Getting the number of decimal places: Difference between revisions

From Rosetta Code
Content added Content deleted
m (syntax highlighting fixup automation)
Line 15: Line 15:
{{trans|Python}}
{{trans|Python}}


<lang 11l>F dec(n)
<syntaxhighlight lang="11l">F dec(n)
R I ‘.’ C n {n.split(‘.’).last.len} E 0
R I ‘.’ C n {n.split(‘.’).last.len} E 0


print(dec(‘12.345’))
print(dec(‘12.345’))
print(dec(‘12.3450’))</lang>
print(dec(‘12.3450’))</syntaxhighlight>


{{out}}
{{out}}
Line 29: Line 29:
=={{header|Action!}}==
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
{{libheader|Action! Tool Kit}}
<lang Action!>INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit


BYTE FUNC FindC(CHAR ARRAY s CHAR c)
BYTE FUNC FindC(CHAR ARRAY s CHAR c)
Line 100: Line 100:
ValR("1.E-10",r) Test(r)
ValR("1.E-10",r) Test(r)
ValR("1.23456789E10",r) Test(r)
ValR("1.23456789E10",r) Test(r)
RETURN</lang>
RETURN</syntaxhighlight>
{{out}}
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Getting_the_number_of_decimals.png Screenshot from Atari 8-bit computer]
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Getting_the_number_of_decimals.png Screenshot from Atari 8-bit computer]
Line 116: Line 116:


=={{header|AutoHotkey}}==
=={{header|AutoHotkey}}==
<lang AutoHotkey>for i, v in [10, "10", 12.345, "12.345", 12.3450, "12.3450"]
<syntaxhighlight lang="autohotkey">for i, v in [10, "10", 12.345, "12.345", 12.3450, "12.3450"]
output .= v " has " StrLen(StrSplit(v, ".").2) " decimals.`n"
output .= v " has " StrLen(StrSplit(v, ".").2) " decimals.`n"
MsgBox % output</lang>
MsgBox % output</syntaxhighlight>
{{out}}
{{out}}
<pre>10 has 0 decimals.
<pre>10 has 0 decimals.
Line 128: Line 128:


=={{header|AWK}}==
=={{header|AWK}}==
<syntaxhighlight lang="awk">
<lang AWK>
# syntax: GAWK -f GETTING_THE_NUMBER_OF_DECIMALS.AWK
# syntax: GAWK -f GETTING_THE_NUMBER_OF_DECIMALS.AWK
BEGIN {
BEGIN {
Line 139: Line 139:
exit(0)
exit(0)
}
}
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 150: Line 150:


=={{header|C}}==
=={{header|C}}==
<lang c>#include <stdio.h>
<syntaxhighlight lang="c">#include <stdio.h>


int findNumOfDec(double x) {
int findNumOfDec(double x) {
Line 193: Line 193:
test(1.2345e+54);
test(1.2345e+54);
return 0;
return 0;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>12.000000 has 0 decimals
<pre>12.000000 has 0 decimals
Line 204: Line 204:
=={{header|C++}}==
=={{header|C++}}==
{{trans|C}}
{{trans|C}}
<lang cpp>#include <iomanip>
<syntaxhighlight lang="cpp">#include <iomanip>
#include <iostream>
#include <iostream>
#include <sstream>
#include <sstream>
Line 235: Line 235:
test(1.2345e+54);
test(1.2345e+54);
return 0;
return 0;
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>12 has 0 decimals
<pre>12 has 0 decimals
Line 246: Line 246:


=={{header|FreeBASIC}}==
=={{header|FreeBASIC}}==
<lang freebasic>Function dec(n As Double) As Uinteger
<syntaxhighlight lang="freebasic">Function dec(n As Double) As Uinteger
Dim As String c = Str(n)
Dim As String c = Str(n)
Return Iif(Instr(c, "."), Len(Mid(c,Instr(c, ".")+1)), 0)
Return Iif(Instr(c, "."), Len(Mid(c,Instr(c, ".")+1)), 0)
Line 256: Line 256:
Print n(i); " has "; dec(n(i)); " decimals"
Print n(i); " has "; dec(n(i)); " decimals"
Next i
Next i
Sleep</lang>
Sleep</syntaxhighlight>
{{out}}
{{out}}
<pre> 7 has 0 decimals
<pre> 7 has 0 decimals
Line 267: Line 267:
=={{header|Go}}==
=={{header|Go}}==
{{trans|Wren}}
{{trans|Wren}}
<lang go>package main
<syntaxhighlight lang="go">package main


import (
import (
Line 328: Line 328:
}
}
}
}
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 340: Line 340:
</pre>
</pre>
=={{Header|Haskell}}==
=={{Header|Haskell}}==
<lang Haskell>decimal :: String -> Int
<syntaxhighlight lang="haskell">decimal :: String -> Int
decimal [] = 0
decimal [] = 0
decimal ('.':xs) = length xs
decimal ('.':xs) = length xs
Line 348: Line 348:
numDecimal = decimal . show
numDecimal = decimal . show


main = print . map numDecimal $ [12.0, 12.345, 12.3450, 12.345555555555, 12.34555555555555555555, 1.2345e+54]</lang>
main = print . map numDecimal $ [12.0, 12.345, 12.3450, 12.345555555555, 12.34555555555555555555, 1.2345e+54]</syntaxhighlight>
{{out}}
{{out}}
<pre>[1,3,3,12,15,7]</pre>
<pre>[1,3,3,12,15,7]</pre>
=={{header|Java}}==
=={{header|Java}}==
<lang java>public static int findNumOfDec(double x){
<syntaxhighlight lang="java">public static int findNumOfDec(double x){
String str = String.valueOf(x);
String str = String.valueOf(x);
if(str.endsWith(".0")) return 0;
if(str.endsWith(".0")) return 0;
else return (str.substring(str.indexOf('.')).length() - 1);
else return (str.substring(str.indexOf('.')).length() - 1);
}</lang>
}</syntaxhighlight>


