Fast Fourier transform: Difference between revisions

From Rosetta Code
Content added Content deleted
(Updated to work with version 1.4 of Nim. Removed a warning. Updated results.)
Line 2,052: Line 2,052:
let halfn = n div 2
let halfn = n div 2


for k in 0 .. < halfn:
for k in 0 ..< halfn:
let a = exp(complex(0.0, -2 * Pi* float(k) / float(n))) * odd[k]
let a = exp(complex(0.0, -2 * Pi* float(k) / float(n))) * odd[k]
result[k] = even[k] + a
result[k] = even[k] + a
Line 2,062: Line 2,062:
<pre>4.000
<pre>4.000
2.613
2.613
-0.000
0.000
1.082
1.082
-0.000
0.000
1.082
1.082
-0.000
0.000
2.613</pre>
2.613</pre>



Revision as of 15:44, 3 December 2020

Task
Fast Fourier transform
You are encouraged to solve this task according to the task description, using any language you may know.
Task

Calculate the   FFT   (Fast Fourier Transform)   of an input sequence.

The most general case allows for complex numbers at the input and results in a sequence of equal length, again of complex numbers. If you need to restrict yourself to real numbers, the output should be the magnitude   (i.e.:   sqrt(re2 + im2))   of the complex result.

The classic version is the recursive Cooley–Tukey FFT. Wikipedia has pseudo-code for that. Further optimizations are possible but not required.

11l

Translation of: Python

<lang 11l>F fft(x)

  V n = x.len
  I n <= 1
     R x
  V even = fft(x[(0..).step(2)])
  V odd  = fft(x[(1..).step(2)])
  V t = (0 .< n I/ 2).map(k -> exp(-2i * math:pi * k / @n) * @odd[k])
  R (0 .< n I/ 2).map(k -> @even[k] + @t[k]) [+]
    (0 .< n I/ 2).map(k -> @even[k] - @t[k])

print(fft([Complex(1.0), 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]).map(f -> ‘#1.3’.format(abs(f))).join(‘ ’))</lang>

Output:
4.000 2.613 0.000 1.082 0.000 1.082 0.000 2.613

Ada

The FFT function is defined as a generic function, instantiated upon a user instance of Ada.Numerics.Generic_Complex_Arrays.

<lang Ada> with Ada.Numerics.Generic_Complex_Arrays;

generic

  with package Complex_Arrays is
     new Ada.Numerics.Generic_Complex_Arrays (<>);
  use Complex_Arrays;

function Generic_FFT (X : Complex_Vector) return Complex_Vector;

</lang>

<lang Ada> with Ada.Numerics; with Ada.Numerics.Generic_Complex_Elementary_Functions;

function Generic_FFT (X : Complex_Vector) return Complex_Vector is

  package Complex_Elementary_Functions is
     new Ada.Numerics.Generic_Complex_Elementary_Functions
       (Complex_Arrays.Complex_Types);
  use Ada.Numerics;
  use Complex_Elementary_Functions;
  use Complex_Arrays.Complex_Types;
  
  function FFT (X : Complex_Vector; N, S : Positive)
     return Complex_Vector is
  begin
     if N = 1 then
        return (1..1 => X (X'First));
     else
        declare
           F : constant Complex  := exp (Pi * j / Real_Arrays.Real (N/2));
           Even : Complex_Vector := FFT (X, N/2, 2*S);
           Odd  : Complex_Vector := FFT (X (X'First + S..X'Last), N/2, 2*S);
        begin
           for K in 0..N/2 - 1 loop
              declare
                 T : constant Complex := Odd (Odd'First + K) / F ** K;
              begin
                 Odd  (Odd'First  + K) := Even (Even'First + K) - T;
                 Even (Even'First + K) := Even (Even'First + K) + T;
              end;
           end loop;
           return Even & Odd;
        end;
     end if;
  end FFT;

begin

  return FFT (X, X'Length, 1);

end Generic_FFT; </lang>

Example:

<lang Ada> with Ada.Numerics.Complex_Arrays; use Ada.Numerics.Complex_Arrays; with Ada.Complex_Text_IO; use Ada.Complex_Text_IO; with Ada.Text_IO; use Ada.Text_IO;

with Ada.Numerics.Complex_Elementary_Functions; with Generic_FFT;

procedure Example is

  function FFT is new Generic_FFT (Ada.Numerics.Complex_Arrays);
  X : Complex_Vector := (1..4 => (1.0, 0.0), 5..8 => (0.0, 0.0));
  Y : Complex_Vector := FFT (X);

begin

  Put_Line ("       X              FFT X ");
  for I in Y'Range loop
     Put (X (I - Y'First + X'First), Aft => 3, Exp => 0);
     Put (" ");
     Put (Y (I), Aft => 3, Exp => 0);
     New_Line;
  end loop;

end; </lang>

Output:
       X              FFT X 
( 1.000, 0.000) ( 4.000, 0.000)
( 1.000, 0.000) ( 1.000,-2.414)
( 1.000, 0.000) ( 0.000, 0.000)
( 1.000, 0.000) ( 1.000,-0.414)
( 0.000, 0.000) ( 0.000, 0.000)
( 0.000, 0.000) ( 1.000, 0.414)
( 0.000, 0.000) ( 0.000, 0.000)
( 0.000, 0.000) ( 1.000, 2.414)

ALGOL 68

Translation of: Python

Note: This specimen retains the original Python coding style.

Works with: ALGOL 68 version Revision 1 - one minor extension to language used - PRAGMA READ, similar to C's #include directive.
Works with: ALGOL 68G version Any - tested with release algol68g-2.3.5.

