ursa}}==
<lang ursa>import "math"
out (lcm 12 18) endl console</lang>
{{out}}
<pre>36</pre>

=={{header|Vala}}==
<lang vala>
int lcm(int a, int b){
/*Return least common multiple of two ints*/
// check for 0's
if (a == 0 || b == 0)
return 0;

// Math.abs(x) only works for doubles, Math.absf(x) for floats
if (a < 0)
a *= -1;
if (b < 0)
b *= -1;

int x = 1;
while (true){
if (a * x % b == 0)
return a*x;
x++;
}
}

void main(){
int a = 12;
int b = 18;

stdout.printf("lcm(%d, %d) = %d\n", a, b, lcm(a, b));
}
</lang>

=={{header|VBA}}==
<lang vb>Function gcd(u As Long, v As Long) As Long
Dim t As Long
Do While v
t = u
u = v
v = t Mod v
Loop
gcd = u
End Function
Function lcm(m As Long, n As Long) As Long
lcm = Abs(m * n) / gcd(m, n)
End Function</lang>

=={{header|VBScript}}==
<lang vb>Function LCM(a,b)
LCM = POS((a * b)/GCD(a,b))
End Function

Function GCD(a,b)
Do
If a Mod b > 0 Then
c = a Mod b
a = b
b = c
Else
GCD = b
Exit Do
End If
Loop
End Function

Function POS(n)
If n < 0 Then
POS = n * -1
Else
POS = n
End If
End Function

i = WScript.Arguments(0)
j = WScript.Arguments(1)

WScript.StdOut.Write "The LCM of " & i & " and " & j & " is " & LCM(i,j) & "."
WScript.StdOut.WriteLine</lang>

{{out}}
<pre>
C:\>cscript /nologo lcm.vbs 12 18
The LCM of 12 and 18 is 36.

C:\>cscript /nologo lcm.vbs 14 -6
The LCM of 14 and -6 is 42.

C:\>cscript /nologo lcm.vbs 0 35
The LCM of 0 and 35 is 0.

C:\></pre>

=={{header|Wortel}}==
Operator
<lang wortel>@lcm a b</lang>
Number expression
<lang wortel>!#~km a b</lang>
Function (using gcd)
<lang wortel>&[a b] *b /a @gcd a b</lang>

=={{header|Wren}}==
<lang ecmascript>var gcd = Fn.new { |x, y|
while (y != 0) {
var t = y
y = x % y
x = t
}
return x
}

var lcm = Fn.new { |x, y| (x*y).abs / gcd.call(x, y) }

var xys = [[12, 18], [-6, 14], [35, 0]]
for (xy in xys) {
System.print("lcm(%(xy[0]), %(xy[1]))\t%("\b"*5) = %(lcm.call(xy[0], xy[1]))")
}</lang>

{{out}}
<pre>
lcm(12, 18) = 36
lcm(-6, 14) = 42
lcm(35, 0) = 0
</pre>

=={{header|XBasic}}==
{{trans|C}}
{{works with|Windows XBasic}}
<lang xbasic>
PROGRAM "leastcommonmultiple"
VERSION "0.0001"

DECLARE FUNCTION Entry()
INTERNAL FUNCTION Gcd(m&, n&)
INTERNAL FUNCTION Lcm(m&, n&)

FUNCTION Entry()
PRINT "LCM(35, 21) ="; Lcm(35, 21)
END FUNCTION

FUNCTION Gcd(m&, n&)
DO WHILE m& <> 0
tmp& = m&
m& = n& MOD m&
n& = tmp&
LOOP
RETURN n&
END FUNCTION

FUNCTION Lcm(m&, n&)
RETURN m& / Gcd(m&, n&) * n&
END FUNCTION

END PROGRAM
</lang>
{{out}}
<pre>
LCM(35, 21) = 105
</pre>

=={{header|XPL0}}==
<lang XPL0>include c:\cxpl\codes;

func GCD(M,N); \Return the greatest common divisor of M and N
int M, N;
int T;
[while N do \Euclid's method
[T:= M; M:= N; N:= rem(T/N)];
return M;
];

func LCM(M,N); \Return least common multiple
int M, N;
return abs(M*N) / GCD(M,N);

\Display the LCM of two integers entered on command line
IntOut(0, LCM(IntIn(8), IntIn(8)))</lang>

=={{header|Yabasic}}==
<lang Yabasic>sub gcd(u, v)
local t
u = int(abs(u))
v = int(abs(v))
while(v)
t = u
u = v
v = mod(t, v)
wend
return u
end sub

sub lcm(m, n)
return m / gcd(m, n) * n
end sub

print "Least common multiple: ", lcm(12345, 23044)</lang>

=={{header|zkl}}==
<lang zkl>fcn lcm(m,n){ (m*n).abs()/m.gcd(n) } // gcd is a number method</lang>
{{out}}
<pre>
zkl: lcm(12,18)
36
zkl: lcm(-6,14)
42
zkl: lcm(35,0)
0
</pre>

Revision as of 12:50, 19 February 2021

Arturo

<lang rebol>lcm: function [x,y][

   x * y / gcd @[x y]

]

print lcm 12 18</lang>

Output:
36