=={{header|Julia}}==
=={{header|Julia}}==
<lang julia>function postprecision(str::String)
<syntaxhighlight lang="julia">function postprecision(str::String)
s = lowercase(str)
s = lowercase(str)
if 'e' in s
if 'e' in s
Line 380: Line 380:
println("$n has $(postprecision(n)) decimals.")
println("$n has $(postprecision(n)) decimals.")
end
end
</lang>{{out}}
</syntaxhighlight>{{out}}
<pre>
<pre>
0.00100 has 5 decimals.
0.00100 has 5 decimals.
Line 399: Line 399:
=={{header|Kotlin}}==
=={{header|Kotlin}}==
{{trans|Java}}
{{trans|Java}}
<lang scala>fun findNumOfDec(x: Double): Int {
<syntaxhighlight lang="scala">fun findNumOfDec(x: Double): Int {
val str = x.toString()
val str = x.toString()
if (str.endsWith(".0")) {
if (str.endsWith(".0")) {
Line 411: Line 411:
println("%f has %d decimals".format(n, findNumOfDec(n)))
println("%f has %d decimals".format(n, findNumOfDec(n)))
}
}
}</lang>
}</syntaxhighlight>
{{out}}
{{out}}
<pre>12.000000 has 0 decimals
<pre>12.000000 has 0 decimals
Line 425: Line 425:
A first answer could be
A first answer could be


<syntaxhighlight lang="scheme">
<lang Scheme>
{W.length
{W.length
{S.rest
{S.rest
{S.replace \. by space in 12.3450}}}
{S.replace \. by space in 12.3450}}}
-> 4
-> 4
</syntaxhighlight>
</lang>


This is a better one, if considering that ending zeroes should not be considered as decimals
This is a better one, if considering that ending zeroes should not be considered as decimals


<syntaxhighlight lang="schema">
<lang Schema>
{def decimals
{def decimals
{def decimals.r
{def decimals.r
Line 451: Line 451:
{decimals 12.34560001230000}
{decimals 12.34560001230000}
-> 10
-> 10
</syntaxhighlight>
</lang>
Numbers can be of any size.
Numbers can be of any size.


=={{header|Mathematica}}/{{header|Wolfram Language}}==
=={{header|Mathematica}}/{{header|Wolfram Language}}==
<lang Mathematica>ClearAll[DecimalDigits]
<syntaxhighlight lang="mathematica">ClearAll[DecimalDigits]
DecimalDigits[r_String] := Module[{pos},
DecimalDigits[r_String] := Module[{pos},
If[StringContainsQ[r, "."],
If[StringContainsQ[r, "."],
Line 469: Line 469:
DecimalDigits["3128"]
DecimalDigits["3128"]
DecimalDigits["13."]
DecimalDigits["13."]
DecimalDigits["13.1312312"]</lang>
DecimalDigits["13.1312312"]</syntaxhighlight>
{{out}}
{{out}}
<pre>3
<pre>3
Line 480: Line 480:
=={{header|Perl}}==
=={{header|Perl}}==
Need pragma <code>bignum</code> to handle decimals beyond 15 digits.
Need pragma <code>bignum</code> to handle decimals beyond 15 digits.
<lang perl>use bignum;
<syntaxhighlight lang="perl">use bignum;


printf "Fractional precision: %2s Number: %s\n", length((split /\./, $_)[1]) // 0, $_
printf "Fractional precision: %2s Number: %s\n", length((split /\./, $_)[1]) // 0, $_
for 9, 12.345, <12.3450>, 0.1234567890987654321, 1/3, 1.5**63;</lang>
for 9, 12.345, <12.3450>, 0.1234567890987654321, 1/3, 1.5**63;</syntaxhighlight>
{{out}}
{{out}}
<pre>Fractional precision: 0 Number: 9
<pre>Fractional precision: 0 Number: 9
Line 493: Line 493:


=={{header|Phix}}==
=={{header|Phix}}==
<!--<lang Phix>(phixonline)-->
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #008080;">constant</span> <span style="color: #000000;">fracfmt</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">machine_bits</span><span style="color: #0000FF;">()=</span><span style="color: #000000;">32</span><span style="color: #0000FF;">?</span><span style="color: #008000;">"%.14g"</span><span style="color: #0000FF;">:</span><span style="color: #008000;">"%.18g"</span><span style="color: #0000FF;">)</span>
<span style="color: #008080;">constant</span> <span style="color: #000000;">fracfmt</span> <span style="color: #0000FF;">=</span> <span style="color: #008080;">iff</span><span style="color: #0000FF;">(</span><span style="color: #7060A8;">machine_bits</span><span style="color: #0000FF;">()=</span><span style="color: #000000;">32</span><span style="color: #0000FF;">?</span><span style="color: #008000;">"%.14g"</span><span style="color: #0000FF;">:</span><span style="color: #008000;">"%.18g"</span><span style="color: #0000FF;">)</span>
Line 536: Line 536:
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%25s has %d decimals\n"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">num_decimals</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]))</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"%25s has %d decimals\n"</span><span style="color: #0000FF;">,</span><span style="color: #000000;">num_decimals</span><span style="color: #0000FF;">(</span><span style="color: #000000;">tests</span><span style="color: #0000FF;">[</span><span style="color: #000000;">i</span><span style="color: #0000FF;">]))</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">for</span>
<!--</lang>-->
<!--</syntaxhighlight>-->
{{out}}
{{out}}
32 bit
32 bit
Line 563: Line 563:
=={{header|Python}}==
=={{header|Python}}==
Treated as a function over a string representation of a number to allow the capturing of significant trailing zeros.
Treated as a function over a string representation of a number to allow the capturing of significant trailing zeros.
<lang python>In [6]: def dec(n):
<syntaxhighlight lang="python">In [6]: def dec(n):
...: return len(n.rsplit('.')[-1]) if '.' in n else 0
...: return len(n.rsplit('.')[-1]) if '.' in n else 0


Line 572: Line 572:
Out[8]: 4
Out[8]: 4


In [9]: </lang>
In [9]: </syntaxhighlight>




Or, defining a slightly less partial function, over a given number, rather than a string:
Or, defining a slightly less partial function, over a given number, rather than a string:


<lang python>'''Report the decimal counts in default stringifications.'''
<syntaxhighlight lang="python">'''Report the decimal counts in default stringifications.'''


import math
import math
Line 685: Line 685:
# MAIN ---
# MAIN ---
if __name__ == '__main__':
if __name__ == '__main__':
main()</lang>
main()</syntaxhighlight>
{{Out}}
{{Out}}
<pre>Decimal counts in stringifications of real and imaginary components:
<pre>Decimal counts in stringifications of real and imaginary components:
Line 710: Line 710:
want to retain them, you need to pass the value as a string. (As below.)
want to retain them, you need to pass the value as a string. (As below.)


<lang perl6>use Rat::Precise;
<syntaxhighlight lang="raku" line>use Rat::Precise;


printf "Fractional precision: %-2s || Number: %s\n", (.split('.')[1] // '').chars, $_
printf "Fractional precision: %-2s || Number: %s\n", (.split('.')[1] // '').chars, $_
for 9, 12.345, '12.3450', 0.1234567890987654321, (1.5**63).precise;
for 9, 12.345, '12.3450', 0.1234567890987654321, (1.5**63).precise;
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>Fractional precision: 0 || Number: 9
<pre>Fractional precision: 0 || Number: 9
Line 731: Line 731:


Any number specified in exponential notation is first converted to a whole or fractional integer &nbsp; (or an integer with scale), <br>and &nbsp;that&nbsp; number is then examined.
Any number specified in exponential notation is first converted to a whole or fractional integer &nbsp; (or an integer with scale), <br>and &nbsp;that&nbsp; number is then examined.
<lang rexx>/*REXX pgm counts number of decimal digits which are to the right of the decimal point. */
<syntaxhighlight lang="rexx">/*REXX pgm counts number of decimal digits which are to the right of the decimal point. */
numeric digits 1000 /*ensure enuf dec digs for calculations*/
numeric digits 1000 /*ensure enuf dec digs for calculations*/
@.=; /*initialize a stemmed array to nulls. */
@.=; /*initialize a stemmed array to nulls. */
Line 765: Line 765:
end
end
parse var x '.' fract /*parse number, get the fractional part*/
parse var x '.' fract /*parse number, get the fractional part*/
return length(fract) /*return number of fractional digits. */</lang>
return length(fract) /*return number of fractional digits. */</syntaxhighlight>
{{out|output|text=&nbsp; when using the default inputs:}}
{{out|output|text=&nbsp; when using the default inputs:}}
<pre>
<pre>
Line 783: Line 783:


=={{header|Ring}}==
=={{header|Ring}}==
<lang ring>
<syntaxhighlight lang="ring">
# Testing the function
# Testing the function
decimals(2) # Unsensitive to the default setting of decimals
decimals(2) # Unsensitive to the default setting of decimals
Line 804: Line 804:
ok
ok
end
end
</syntaxhighlight>
</lang>
{{out}}
{{out}}
<pre>
<pre>
Line 811: Line 811:


=={{header|Sidef}}==
=={{header|Sidef}}==
<lang ruby>func number_of_decimals(n, limit = 1e5) {
<syntaxhighlight lang="ruby">func number_of_decimals(n, limit = 1e5) {
var prec = Num(Num!PREC)>>2
var prec = Num(Num!PREC)>>2
var prev = ''
var prev = ''
Line 839: Line 839:
var c = number_of_decimals(n)
var c = number_of_decimals(n)
say "Number of decimals: #{'%3s' % c} Number: #{n}"
say "Number of decimals: #{'%3s' % c} Number: #{n}"
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}
Line 858: Line 858:


Converting the fourth example to a Rat or BigRat object wouldn't help as the constructor for those classes automatically reduces the numerator and denominator to their lowest terms. BigRat would work for the fifth example but the argument would have to be passed as a string anyway so we might as well just parse the string.
Converting the fourth example to a Rat or BigRat object wouldn't help as the constructor for those classes automatically reduces the numerator and denominator to their lowest terms. BigRat would work for the fifth example but the argument would have to be passed as a string anyway so we might as well just parse the string.
<lang ecmascript>var error = "Argument must be a number or a decimal numeric string."
<syntaxhighlight lang="ecmascript">var error = "Argument must be a number or a decimal numeric string."


var getNumDecimals = Fn.new { |n|
var getNumDecimals = Fn.new { |n|
Line 881: Line 881:
var ns = (n is String) ? "\"%(n)\"" : "%(n)"
var ns = (n is String) ? "\"%(n)\"" : "%(n)"
System.print("%(ns) has %(d) decimals")
System.print("%(ns) has %(d) decimals")
}</lang>
}</syntaxhighlight>


{{out}}
{{out}}

Revision as of 14:12, 27 August 2022

Getting the number of decimal places is a draft programming task. It is not yet considered ready to be promoted as a complete task, for reasons that should be found in its talk page.
Task

Write a program (function) to get the number of decimals in a given number.


Examples
  •   for num = 12.345         decimals = 3,     and
  •   for num = 12.3450       decimals = 4


(Note that the reference implementation – in the Ring language – shows a function over a given number rather than a given numeric string, and that the sample values shown above are not enclosed in quotes).

11l

Translation of: Python
F dec(n)
   R I ‘.’ C n {n.split(‘.’).last.len} E 0

print(dec(‘12.345’))
print(dec(‘12.3450’))
Output:
3
4

Action!

INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit

BYTE FUNC FindC(CHAR ARRAY s CHAR c)
  BYTE i

  FOR i=1 TO s(0)
  DO
    IF s(i)=c THEN
      RETURN (i)
    FI
  OD
RETURN (0)

BYTE FUNC DecimalCount(REAL POINTER r)
  CHAR ARRAY s(20),sub(20)
  BYTE i,dotPos,ePos,count
  INT exp

  StrR(r,s)
  ePos=FindC(s,'E)
  IF ePos>0 THEN
    ePos==+1
    IF s(ePos)='+ THEN
      ePos==+1
    FI
    SCopyS(sub,s,ePos,s(0))
    exp=ValI(sub)
  ELSE
    exp=0
  FI
  dotPos=FindC(s,'.)
  count=0
  IF dotPos>0 THEN
    FOR i=dotPos+1 TO s(0)
    DO
      IF s(i)<'0 OR s(i)>'9 THEN
        EXIT
      FI
      count==+1
    OD
  FI
  IF exp<0 THEN
    count==-exp
  ELSEIF exp<count THEN
    count==-exp
  ELSE
    count=0
  FI
RETURN (count)

PROC Test(REAL POINTER r)
  BYTE count

  count=DecimalCount(r)
  PrintR(r)
  PrintF(" has %I decimals%E",count)
RETURN

PROC Main()
  REAL r

  Put(125) PutE() ;clear screen
  ValR("1234",r) Test(r)
  ValR("123.4",r) Test(r)
  ValR("12.34",r) Test(r)
  ValR("1.234",r) Test(r)
  ValR("0.1234",r) Test(r)
  ValR("1.234E-3",r) Test(r)
  ValR("1.234E-10",r) Test(r)
  ValR("1.E-10",r) Test(r)
  ValR("1.23456789E10",r) Test(r)
RETURN
Output:

Screenshot from Atari 8-bit computer

1234 has 0 decimals
123.4 has 1 decimals
12.34 has 2 decimals
1.234 has 3 decimals
.1234 has 4 decimals
1.234E-03 has 6 decimals
1.234E-10 has 13 decimals
1E-10 has 10 decimals
1.23456789E+10 has 0 decimals

AutoHotkey

for i, v in [10, "10",  12.345, "12.345", 12.3450, "12.3450"]
	output .= v " has " StrLen(StrSplit(v, ".").2) " decimals.`n"
MsgBox % output
Output:
10 has 0 decimals.
10 has 0 decimals.
12.345 has 3 decimals.
12.345 has 3 decimals.
12.3450 has 4 decimals.
12.3450 has 4 decimals.

AWK

# syntax: GAWK -f GETTING_THE_NUMBER_OF_DECIMALS.AWK
BEGIN {
    n = split("10,1.,1.0,12.345,12.3450",arr,",")
    for (i=1; i<=n; i++) {
      s = arr[i]
      x = index(s,".")
      printf("%s has %d decimals\n",s,x?length(s)-x:x)
    }
    exit(0)
}
Output:
10 has 0 decimals
1. has 0 decimals
1.0 has 1 decimals
12.345 has 3 decimals
12.3450 has 4 decimals