File: Template.Fast_Fourier_transform.a68<lang algol68>PRIO DICE = 9; # ideally = 11 #

OP DICE = ([]SCALAR in, INT step)[]SCALAR: (

   ### Dice the array, extract array values a "step" apart ###
   IF step = 1 THEN
       in
   ELSE
       INT upb out := 0;
       [(UPB in-LWB in)%step+1]SCALAR out;
       FOR index FROM LWB in BY step TO UPB in DO
           out[upb out+:=1] := in[index] OD;
       out[@LWB in]
   FI

);

PROC fft = ([]SCALAR in t)[]SCALAR: (

   ### The Cooley-Tukey FFT algorithm ###
   IF LWB in t >= UPB in t THEN
     in t[@0]
   ELSE
       []SCALAR t = in t[@0];
       INT n = UPB t + 1, half n = n % 2;
       [LWB t:UPB t]SCALAR coef;
       []SCALAR even = fft(t    DICE 2),
                 odd = fft(t[1:]DICE 2);
       COMPL i = 0 I 1;
       REAL w =  2*pi / n;
       FOR k FROM LWB t TO half n-1 DO
           COMPL cis t = scalar exp(0 I (-w * k))*odd[k];
           coef[k]          := even[k] + cis t;
           coef[k + half n] := even[k] - cis t
       OD;
       coef
   FI

);</lang>File: test.Fast_Fourier_transform.a68<lang algol68>#!/usr/local/bin/a68g --script #

  1. -*- coding: utf-8 -*- #

MODE SCALAR = COMPL; PROC (COMPL)COMPL scalar exp = complex exp; PR READ "Template.Fast_Fourier_transform.a68" PR

FORMAT real fmt := $g(0,3)$; FORMAT real array fmt := $f(real fmt)", "$; FORMAT compl fmt := $f(real fmt)"⊥"f(real fmt)$; FORMAT compl array fmt := $f(compl fmt)", "$;

test:(

 []COMPL 
   tooth wave ft = fft((1, 1, 1, 1, 0, 0, 0, 0)), 
   one and a quarter wave ft = fft((0, 0.924, 0.707,-0.383,-1,-0.383, 0.707, 0.924,
                                    0,-0.924,-0.707, 0.383, 1, 0.383,-0.707,-0.924));
 printf((
   $"Tooth wave: "$,compl array fmt, tooth wave ft, $l$,
   $"1¼ cycle wave: "$, compl array fmt, one and a quarter wave ft, $l$
 ))

)</lang>

Output:
Tooth wave: 4.000⊥.000, 1.000⊥-2.414, .000⊥.000, 1.000⊥-.414, .000⊥.000, 1.000⊥.414, .000⊥.000, 1.000⊥2.414, 
1¼ cycle wave: .000⊥.000, .000⊥.001, .000⊥.000, .000⊥-8.001, .000⊥.000, -.000⊥-.001, .000⊥.000, .000⊥.001, .000⊥.000, .000⊥-.001, .000⊥.000, -.000⊥.001, .000⊥.000, -.000⊥8.001, .000⊥.000, -.000⊥-.001, 

APL

Translation of: Fortran
Works with: Dyalog APL

<lang APL>fft←{

   1>k←2÷⍨N←⍴⍵:⍵
   0≠1|2⍟N:'Argument must be a power of 2 in length'
   even←∇(N⍴0 1)/⍵
   odd←∇(N⍴1 0)/⍵
   T←even×*(0J¯2×(○1)×(¯1+⍳k)÷N)
   (odd+T),odd-T

}</lang>

Example: <lang APL> fft 1 1 1 1 0 0 0 0</lang>

Output:
 4 1J¯2.414213562 0 1J¯0.4142135624 0 1J0.4142135624
      0 1J2.414213562

BBC BASIC

<lang bbcbasic> @% = &60A

     DIM Complex{r#, i#}
     DIM in{(7)} = Complex{}, out{(7)} = Complex{}
     DATA 1, 1, 1, 1, 0, 0, 0, 0
     
     PRINT "Input (real, imag):"
     FOR I% = 0 TO 7
       READ in{(I%)}.r#
       PRINT in{(I%)}.r# "," in{(I%)}.i#
     NEXT
     
     PROCfft(out{()}, in{()}, 0, 1, DIM(in{()},1)+1)
     
     PRINT "Output (real, imag):"
     FOR I% = 0 TO 7
       PRINT out{(I%)}.r# "," out{(I%)}.i#
     NEXT
     END
     
     DEF PROCfft(b{()}, o{()}, B%, S%, N%)
     LOCAL I%, t{} : DIM t{} = Complex{}
     IF S% < N% THEN
       PROCfft(o{()}, b{()}, B%, S%*2, N%)
       PROCfft(o{()}, b{()}, B%+S%, S%*2, N%)
       FOR I% = 0 TO N%-1 STEP 2*S%
         t.r# = COS(-PI*I%/N%)
         t.i# = SIN(-PI*I%/N%)
         PROCcmul(t{}, o{(B%+I%+S%)})
         b{(B%+I% DIV 2)}.r# = o{(B%+I%)}.r# + t.r#
         b{(B%+I% DIV 2)}.i# = o{(B%+I%)}.i# + t.i#
         b{(B%+(I%+N%) DIV 2)}.r# = o{(B%+I%)}.r# - t.r#
         b{(B%+(I%+N%) DIV 2)}.i# = o{(B%+I%)}.i# - t.i#
       NEXT
     ENDIF
     ENDPROC
     
     DEF PROCcmul(c{},d{})
     LOCAL r#, i#
     r# = c.r#*d.r# - c.i#*d.i#
     i# = c.r#*d.i# + c.i#*d.r#
     c.r# = r#
     c.i# = i#
     ENDPROC

</lang>

Output:
Input (real, imag):
         1,         0
         1,         0
         1,         0
         1,         0
         0,         0
         0,         0
         0,         0
         0,         0
Output (real, imag):
         4,         0
         1,  -2.41421
         0,         0
         1, -0.414214
         0,         0
         1,  0.414214
         0,         0
         1,   2.41421

C

Inplace FFT with O(n) memory usage. Note: array size is assumed to be power of 2 and not checked by code; you can just pad it with 0 otherwise. Also, complex is C99 standard.<lang C>

  1. include <stdio.h>
  2. include <math.h>
  3. include <complex.h>

double PI; typedef double complex cplx;

void _fft(cplx buf[], cplx out[], int n, int step) { if (step < n) { _fft(out, buf, n, step * 2); _fft(out + step, buf + step, n, step * 2);

for (int i = 0; i < n; i += 2 * step) { cplx t = cexp(-I * PI * i / n) * out[i + step]; buf[i / 2] = out[i] + t; buf[(i + n)/2] = out[i] - t; } } }

void fft(cplx buf[], int n) { cplx out[n]; for (int i = 0; i < n; i++) out[i] = buf[i];

