First-class functions/Use numbers analogously: Difference between revisions

→‎{{header|TXR}}: New section.
(Pascal draft)
(→‎{{header|TXR}}: New section.)
Line 1,682:
4 * 0.25 * 0.5 = 0.5
6 * 0.166667 * 0.5 = 0.5</pre>
 
=={{header|TXR}}==
 
This solution seeks a non-strawman interpretation of the exercise: to treat functions and literal numeric terms under the same operations. We develop a three-argument function called <code>binop</code> whose argument is an ordinary function which works on numbers, and two arithmetic arguments which are any combination of functions or numbers. The functions may have any arity from 0 to 2. The <code>binop</code> functions handles all the cases.
 
The basic rules are:
 
* When all required arguments are given to a function, it is expected that a number will be produced.
 
* Zero-argument functions are called to force a number out of them.
 
* When operands are numbers or zero-argument functions, a numeric result is calculated.
 
* Otherwise the operation is a functional combinator, returning a function.
 
<syntaxhighlight lang="txrlisp">(defun binop (numop x y)
(typecase x
(number (typecase y
(number [numop x y])
(fun (caseql (fun-fixparam-count y)
(0 [numop x [y]])
(1 (ret [numop x [y @1]]))
(2 (ret [numop x [y @1 @2]]))
(t (error "~s: right argument has too many params"
%fun% y))))
(t (error "~s: right argument must be function or number"
%fun% y))))
(fun (typecase y
(number (caseql (fun-fixparam-count x)
(0 [numop [x] y])
(1 (ret [numop [x @1] y]))
(2 (ret [numop [x @1 @2] y]))
(t (error "~s: left argument has too many params"
%fun% x))))
(fun (macrolet ((pc (x-param-count y-param-count)
^(+ (* 3 ,x-param-count) ,y-param-count)))
(caseql* (pc (fun-fixparam-count x) (fun-fixparam-count y))
(((pc 0 0)) [numop [x] [y]])
(((pc 0 1)) (ret [numop [x] [y @1]]))
(((pc 0 2)) (ret [numop [x] [y @1 @2]]))
(((pc 1 0)) (ret [numop [x @1] [y]]))
(((pc 1 1)) (ret [numop [x @1] [y @1]]))
(((pc 1 2)) (ret [numop [x @1] [y @1 @2]]))
(((pc 2 0)) (ret [numop [x @1 @2] [y]]))
(((pc 2 1)) (ret [numop [x @1 @2] [y @1]]))
(((pc 2 2)) (ret [numop [x @1 @2] [y @1 @2]]))
(t (error "~s: one or both arguments ~s and ~s\ \
have excess arity" %fun% x y)))))))
(t (error "~s: left argument must be function or number"
%fun% y))))
 
(defun f+ (x y) [binop + x y])
(defun f- (x y) [binop - x y])
(defun f* (x y) [binop * x y])
(defun f/ (x y) [binop / x y])</syntaxhighlight>
 
With this, the following sort of thing is possible:
 
<pre>1> [f* 6 4] ;; ordinary arithmetic.
24
2> [f* f+ f+] ;; product of additions
#<interpreted fun: lambda (#:arg-1-0062 #:arg-2-0063 . #:arg-rest-0061)>
3> [*2 10 20] ;; i.e. (* (+ 10 20) (+ 10 20)) -> (* 30 30)
900
4> [f* 2 f+] ;; doubled addition
#<interpreted fun: lambda (#:arg-1-0017 #:arg-2-0018 . #:arg-rest-0016)>
5> [*4 11 19] ;; i.e. (* 2 (+ 11 19))
60
6> [f* (op f+ 2 @1) (op f+ 3 @1)]
#<interpreted fun: lambda (#:arg-1-0047 . #:arg-rest-0046)>
7> [*6 10 10] ;; i.e. (* (+ 2 10) (+ 3 10)) -> (* 12 13)
156
</pre>
 
So with these definitions, we can solve the task like this, which demonstrates that numbers and functions are handled by the same operations:
 
<syntaxhighlight lang="txrlisp">(let* ((x 2.0)
(xi 0.5)
(y 4.0)
(yi 0.25)
(z (lambda () (f+ x y))) ;; z is obviously function
(zi (f/ 1 z))) ;; also a function
(flet ((multiplier (a b) (op f* @1 (f* a b))))
(each ((n (list x y z))
(v (list xi yi zi)))
(prinl [[multiplier n v] 42.0]))))</syntaxhighlight>
 
{{out}}
 
<pre>42.0
42.0
42.0</pre>
 
=={{header|Ursala}}==
543

edits