C

#include <stdio.h>

int findNumOfDec(double x) {
    char buffer[128];
    int pos, num;

    sprintf(buffer, "%.14f", x);

    pos = 0;
    num = 0;
    while (buffer[pos] != 0 && buffer[pos] != '.') {
        pos++;
    }
    if (buffer[pos] != 0) {
        pos++; // skip over the decimal
        while (buffer[pos] != 0) {
            pos++; // find the end of the string
        }
        pos--; //reverse past the null sentiel
        while (buffer[pos] == '0') {
            pos--; // reverse past any zeros
        }
        while (buffer[pos] != '.') {
            num++;
            pos--; // only count decimals from this point
        }
    }
    return num;
}

void test(double x) {
    int num = findNumOfDec(x);
    printf("%f has %d decimals\n", x, num);
}

int main() {
    test(12.0);
    test(12.345);
    test(12.345555555555);
    test(12.3450);
    test(12.34555555555555555555);
    test(1.2345e+54);
    return 0;
}
Output:
12.000000 has 0 decimals
12.345000 has 3 decimals
12.345556 has 12 decimals
12.345000 has 3 decimals
12.345556 has 14 decimals
1234500000000000060751116919315055127939946206157864960.000000 has 0 decimals

C++

Translation of: C
#include <iomanip>
#include <iostream>
#include <sstream>

int findNumOfDec(double x) {
    std::stringstream ss;
    ss << std::fixed << std::setprecision(14) << x;

    auto s = ss.str();
    auto pos = s.find('.');
    if (pos == std::string::npos) {
        return 0;
    }

    auto tail = s.find_last_not_of('0');

    return tail - pos;
}

void test(double x) {
    std::cout << x << " has " << findNumOfDec(x) << " decimals\n";
}

int main() {
    test(12.0);
    test(12.345);
    test(12.345555555555);
    test(12.3450);
    test(12.34555555555555555555);
    test(1.2345e+54);
    return 0;
}
Output:
12 has 0 decimals
12.345 has 3 decimals
12.3456 has 12 decimals
12.345 has 3 decimals
12.3456 has 14 decimals
1.2345e+54 has 0 decimals


FreeBASIC

Function dec(n As Double) As Uinteger
    Dim As String c = Str(n)
    Return Iif(Instr(c, "."), Len(Mid(c,Instr(c, ".")+1)), 0)
End Function

Dim As Double n(1 To ...) => {7, 12.00, 12.345, 12.345677, 0.142857142857142}

For i As Integer = 1 To Ubound(n)
    Print n(i); " has "; dec(n(i)); " decimals"
Next i
Sleep
Output:
 7 has 0 decimals
 12 has 0 decimals
 12.345 has 3 decimals
 12.345677 has 6 decimals
 0.142857142857142 has 15 decimals


Go

Translation of: Wren
package main

import (
    "fmt"
    "log"
    "math"
    "strings"
)

var error = "Argument must be a numeric literal or a decimal numeric string."

func getNumDecimals(n interface{}) int {
    switch v := n.(type) {
    case int:
        return 0
    case float64:
        if v == math.Trunc(v) {
            return 0
        }
        s := fmt.Sprintf("%g", v)
        return len(strings.Split(s, ".")[1])
    case string:
        if v == "" {
            log.Fatal(error)
        }
        if v[0] == '+' || v[0] == '-' {
            v = v[1:]
        }
        for _, c := range v {
            if strings.IndexRune("0123456789.", c) == -1 {
                log.Fatal(error)
            }
        }
        s := strings.Split(v, ".")
        ls := len(s)
        if ls == 1 {
            return 0
        } else if ls == 2 {
            return len(s[1])
        } else {
            log.Fatal("Too many decimal points")
        }
    default:
        log.Fatal(error)
    }
    return 0
}

func main() {
    var a = []interface{}{12, 12.345, 12.345555555555, "12.3450", "12.34555555555555555555", 12.345e53}
    for _, n := range a {
        d := getNumDecimals(n)
        switch v := n.(type) {
        case string:
            fmt.Printf("%q has %d decimals\n", v, d)
        case float32, float64:
            fmt.Printf("%g has %d decimals\n", v, d)
        default:
            fmt.Printf("%d has %d decimals\n", v, d)
        }
    }
}
Output:
12 has 0 decimals
12.345 has 3 decimals
12.345555555555 has 12 decimals
"12.3450" has 4 decimals
"12.34555555555555555555" has 20 decimals
1.2345e+54 has 0 decimals

Haskell

decimal :: String -> Int
decimal [] = 0
decimal ('.':xs) = length xs
decimal (_:xs) = decimal xs

numDecimal :: Double -> Int
numDecimal = decimal . show

main = print . map numDecimal $ [12.0, 12.345, 12.3450, 12.345555555555, 12.34555555555555555555, 1.2345e+54]
Output:
[1,3,3,12,15,7]

Java

public static int findNumOfDec(double x){
    String str = String.valueOf(x);
    if(str.endsWith(".0")) return 0;
    else return (str.substring(str.indexOf('.')).length() - 1);
}

Julia

function postprecision(str::String)
    s = lowercase(str)
    if 'e' in s
        s, ex = split(s, "e")
        expdig = parse(Int, ex)
    else
        expdig = 0
    end
    dig = something(findfirst('.', reverse(s)), 1) - 1 - expdig
    return dig > 0 ? dig : 0
end
 
postprecision(x::Integer) = 0  
postprecision(x::Real, max=22) = postprecision(string(round(Float64(x), digits=max)))
 
testnums = ["0.00100", 0.00100, 001.805, 1.0 / 3, 2//3, 12, 12.345, "12.3450", 
    "12.34555555555555555555", 1.2345e+54, 1.2345e-08, "1.2345e-08", π]
 
for n in testnums
    println("$n has $(postprecision(n)) decimals.")
end
Output:
0.00100 has 5 decimals.
0.001 has 3 decimals.
1.805 has 3 decimals.
0.3333333333333333 has 16 decimals.
2//3 has 16 decimals.
12 has 0 decimals.
12.345 has 3 decimals.
12.3450 has 4 decimals.
12.34555555555555555555 has 20 decimals.
1.2345e54 has 0 decimals.
1.2345e-8 has 12 decimals.
1.2345e-08 has 12 decimals.
π has 15 decimals.