_fft(buf, out, n, 1); }


void show(const char * s, cplx buf[]) { printf("%s", s); for (int i = 0; i < 8; i++) if (!cimag(buf[i])) printf("%g ", creal(buf[i])); else printf("(%g, %g) ", creal(buf[i]), cimag(buf[i])); }

int main() { PI = atan2(1, 1) * 4; cplx buf[] = {1, 1, 1, 1, 0, 0, 0, 0};

show("Data: ", buf); fft(buf, 8); show("\nFFT : ", buf);

return 0; }

</lang>

Output:
Data: 1 1 1 1 0 0 0 0 
FFT : 4 (1, -2.41421) 0 (1, -0.414214) 0 (1, 0.414214) 0 (1, 2.41421)

OS X / iOS

OS X 10.7+ / iOS 4+ <lang C>#include <stdio.h>

  1. include <Accelerate/Accelerate.h>

void fft(DSPComplex buf[], int n) {

 float inputMemory[2*n];
 float outputMemory[2*n];
 // half for real and half for complex
 DSPSplitComplex inputSplit = {inputMemory, inputMemory + n};
 DSPSplitComplex outputSplit = {outputMemory, outputMemory + n};
 
 vDSP_ctoz(buf, 2, &inputSplit, 1, n);
 
 vDSP_DFT_Setup setup = vDSP_DFT_zop_CreateSetup(NULL, n, vDSP_DFT_FORWARD);
 
 vDSP_DFT_Execute(setup,
                  inputSplit.realp, inputSplit.imagp,
                  outputSplit.realp, outputSplit.imagp);
 
 vDSP_ztoc(&outputSplit, 1, buf, 2, n);

}


void show(const char *s, DSPComplex buf[], int n) {

 printf("%s", s);
 for (int i = 0; i < n; i++)
   if (!buf[i].imag)
     printf("%g ", buf[i].real);
   else
     printf("(%g, %g) ", buf[i].real, buf[i].imag);
 printf("\n");

}

int main() {

 DSPComplex buf[] = {{1,0}, {1,0}, {1,0}, {1,0}, {0,0}, {0,0}, {0,0}, {0,0}};
 
 show("Data: ", buf, 8);
 fft(buf, 8);
 show("FFT : ", buf, 8);
 
 return 0;

}</lang>

Output:
Data: 1 1 1 1 0 0 0 0 
FFT : 4 (1, -2.41421) 0 (1, -0.414214) 0 (1, 0.414214) 0 (1, 2.41421) 

C#

<lang csharp>using System; using System.Numerics; using System.Linq; using System.Diagnostics;

// Fast Fourier Transform in C# public class Program {

   /* Performs a Bit Reversal Algorithm on a postive integer 
    * for given number of bits
    * e.g. 011 with 3 bits is reversed to 110 */
   public static int BitReverse(int n, int bits) {
      int reversedN = n;
      int count = bits - 1;
      n >>= 1;
      while (n > 0) {
           reversedN = (reversedN << 1) | (n & 1);
           count--;
           n >>= 1;
       }
       return ((reversedN << count) & ((1 << bits) - 1));
   }
   /* Uses Cooley-Tukey iterative in-place algorithm with radix-2 DIT case
    * assumes no of points provided are a power of 2 */
   public static void FFT(Complex[] buffer) {
  1. if false
       int bits = (int)Math.Log(buffer.Length, 2);
       for (int j = 1; j < buffer.Length / 2; j++) {
           int swapPos = BitReverse(j, bits);
           var temp = buffer[j];
           buffer[j] = buffer[swapPos];
           buffer[swapPos] = temp;
       }

// Said Zandian // The above section of the code is incorrect and does not work correctly and has two bugs. // BUG 1 // The bug is that when you reach and index that was swapped previously it does swap it again // Ex. binary value n = 0010 and Bits = 4 as input to BitReverse routine and returns 4. The code section above // swaps it. Cells 2 and 4 are swapped. just fine. // now binary value n = 0010 and Bits = 4 as input to BitReverse routine and returns 2. The code Section // swap it. Cells 4 and 2 are swapped. WROOOOONG // // Bug 2 // The code works on the half section of the cells. In the case of Bits = 4 it means that we are having 16 cells // The code works on half the cells for (int j = 1; j < buffer.Length / 2; j++) buffer.Length returns 16 // and divide by 2 makes 8, so j goes from 1 to 7. This covers almost everything but what happened to 1011 value // which must be swap with 1101. and this is the second bug. // // use the following corrected section of the code. I have seen this bug in other languages that uses bit // reversal routine.

  1. else
           for (int j = 1; j < buffer.Length; j++)
           {
               int swapPos = BitReverse(j, bits);
               if (swapPos <= j)
               {
                   continue;
               }
               var temp = buffer[j];
               buffer[j] = buffer[swapPos];
               buffer[swapPos] = temp;
           }

// First the full length is used and 1011 value is swapped with 1101. Second if new swapPos is less than j // then it means that swap was happen when j was the swapPos.

  1. endif
       for (int N = 2; N <= buffer.Length; N <<= 1) {
           for (int i = 0; i < buffer.Length; i += N) {
               for (int k = 0; k < N / 2; k++) {
                   int evenIndex = i + k;
                   int oddIndex = i + k + (N / 2);
                   var even = buffer[evenIndex];
                   var odd = buffer[oddIndex];
                   double term = -2 * Math.PI * k / (double)N;
                   Complex exp = new Complex(Math.Cos(term), Math.Sin(term)) * odd;
                   buffer[evenIndex] = even + exp;
                   buffer[oddIndex] = even - exp;
               }
           }
       }
   }
   public static void Main(string[] args) {
       Complex[] input = {1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0};       
       
       FFT(input);       
                 
       Console.WriteLine("Results:");
       foreach (Complex c in input) {
           Console.WriteLine(c);   
       }   
   }

}</lang>

Output:
Results:
(4, 0)
(1, -2.41421356237309)
(0, 0)
(1, -0.414213562373095)
(0, 0)
(1, 0.414213562373095)
(0, 0)
(1, 2.41421356237309)

C++

<lang cpp>#include <complex>

  1. include <iostream>
  2. include <valarray>

const double PI = 3.141592653589793238460;

typedef std::complex<double> Complex; typedef std::valarray<Complex> CArray;

// Cooley–Tukey FFT (in-place, divide-and-conquer) // Higher memory requirements and redundancy although more intuitive void fft(CArray& x) {

   const size_t N = x.size();
   if (N <= 1) return;
   // divide
   CArray even = x[std::slice(0, N/2, 2)];
   CArray  odd = x[std::slice(1, N/2, 2)];
   // conquer
   fft(even);
   fft(odd);
   // combine
   for (size_t k = 0; k < N/2; ++k)
   {
       Complex t = std::polar(1.0, -2 * PI * k / N) * odd[k];
       x[k    ] = even[k] + t;
       x[k+N/2] = even[k] - t;
   }

}

// Cooley-Tukey FFT (in-place, breadth-first, decimation-in-frequency) // Better optimized but less intuitive // !!! Warning : in some cases this code make result different from not optimased version above (need to fix bug) // The bug is now fixed @2017/05/30 void fft(CArray &x) { // DFT unsigned int N = x.size(), k = N, n; double thetaT = 3.14159265358979323846264338328L / N; Complex phiT = Complex(cos(thetaT), -sin(thetaT)), T; while (k > 1) { n = k; k >>= 1; phiT = phiT * phiT; T = 1.0L; for (unsigned int l = 0; l < k; l++) { for (unsigned int a = l; a < N; a += n) { unsigned int b = a + k; Complex t = x[a] - x[b]; x[a] += x[b]; x[b] = t * T; } T *= phiT; } } // Decimate unsigned int m = (unsigned int)log2(N); for (unsigned int a = 0; a < N; a++) { unsigned int b = a; // Reverse bits b = (((b & 0xaaaaaaaa) >> 1) | ((b & 0x55555555) << 1)); b = (((b & 0xcccccccc) >> 2) | ((b & 0x33333333) << 2)); b = (((b & 0xf0f0f0f0) >> 4) | ((b & 0x0f0f0f0f) << 4)); b = (((b & 0xff00ff00) >> 8) | ((b & 0x00ff00ff) << 8)); b = ((b >> 16) | (b << 16)) >> (32 - m); if (b > a) { Complex t = x[a]; x[a] = x[b]; x[b] = t; } } //// Normalize (This section make it not working correctly) //Complex f = 1.0 / sqrt(N); //for (unsigned int i = 0; i < N; i++) // x[i] *= f; }

// inverse fft (in-place) void ifft(CArray& x) {

   // conjugate the complex numbers
   x = x.apply(std::conj);
   // forward fft
   fft( x );
   // conjugate the complex numbers again
   x = x.apply(std::conj);
   // scale the numbers
   x /= x.size();

}

int main() {

   const Complex test[] = { 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 };
   CArray data(test, 8);
   // forward fft
   fft(data);
   std::cout << "fft" << std::endl;
   for (int i = 0; i < 8; ++i)
   {
       std::cout << data[i] << std::endl;
   }
   // inverse fft
   ifft(data);
   std::cout << std::endl << "ifft" << std::endl;
   for (int i = 0; i < 8; ++i)
   {
       std::cout << data[i] << std::endl;
   }
   return 0;

}</lang>

Output:
fft
(4,0)
(1,-2.41421)
(0,0)
(1,-0.414214)
(0,0)
(1,0.414214)
(0,0)
(1,2.41421)

ifft
(1,-0)
(1,-5.55112e-017)
(1,2.4895e-017)
(1,-5.55112e-017)
(5.55112e-017,0)
(5.55112e-017,5.55112e-017)
(0,-2.4895e-017)
(5.55112e-017,5.55112e-017)

Common Lisp

<lang lisp>

This is adapted from the Python sample; it uses lists for simplicity.
Production code would use complex arrays (for compiler optimization).
This version exhibits LOOP features, closing with compositional golf.

(defun fft (x &aux (length (length x)))

 ;; base case: return the list as-is
 (if (<= length 1) x
   ;; collect alternating elements into separate lists...
   (loop for (a b) on x by #'cddr collect a into as collect b into bs finally
         ;; ... and take the FFT of both;
         (let* ((ffta (fft as)) (fftb (fft bs))
                ;; incrementally phase shift each element of the 2nd list
                (aux (loop for b in fftb and k from 0 by (/ pi length -1/2)
                           collect (* b (cis k)))))
           ;; finally, concatenate the sum and difference of the lists
           (return (mapcan #'mapcar '(+ -) `(,ffta ,ffta) `(,aux ,aux)))))))

</lang>

Output:

<lang lisp>

Demonstrates printing an FFT in both rectangular and polar form

CL-USER> (mapc (lambda (c) (format t "~&~6F~6@Fi = ~6Fe^~6@Fipi"

                                  (realpart c) (imagpart c) (abs c) (/ (phase c) pi)))
              (fft '(1 1 1 1 0 0 0 0)))
  4.0  +0.0i =    4.0e^  +0.0ipi
  1.0-2.414i = 2.6131e^-0.375ipi
  0.0  +0.0i =    0.0e^  +0.0ipi
  1.0-0.414i = 1.0824e^-0.125ipi
  0.0  +0.0i =    0.0e^  +0.0ipi
  1.0+0.414i = 1.0824e^+0.125ipi
  0.0  +0.0i =    0.0e^  +0.0ipi
  1.0+2.414i = 2.6131e^+0.375ipi
MAPC also returns the FFT data, which looks like this

(#C(4.0 0.0) #C(1.0D0 -2.414213562373095D0) #C(0.0D0 0.0D0)

#C(1.0D0 -0.4142135623730949D0) #C(0.0 0.0)
#C(0.9999999999999999D0 0.4142135623730949D0) #C(0.0D0 0.0D0)
#C(0.9999999999999997D0 2.414213562373095D0))

</lang>

Crystal

Translation of: Ruby

<lang ruby>require "complex"

def fft(x : Array(Int32 | Float64)) #: Array(Complex)

 return [x[0].to_c] if x.size <= 1
 even = fft(Array.new(x.size // 2) { |k| x[2 * k] })
 odd  = fft(Array.new(x.size // 2) { |k| x[2 * k + 1] })
 c = Array.new(x.size // 2) { |k| (-2 * Math::PI * k / x.size).i.exp }
 codd = Array.new(x.size // 2) { |k| c[k] * odd[k] }
 return Array.new(x.size // 2) { |k| even[k] + codd[k] } + Array.new(x.size // 2) { |k| even[k] - codd[k] }

end

fft([1,1,1,1,0,0,0,0]).each{ |c| puts c } </lang>

Output:
4.0 + 0.0i
1.0 - 2.414213562373095i
0.0 + 0.0i
1.0 - 0.4142135623730949i
0.0 + 0.0i
0.9999999999999999 + 0.4142135623730949i
0.0 + 0.0i
0.9999999999999997 + 2.414213562373095i