Kotlin

Translation of: Java
fun findNumOfDec(x: Double): Int {
    val str = x.toString()
    if (str.endsWith(".0")) {
        return 0
    }
    return str.substring(str.indexOf('.')).length - 1
}

fun main() {
    for (n in listOf(12.0, 12.345, 12.345555555555, 12.3450, 12.34555555555555555555, 1.2345e+54)) {
        println("%f has %d decimals".format(n, findNumOfDec(n)))
    }
}
Output:
12.000000 has 0 decimals
12.345000 has 3 decimals
12.345556 has 12 decimals
12.345000 has 3 decimals
12.345556 has 15 decimals
1234500000000000000000000000000000000000000000000000000.000000 has 7 decimals

Lambdatalk

In lambdatalk numbers are words/strings, some operators, like "+,-,*,/,...", know what to do with words like "123".

A first answer could be

{W.length
  {S.rest   
   {S.replace \. by space in 12.3450}}}
-> 4

This is a better one, if considering that ending zeroes should not be considered as decimals

{def decimals
 {def decimals.r
  {lambda {:w}
   {if {= {W.first :w} 0}
    then {decimals.r {W.rest :w}}
    else :w}}}
 {lambda {:w}
  {W.length
   {decimals.r
    {S.first
     {W.reverse
      {S.replace \. by space in :w}}}}}}}
-> decimals

{decimals 12.34560001230000}
-> 10

Numbers can be of any size.

Mathematica/Wolfram Language

ClearAll[DecimalDigits]
DecimalDigits[r_String] := Module[{pos},
  If[StringContainsQ[r, "."],
   pos = StringPosition[r, "."][[-1, 1]];
   StringLength[StringDrop[r, pos]]
   ,
   0
   ]
  ]
DecimalDigits["12.345"]
DecimalDigits["12.3450"]
DecimalDigits["8"]
DecimalDigits["3128"]
DecimalDigits["13."]
DecimalDigits["13.1312312"]
Output:
3
4
0
0
0
7

Perl

Need pragma bignum to handle decimals beyond 15 digits.

use bignum;

printf "Fractional precision: %2s  Number: %s\n", length((split /\./, $_)[1]) // 0, $_
    for 9, 12.345, <12.3450>, 0.1234567890987654321, 1/3, 1.5**63;
Output:
Fractional precision:  0  Number: 9
Fractional precision:  3  Number: 12.345
Fractional precision:  4  Number: 12.3450
Fractional precision: 19  Number: 0.1234567890987654321
Fractional precision: 40  Number: 0.3333333333333333333333333333333333333333
Fractional precision: 63  Number: 124093581919.648947697827373650380188008224280338254175148904323577880859375

Phix

constant fracfmt = iff(machine_bits()=32?"%.14g":"%.18g")
 
function num_decimals(object o)
    integer nd = -1
    string s, t
    if integer(o) then
        nd = 0
        s = sprintf("%d",o)
    elsif atom(o) then
        s = sprintf("%.19g",o)
        o -= trunc(o)
        if o=0 then
            nd = 0
        else
            t = sprintf(fracfmt,o)
        end if
    elsif string(o) then
        s = o
        t = s
    else
        crash("unknown type")
    end if
    if nd=-1 then
        integer e = find('e',t)
        if e then
            {t,e} = {t[1..e-1],to_number(t[e+1..$])}
        end if
        integer dot = find('.',t)
        nd = iff(dot?max(length(t)-dot-e,0):max(-e,0))
    end if
    s = shorten(s,"digits",5)
    return {s,nd}
end function
 
sequence tests = {"0.00100", 0.00100, 001.805, 1/3, 12, 12.345, 12.345555555555, 
                  "12.3450", "12.34555555555555555555", 12.345e53, 1.2345e-08, 
                  "12.345e53", "1.2345e-08", "0.1234567890987654321",
"124093581919.648947697827373650380188008224280338254175148904323577880859375"}
 
for i=1 to length(tests) do
    printf(1,"%25s has %d decimals\n",num_decimals(tests[i]))
end for
Output:

32 bit

                  0.00100 has 5 decimals
                    0.001 has 3 decimals
                    1.805 has 3 decimals
       0.3333333333333333 has 14 decimals
                       12 has 0 decimals
                   12.345 has 3 decimals
          12.345555555555 has 12 decimals
                  12.3450 has 4 decimals
  12.34555555555555555555 has 20 decimals
               1.2345e+54 has 0 decimals
                1.2345e-8 has 12 decimals
                12.345e53 has 0 decimals
               1.2345e-08 has 12 decimals
    0.1234567890987654321 has 19 decimals
12409...59375 (76 digits) has 63 decimals

64 bit as above except

    0.3333333333333333333 has 18 decimals

Python

Treated as a function over a string representation of a number to allow the capturing of significant trailing zeros.