D

Standard Version

<lang d>void main() {

   import std.stdio, std.numeric;
   [1.0, 1, 1, 1, 0, 0, 0, 0].fft.writeln;

}</lang>

Output:
[4+0i, 1-2.41421i, 0-0i, 1-0.414214i, 0+0i, 1+0.414214i, 0+0i, 1+2.41421i]

creals Version

Built-in complex numbers will be deprecated. <lang d>import std.stdio, std.algorithm, std.range, std.math;

const(creal)[] fft(in creal[] x) pure /*nothrow*/ @safe {

   immutable N = x.length;
   if (N <= 1) return x;
   const ev = x.stride(2).array.fft;
   const od = x[1 .. $].stride(2).array.fft;
   auto l = iota(N / 2).map!(k => ev[k] + expi(-2*PI * k/N) * od[k]);
   auto r = iota(N / 2).map!(k => ev[k] - expi(-2*PI * k/N) * od[k]);
   return l.chain(r).array;

}

void main() @safe {

   [1.0L+0i, 1, 1, 1, 0, 0, 0, 0].fft.writeln;

}</lang>

Output:
[4+0i, 1+-2.41421i, 0+0i, 1+-0.414214i, 0+0i, 1+0.414214i, 0+0i, 1+2.41421i]

Phobos Complex Version

<lang d>import std.stdio, std.algorithm, std.range, std.math, std.complex;

auto fft(T)(in T[] x) pure /*nothrow @safe*/ {

   immutable N = x.length;
   if (N <= 1) return x;
   const ev = x.stride(2).array.fft;
   const od = x[1 .. $].stride(2).array.fft;
   alias E = std.complex.expi;
   auto l = iota(N / 2).map!(k => ev[k] + T(E(-2* PI * k/N)) * od[k]);
   auto r = iota(N / 2).map!(k => ev[k] - T(E(-2* PI * k/N)) * od[k]);
   return l.chain(r).array;

}

void main() {

   [1.0, 1, 1, 1, 0, 0, 0, 0].map!complex.array.fft.writeln;

}</lang>

Output:
[4+0i, 1-2.41421i, 0+0i, 1-0.414214i, 0+0i, 1+0.414214i, 0+0i, 1+2.41421i]

EchoLisp

<lang scheme> (define -∏*2 (complex 0 (* -2 PI)))

(define (fft xs N) (if (<= N 1) xs (let* [ (N/2 (/ N 2)) (even (fft (for/vector ([i (in-range 0 N 2)]) [xs i]) N/2)) (odd (fft (for/vector ([i (in-range 1 N 2)]) [xs i]) N/2)) ] (for ((k N/2)) (vector*= odd k (exp (/ (* -∏*2 k) N )))) (vector-append (vector-map + even odd) (vector-map - even odd)))))

(define data #( 1 1 1 1 0 0 0 0 ))

(fft data 8)

   → #( 4+0i 1-2.414213562373095i 0+0i 1-0.4142135623730949i 
      0+0i 1+0.4142135623730949i 0+0i 1+2.414213562373095i)

</lang>

ERRE

<lang ERRE> PROGRAM FFT

CONST CNT=8

!$DYNAMIC DIM REL[0],IMG[0],CMP[0],V[0]

BEGIN

  SIG=INT(LOG(CNT)/LOG(2)+0.9999)
  REAL1=2^SIG
  REAL=REAL1-1
  REAL2=INT(REAL1/2)
  REAL4=INT(REAL1/4)
  REAL3=REAL4+REAL2

!$DIM REL[REAL1],IMG[REAL1],CMP[REAL3]

FOR I=0 TO CNT-1 DO

  READ(REL[I],IMG[I])

END FOR

DATA(1,0,1,0,1,0,1,0,0,0,0,0,0,0,0,0)

SIG2=INT(SIG/2) SIG1=SIG-SIG2 CNT1=2^SIG1 CNT2=2^SIG2

!$DIM V[CNT1-1] V[0]=0 DV=1 PTR=CNT1

FOR J=1 TO SIG1 DO

 HLFPTR=INT(PTR/2)
 PT=CNT1-HLFPTR
 FOR I=HLFPTR TO PT STEP PTR DO
   V[I]=V[I-HLFPTR]+DV
 END FOR
 DV=2*DV
 PTR=HLFPTR

END FOR

K=2*π/REAL1

FOR X=0 TO REAL4 DO

  CMP[X]=COS(K*X)
  CMP[REAL2-X]=-CMP[X]
  CMP[REAL2+X]=-CMP[X]

END FOR

PRINT("FFT: BIT REVERSAL")

FOR I=0 TO CNT1-1 DO

 IP=I*CNT2
 FOR J=0 TO CNT2-1 DO
   H=IP+J
   G=V[J]*CNT2+V[I]
   IF G>H THEN
      SWAP(REL[G],REL[H])
      SWAP(IMG[G],IMG[H])
   END IF
 END FOR

END FOR

T=1 FOR STAGE=1 TO SIG DO

 PRINT("STAGE:";STAGE)
 D=INT(REAL2/T)
 FOR II=0 TO T-1 DO
    L=D*II
    LS=L+REAL4
    FOR I=0 TO D-1 DO
      A=2*I*T+II
      B=A+T
      F1=REL[A]
      F2=IMG[A]
      CNT1=CMP[L]*REL[B]
      CNT2=CMP[LS]*IMG[B]
      CNT3=CMP[LS]*REL[B]
      CNT4=CMP[L]*IMG[B]
      REL[A]=F1+CNT1-CNT2
      IMG[A]=F2+CNT3+CNT4
      REL[B]=F1-CNT1+CNT2
      IMG[B]=F2-CNT3-CNT4
    END FOR
 END FOR
 T=2*T

END FOR

PRINT("NUM REAL IMAG") FOR I=0 TO REAL DO

   IF ABS(REL[I])<1E-5 THEN REL[I]=0 END IF
   IF ABS(IMG[I])<1E-5 THEN IMG[I]=0 END IF
   PRINT(I;"";)
   WRITE("##.###### ##.######";REL[I];IMG[I])

END FOR END PROGRAM </lang>

Output:
FFT: BIT REVERSAL
STAGE: 1
STAGE: 2
STAGE: 3
NUM REAL     IMAG
 0  4.000000  0.000000
 1  1.000000 -2.414214
 2  0.000000  0.000000
 3  1.000000 -0.414214
 4  0.000000  0.000000
 5  1.000000  0.414214
 6  0.000000  0.000000
 7  1.000000  2.414214

Factor

<lang Factor> IN: USE math.transforms.fft IN: { 1 1 1 1 0 0 0 0 } fft . {

   C{ 4.0 0.0 }
   C{ 1.0 -2.414213562373095 }
   C{ 0.0 0.0 }
   C{ 1.0 -0.4142135623730949 }
   C{ 0.0 0.0 }
   C{ 0.9999999999999999 0.4142135623730949 }
   C{ 0.0 0.0 }
   C{ 0.9999999999999997 2.414213562373095 }

} </lang>

Fortran

<lang Fortran> module fft_mod

 implicit none
 integer,       parameter :: dp=selected_real_kind(15,300)
 real(kind=dp), parameter :: pi=3.141592653589793238460_dp

contains

 ! In place Cooley-Tukey FFT
 recursive subroutine fft(x)
   complex(kind=dp), dimension(:), intent(inout)  :: x
   complex(kind=dp)                               :: t
   integer                                        :: N
   integer                                        :: i
   complex(kind=dp), dimension(:), allocatable    :: even, odd
   N=size(x)
   if(N .le. 1) return
   allocate(odd((N+1)/2))
   allocate(even(N/2))
   ! divide
   odd =x(1:N:2)
   even=x(2:N:2)
   ! conquer
   call fft(odd)
   call fft(even)
   ! combine
   do i=1,N/2
      t=exp(cmplx(0.0_dp,-2.0_dp*pi*real(i-1,dp)/real(N,dp),kind=dp))*even(i)
      x(i)     = odd(i) + t
      x(i+N/2) = odd(i) - t
   end do
   deallocate(odd)
   deallocate(even)
 end subroutine fft

end module fft_mod

program test

 use fft_mod
 implicit none
 complex(kind=dp), dimension(8) :: data = (/1.0, 1.0, 1.0, 1.0, 0.0, 

0.0, 0.0, 0.0/)

 integer :: i
 call fft(data)
 do i=1,8
    write(*,'("(", F20.15, ",", F20.15, "i )")') data(i)
 end do

end program test</lang>

Output:
(   4.000000000000000,   0.000000000000000i )
(   1.000000000000000,  -2.414213562373095i )
(   0.000000000000000,   0.000000000000000i )
(   1.000000000000000,  -0.414213562373095i )
(   0.000000000000000,   0.000000000000000i )
(   1.000000000000000,   0.414213562373095i )
(   0.000000000000000,   0.000000000000000i )
(   1.000000000000000,   2.414213562373095i )

Frink

Frink has a built-in FFT function that can produce results based on different conventions. The following is not the default convention, but matches many of the other results in this page. <lang frink>a = FFT[[1,1,1,1,0,0,0,0], 1, -1] println[joinln[format[a, 1, 5]]] </lang>

Output:
4.00000
( 1.00000 - 2.41421 i )
0.00000
( 1.00000 - 0.41421 i )
0.00000
( 1.00000 + 0.41421 i )
0.00000
( 1.00000 + 2.41421 i )

GAP

<lang gap># Here an implementation with no optimization (O(n^2)).

  1. In GAP, E(n) = exp(2*i*pi/n), a primitive root of the unity.

Fourier := function(a) local n, z; n := Size(a); z := E(n); return List([0 .. n - 1], k -> Sum([0 .. n - 1], j -> a[j + 1]*z^(-k*j))); end;

InverseFourier := function(a) local n, z; n := Size(a); z := E(n); return List([0 .. n - 1], k -> Sum([0 .. n - 1], j -> a[j + 1]*z^(k*j)))/n; end;

Fourier([1, 1, 1, 1, 0, 0, 0, 0]);

  1. [ 4, 1-E(8)-E(8)^2-E(8)^3, 0, 1-E(8)+E(8)^2-E(8)^3,
  2. 0, 1+E(8)-E(8)^2+E(8)^3, 0, 1+E(8)+E(8)^2+E(8)^3 ]

InverseFourier(last);

  1. [ 1, 1, 1, 1, 0, 0, 0, 0 ]</lang>

Go

<lang go>package main

import (

   "fmt"
   "math"
   "math/cmplx"

)

func ditfft2(x []float64, y []complex128, n, s int) {

   if n == 1 {
       y[0] = complex(x[0], 0)
       return
   }
   ditfft2(x, y, n/2, 2*s)
   ditfft2(x[s:], y[n/2:], n/2, 2*s)
   for k := 0; k < n/2; k++ {
       tf := cmplx.Rect(1, -2*math.Pi*float64(k)/float64(n)) * y[k+n/2]
       y[k], y[k+n/2] = y[k]+tf, y[k]-tf
   }

}

func main() {

   x := []float64{1, 1, 1, 1, 0, 0, 0, 0}
   y := make([]complex128, len(x))
   ditfft2(x, y, len(x), 1)
   for _, c := range y {
       fmt.Printf("%8.4f\n", c)
   }

}</lang>

Output:
(  4.0000 +0.0000i)
(  1.0000 -2.4142i)
(  0.0000 +0.0000i)
(  1.0000 -0.4142i)
(  0.0000 +0.0000i)
(  1.0000 +0.4142i)
(  0.0000 +0.0000i)
(  1.0000 +2.4142i)

Haskell

<lang haskell>import Data.Complex

-- Cooley-Tukey fft [] = [] fft [x] = [x] fft xs = zipWith (+) ys ts ++ zipWith (-) ys ts

   where n = length xs
         ys = fft evens
         zs = fft odds 
         (evens, odds) = split xs
         split [] = ([], [])
         split [x] = ([x], [])
         split (x:y:xs) = (x:xt, y:yt) where (xt, yt) = split xs
         ts = zipWith (\z k -> exp' k n * z) zs [0..]
         exp' k n = cis $ -2 * pi * (fromIntegral k) / (fromIntegral n)
         

main = mapM_ print $ fft [1,1,1,1,0,0,0,0]</lang>

Output:
4.0 :+ 0.0
1.0 :+ (-2.414213562373095)
0.0 :+ 0.0
1.0 :+ (-0.4142135623730949)
0.0 :+ 0.0
0.9999999999999999 :+ 0.4142135623730949
0.0 :+ 0.0
0.9999999999999997 :+ 2.414213562373095