In [6]: def dec(n):
   ...:     return len(n.rsplit('.')[-1]) if '.' in n else 0

In [7]: dec('12.345')
Out[7]: 3

In [8]: dec('12.3450')
Out[8]: 4

In [9]:


Or, defining a slightly less partial function, over a given number, rather than a string:

'''Report the decimal counts in default stringifications.'''

import math


# decimalCount :: Num -> Either String (Int, Int)
def decimalCount(n):
    '''Either a message string, or a tuple
       giving the number of decimals in the default
       (repr) representations of the real
       (and any imaginary part) of the given number.
    '''
    # decimalLen :: Float -> Int
    def decimalLen(f):
        return len(repr(f).split('.')[-1])

    return Right(
        (0, 0) if isinstance(n, int) else (
            (decimalLen(n), 0)
        ) if isinstance(n, float) else (
            tuple(decimalLen(x) for x in [n.real, n.imag])
        )
    ) if isinstance(n, (float, complex, int)) else (
        Left(repr(n) + ' is not a float, complex or int')
    )


# -------------------------- TEST --------------------------
# main :: IO ()
def main():
    '''Counts of decimals in default stringifications of
       real (and any imaginary) components of various
       Python numeric values.
    '''
    print(fTable(
        'Decimal counts in stringifications of real and imaginary components:'
    )(repr)(
        either(identity)(repr)
    )(decimalCount)([
        7, 1.25, 1.23456e2,
        1 / 7,
        2 ** 0.5,
        math.pi, math.e,
        complex(1.23, 4.567),
        None
    ]))


# ------------------------ GENERIC -------------------------

# Left :: a -> Either a b
def Left(x):
    '''Constructor for an empty Either (option type) value
       with an associated string.
    '''
    return {'type': 'Either', 'Right': None, 'Left': x}


# Right :: b -> Either a b
def Right(x):
    '''Constructor for a populated Either (option type) value'''
    return {'type': 'Either', 'Left': None, 'Right': x}


# either :: (a -> c) -> (b -> c) -> Either a b -> c
def either(fl):
    '''The application of fl to e if e is a Left value,
       or the application of fr to e if e is a Right value.
    '''
    return lambda fr: lambda e: fl(e['Left']) if (
        None is e['Right']
    ) else fr(e['Right'])


# identity :: a -> a
def identity(x):
    '''The identity function.'''
    return x


# ------------------------ DISPLAY -------------------------

# fTable :: String -> (a -> String) ->
# (b -> String) -> (a -> b) -> [a] -> String
def fTable(s):
    '''Heading -> x display function -> fx display function ->
       f -> xs -> tabular string.
    '''
    def gox(xShow):
        def gofx(fxShow):
            def gof(f):
                def goxs(xs):
                    ys = [xShow(x) for x in xs]
                    w = max(map(len, ys))

                    def arrowed(x, y):
                        return y.rjust(w, ' ') + ' -> ' + fxShow(f(x))
                    return s + '\n' + '\n'.join(
                        map(arrowed, xs, ys)
                    )
                return goxs
            return gof
        return gofx
    return gox


# MAIN ---
if __name__ == '__main__':
    main()
Output:
Decimal counts in stringifications of real and imaginary components:
                  7 -> (0, 0)
               1.25 -> (2, 0)
            123.456 -> (3, 0)
0.14285714285714285 -> (17, 0)
 1.4142135623730951 -> (16, 0)
  3.141592653589793 -> (15, 0)
  2.718281828459045 -> (15, 0)
      (1.23+4.567j) -> (2, 3)
               None -> None is not a float, complex or int

Raku

Works with: Rakudo version 2020.07

Raku does not specifically have a "decimal" number type, however we can easily determine the fractional precision of a rational number. It is somewhat touchy-feely for floating point numbers; (what is the fractional precision for 2.45e-12?), it's pretty pointless for Integers; (zero, aalllways zero...), but Rats (rationals) are doable. Note that these are (mostly) actual numerics, not numeric strings. The exception is '12.3450'. That is a numeric string since actual numerics automatically truncate non-significant trailing zeros. If you want to retain them, you need to pass the value as a string. (As below.)

use Rat::Precise;

printf "Fractional precision: %-2s || Number: %s\n", (.split('.')[1] // '').chars, $_
    for 9, 12.345, '12.3450', 0.1234567890987654321, (1.5**63).precise;
Output:
Fractional precision: 0  || Number: 9
Fractional precision: 3  || Number: 12.345
Fractional precision: 4  || Number: 12.3450
Fractional precision: 19 || Number: 0.1234567890987654321
Fractional precision: 63 || Number: 124093581919.648947697827373650380188008224280338254175148904323577880859375


REXX

Since the REXX language stores numbers as strings,   the issue of trailing zeros is a moot point.
If the number (as specified) has trailing zeros, there are left intact.

I took it to mean that the number of decimal digits   past the decimal point   are to be counted and displayed.

Any number specified in exponential notation is first converted to a whole or fractional integer   (or an integer with scale),
and  that  number is then examined.