Idris

<lang>module Main

import Data.Complex


concatPair : List (a, a) -> List (a) concatPair xs with (unzip xs)

 | (xs1, xs2) = xs1 ++ xs2 

fft' : List (Complex Double) -> Nat -> Nat -> List (Complex Double) fft' (x::xs) (S Z) _ = [x] fft' xs n s = concatPair $ map (\(x1,x2,k) =>

               let eTerm = ((cis (-2 * pi * ((cast k) - 1) / (cast n))) * x2) in
                 (x1 + eTerm, x1 - eTerm)) $ zip3 left right [1..n `div` 2]
            
            where
                 left : List (Complex Double)  
                 right : List (Complex Double)
                 left  = fft' (xs) (n `div` 2) (2 * s) 
                 right = fft' (drop s xs) (n `div` 2) (2 * s)
               

-- Recursive Cooley-Tukey with radix-2 DIT case -- assumes no of points provided are a power of 2 fft : List (Complex Double) -> List (Complex Double) fft [] = [] fft xs = fft' xs (length xs) 1


main : IO() main = traverse_ printLn $ fft [1,1,1,1,0,0,0,0]</lang>

Output:
4 :+ 0
1 :+ -2.414213562373095
0 :+ 0
1 :+ -0.4142135623730949
0 :+ 0
0.9999999999999999 :+ 0.4142135623730949
0 :+ 0
0.9999999999999997 :+ 2.414213562373095

J

Based on j:Essays/FFT, with some simplifications -- sacrificing accuracy, optimizations and convenience which are not relevant to the task requirements, for clarity:

<lang j>cube =: ($~ q:@#) :. , rou =: ^@j.@o.@(% #)@i.@-: NB. roots of unity floop =: 4 : 'for_r. i.#$x do. (y=.{."1 y) ] x=.(+/x) ,&,:"r (-/x)*y end.' fft =: ] floop&.cube rou@#</lang>

Example (first row of result is sine, second row of result is fft of the first row, (**+)&.+. cleans an irrelevant least significant bit of precision from the result so that it displays nicely):

<lang j> (**+)&.+. (,: fft) 1 o. 2p1*3r16 * i.16 0 0.92388 0.707107 0.382683 1 0.382683 0.707107 0.92388 0 0.92388 0.707107 0.382683 1 0.382683 0.707107 0.92388 0 0 0 0j8 0 0 0 0 0 0 0 0 0 0j8 0 0</lang>

Here is a representation of an example which appears in some of the other implementations, here: <lang J> Re=: {.@+.@fft

  Im=: {:@+.@fft
  M=: 4#1 0
  M

1 1 1 1 0 0 0 0

  Re M

4 1 0 1 0 1 0 1

  Im M

0 2.41421 0 0.414214 0 _0.414214 0 _2.41421</lang>

Note that Re and Im are not functions of 1 and 0 but are functions of the complete sequence.

Also note that J uses a different character for negative sign than for subtraction, to eliminate ambiguity (is this a single list of numbers or are lists being subtracted?).

Java

Translation of: C sharp

<lang java>import static java.lang.Math.*;

public class FastFourierTransform {

   public static int bitReverse(int n, int bits) {
       int reversedN = n;
       int count = bits - 1;
       n >>= 1;
       while (n > 0) {
           reversedN = (reversedN << 1) | (n & 1);
           count--;
           n >>= 1;
       }
       return ((reversedN << count) & ((1 << bits) - 1));
   }
   static void fft(Complex[] buffer) {
       int bits = (int) (log(buffer.length) / log(2));
       for (int j = 1; j < buffer.length / 2; j++) {
           int swapPos = bitReverse(j, bits);
           Complex temp = buffer[j];
           buffer[j] = buffer[swapPos];
           buffer[swapPos] = temp;
       }
       for (int N = 2; N <= buffer.length; N <<= 1) {
           for (int i = 0; i < buffer.length; i += N) {
               for (int k = 0; k < N / 2; k++) {
                   int evenIndex = i + k;
                   int oddIndex = i + k + (N / 2);
                   Complex even = buffer[evenIndex];
                   Complex odd = buffer[oddIndex];
                   double term = (-2 * PI * k) / (double) N;
                   Complex exp = (new Complex(cos(term), sin(term)).mult(odd));
                   buffer[evenIndex] = even.add(exp);
                   buffer[oddIndex] = even.sub(exp);
               }
           }
       }
   }
   public static void main(String[] args) {
       double[] input = {1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0};
       Complex[] cinput = new Complex[input.length];
       for (int i = 0; i < input.length; i++)
           cinput[i] = new Complex(input[i], 0.0);
       fft(cinput);
       System.out.println("Results:");
       for (Complex c : cinput) {
           System.out.println(c);
       }
   }

}

class Complex {

   public final double re;
   public final double im;
   public Complex() {
       this(0, 0);
   }
   public Complex(double r, double i) {
       re = r;
       im = i;
   }
   public Complex add(Complex b) {
       return new Complex(this.re + b.re, this.im + b.im);
   }
   public Complex sub(Complex b) {
       return new Complex(this.re - b.re, this.im - b.im);
   }
   public Complex mult(Complex b) {
       return new Complex(this.re * b.re - this.im * b.im,
               this.re * b.im + this.im * b.re);
   }
   @Override
   public String toString() {
       return String.format("(%f,%f)", re, im);
   }

}</lang>

Results:
(4,000000 + 0,000000 i)
(1,000000 + -2,414214 i)
(0,000000 + 0,000000 i)
(1,000000 + -0,414214 i)
(0,000000 + 0,000000 i)
(1,000000 + 0,414214 i)
(0,000000 + 0,000000 i)
(1,000000 + 2,414214 i)

JavaScript

Complex fourier transform & it's inverse reimplemented from the C++ & Python variants on this page.