/*REXX pgm counts number of decimal digits which are to the right of the decimal point. */
numeric digits 1000                              /*ensure enuf dec digs for calculations*/
@.=;                                             /*initialize a stemmed array to nulls. */
parse arg @.1;  if @.1=''  then do;      #= 9    /*#:  is the number of default numbers.*/
                                @.1 = 12
                                @.2 = 12.345
                                @.3 = 12.345555555555
                                @.4 = 12.3450
                                @.5 = 12.34555555555555555555
                                @.6 = 1.2345e+54
                                @.7 = 1.2345e-54
                                @.8 = 0.1234567890987654321
                                @.9 = 1.5 ** 63  /*calculate  1.5  raised to 63rd power.*/
                                end
                           else #= 1             /*the # of numbers specified on the CL.*/

say 'fractional'
say ' decimals '  center("number", 75)
say '══════════'  copies("═", 75)

          do j=1  for #;    n= countDec(@.j)     /*obtain the number of fractional digs.*/
          say right(n, 5)   left('',4)  @.j      /*show # of fract. digits & original #.*/
          end   /*j*/
exit 0                                           /*stick a fork in it,  we're all done. */
/*──────────────────────────────────────────────────────────────────────────────────────*/
countDec: procedure; parse upper arg x           /*obtain a number from the invoker.    */
          if pos('E', x)>0  then do              /*handle if the number has an exponent.*/
                                 LX= length(x)           /*length of the original number*/
                                 parse var x 'E' expon   /*obtain the exponent.         */
                                 LE= length(LE)          /*the length of the exponent.  */
                                 numeric digits LX + LE  /*ensure enough decimal digits.*/
                                 x= format(x, , , 0)     /*REXX does the heavy lifting. */
                                 end
          parse var x '.' fract                  /*parse number, get the fractional part*/
          return length(fract)                   /*return number of fractional digits.  */
output   when using the default inputs:
fractional
 decimals                                    number
══════════ ═══════════════════════════════════════════════════════════════════════════
    0      12
    3      12.345
   12      12.345555555555
    4      12.3450
   20      12.34555555555555555555
    0      1.2345E+54
   58      1.2345E-54
   19      0.1234567890987654321
   63      124093581919.648947697827373650380188008224280338254175148904323577880859375

Ring

# Testing the function
	decimals(2)		# Unsensitive to the default setting of decimals
	n = 5.1945
	? NbrOfDecimals(n)	# Gives 4

func NbrOfDecimals(n)
	nTemp = 1
	nNbrOfDecimals = 0      
	while True
		if nNbrOfDecimals < 9
			nNbrOfDecimals++
			nTemp *= 10
			nTemp1 = n * nTemp - ceil( n * nTemp )
			if nTemp1 = 0
				return nNbrOfDecimals
			ok
		else
			raise("Acceeding the maximum number of 9 decimals!")
		ok
	end
Output:
4

Sidef

func number_of_decimals(n, limit = 1e5) {
    var prec = Num(Num!PREC)>>2
    var prev = ''

    n = Number(n) if !n.kind_of(Number)

    loop {
        var str = n.as_dec(prec)

        if (prev == str) {
            return (str.contains('.') ? str.substr(str.index('.')+1).len : 0)
        }

        prev = str
        prec *= 2
        return Inf if (prec > limit)
    }
}

var list = [
    9, 12.345, "12.3450", "12.345e53",
    12.34555555555555555555, 0.1234567890987654321,
    Num.pi, 1/3, 1.5**63
]

list.each {|n|
    var c = number_of_decimals(n)
    say "Number of decimals: #{'%3s' % c}  Number: #{n}"
}
Output:
Number of decimals:   0  Number: 9
Number of decimals:   3  Number: 12.345
Number of decimals:   3  Number: 12.3450
Number of decimals:   0  Number: 12.345e53
Number of decimals:  20  Number: 12.34555555555555555555
Number of decimals:  19  Number: 0.1234567890987654321
Number of decimals: 188  Number: 3.14159265358979323846264338327950288419716939938
Number of decimals: Inf  Number: 0.333333333333333333333333333333333333333333333333
Number of decimals:  63  Number: 124093581919.6489476978273736503801880082242803382541751489

Wren

In the following script, the fourth and fifth examples need to be expressed as strings to avoid getting the wrong answer. If we use numbers instead, trailing zeros will be automatically removed and the result will be rounded to 14 significant figures when stringified or printed.

Converting the fourth example to a Rat or BigRat object wouldn't help as the constructor for those classes automatically reduces the numerator and denominator to their lowest terms. BigRat would work for the fifth example but the argument would have to be passed as a string anyway so we might as well just parse the string.

var error = "Argument must be a number or a decimal numeric string."

var getNumDecimals = Fn.new { |n|
    if (n is Num) {
        if (n.isInteger) return 0
        n = n.toString
    } else if (n is String) {
        if (n == "") Fiber.abort(error)
        if (n[0] == "+" || n[0] == "-") n = n[1..-1]
        if (!n.all { |c| "0123456789.".contains(c) }) Fiber.abort(error)
    } else {
        Fiber.abort(error)
    }
    var s = n.split(".")
    var c = s.count
    return (c == 1) ? 0 : (c == 2) ? s[1].count : Fiber.abort("Too many decimal points.")
}

var a = [12, 12.345, 12.345555555555, "12.3450", "12.34555555555555555555", 12.345e53]
for (n in a) {
    var d = getNumDecimals.call(n)
    var ns = (n is String) ? "\"%(n)\"" : "%(n)" 
    System.print("%(ns) has %(d) decimals")
}
Output:
12 has 0 decimals
12.345 has 3 decimals
12.345555555555 has 12 decimals
"12.3450" has 4 decimals
"12.34555555555555555555" has 20 decimals
1.2345e+54 has 0 decimals