<lang javascript>/* complex fast fourier transform and inverse from http://rosettacode.org/wiki/Fast_Fourier_transform#C.2B.2B

  • /

function icfft(amplitudes) { var N = amplitudes.length; var iN = 1 / N;

//conjugate if imaginary part is not 0 for(var i = 0 ; i < N; ++i) if(amplitudes[i] instanceof Complex) amplitudes[i].im = -amplitudes[i].im;

//apply fourier transform amplitudes = cfft(amplitudes)

for(var i = 0 ; i < N; ++i) { //conjugate again amplitudes[i].im = -amplitudes[i].im; //scale amplitudes[i].re *= iN; amplitudes[i].im *= iN; } return amplitudes; }

function cfft(amplitudes) { var N = amplitudes.length; if( N <= 1 ) return amplitudes;

var hN = N / 2; var even = []; var odd = []; even.length = hN; odd.length = hN; for(var i = 0; i < hN; ++i) { even[i] = amplitudes[i*2]; odd[i] = amplitudes[i*2+1]; } even = cfft(even); odd = cfft(odd);

var a = -2*Math.PI; for(var k = 0; k < hN; ++k) { if(!(even[k] instanceof Complex)) even[k] = new Complex(even[k], 0); if(!(odd[k] instanceof Complex)) odd[k] = new Complex(odd[k], 0); var p = k/N; var t = new Complex(0, a * p); t.cexp(t).mul(odd[k], t); amplitudes[k] = even[k].add(t, odd[k]); amplitudes[k + hN] = even[k].sub(t, even[k]); } return amplitudes; }

//test code //console.log( cfft([1,1,1,1,0,0,0,0]) ); //console.log( icfft(cfft([1,1,1,1,0,0,0,0])) );</lang> Very very basic Complex number that provides only the components required by the code above. <lang javascript>/* basic complex number arithmetic from http://rosettacode.org/wiki/Fast_Fourier_transform#Scala

  • /

function Complex(re, im) { this.re = re; this.im = im || 0.0; } Complex.prototype.add = function(other, dst) { dst.re = this.re + other.re; dst.im = this.im + other.im; return dst; } Complex.prototype.sub = function(other, dst) { dst.re = this.re - other.re; dst.im = this.im - other.im; return dst; } Complex.prototype.mul = function(other, dst) { //cache re in case dst === this var r = this.re * other.re - this.im * other.im; dst.im = this.re * other.im + this.im * other.re; dst.re = r; return dst; } Complex.prototype.cexp = function(dst) { var er = Math.exp(this.re); dst.re = er * Math.cos(this.im); dst.im = er * Math.sin(this.im); return dst; } Complex.prototype.log = function() { /* although 'It's just a matter of separating out the real and imaginary parts of jw.' is not a helpful quote the actual formula I found here and the rest was just fiddling / testing and comparing with correct results. http://cboard.cprogramming.com/c-programming/89116-how-implement-complex-exponential-functions-c.html#post637921 */ if( !this.re ) console.log(this.im.toString()+'j'); else if( this.im < 0 ) console.log(this.re.toString()+this.im.toString()+'j'); else console.log(this.re.toString()+'+'+this.im.toString()+'j'); }</lang>

jq

Currently jq has no support for complex numbers, so the following implementation uses [x,y] to represent the complex number x+iy.

Complex number arithmetic

<lang jq>

  1. multiplication of real or complex numbers

def cmult(x; y):

   if (x|type) == "number" then
      if  (y|type) == "number" then [ x*y, 0 ]
      else [x * y[0], x * y[1]]
      end
   elif (y|type) == "number" then cmult(y;x)
   else [ x[0] * y[0] - x[1] * y[1],  x[0] * y[1] + x[1] * y[0]]
   end;

def cplus(x; y):

   if (x|type) == "number" then
      if  (y|type) == "number" then [ x+y, 0 ]
      else [ x + y[0], y[1]]
      end
   elif (y|type) == "number" then cplus(y;x)
   else [ x[0] + y[0], x[1] + y[1] ]
   end;

def cminus(x; y): cplus(x; cmult(-1; y));

  1. e(ix) = cos(x) + i sin(x)

def expi(x): [ (x|cos), (x|sin) ];</lang>

FFT

<lang jq>def fft:

 length as $N
 | if $N <= 1 then .
   else   ( [ .[ range(0; $N; 2) ] ] | fft) as $even
        | ( [ .[ range(1; $N; 2) ] ] | fft) as $odd
        | (1|atan * 4) as $pi
        | [ range(0; $N/2) | cplus($even[.];  cmult( expi(-2*$pi*./$N); $odd[.] )) ] +
          [ range(0; $N/2) | cminus($even[.]; cmult( expi(-2*$pi*./$N); $odd[.] )) ] 
   end;</lang>

Example: <lang jq>[1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0] | fft </lang>

Output:
[[4,-0],[1,-2.414213562373095],
 [0,0],[1,-0.4142135623730949],
 [0,0],[0.9999999999999999,0.4142135623730949],
 [0,0],[0.9999999999999997,2.414213562373095]]

Julia

<lang julia>using FFTW # or using DSP

fft([1,1,1,1,0,0,0,0])</lang>

Output:

<lang julia>8-element Array{Complex{Float64},1}:

     4.0+0.0im
 1.0-2.41421im
     0.0+0.0im
1.0-0.414214im
     0.0+0.0im
1.0+0.414214im
     0.0+0.0im
 1.0+2.41421im</lang>

An implementation of the radix-2 algorithm, which works for any vector for length that is a power of 2: <lang julia> function fft(a)

   y1 = Any[]; y2 = Any[]
   n = length(a)
   if n ==1 return a end
   wn(n) = exp(-2*π*im/n)
   y_even = fft(a[1:2:end])
   y_odd = fft(a[2:2:end])
   w = 1
   for k in 1:Int(n/2)
       push!(y1, y_even[k] + w*y_odd[k])
       push!(y2, y_even[k] - w*y_odd[k])
       w = w*wn(n)
   end
   return vcat(y1,y2)

end </lang>

Klong

<lang k>fft::{ff2::{[n e o p t k];n::#x;

           f::{p::2:#x;e::ff2(*'p);o::ff2({x@1}'p);k::-1;
               t::{k::k+1;cmul(cexp(cdiv(cmul([0 -2];(k*pi),0);n,0));x)}'o;
               (e cadd't),e csub't};
           :[n<2;x;f(x)]};
     n::#x;k::{(2^x)<n}{1+x}:~1;n#ff2({x,0}'x,&(2^k)-n)}</lang>

Example (rounding to 4 decimal digits): <lang k> all(rndn(;4);fft([1 1 1 1 0 0 0 0]))</lang>

Output:
[[4.0 0.0]
 [1.0 -2.4142]
 [0.0 0.0]
 [1.0 -0.4142]
 [0.0 0.0]
 [1.0 0.4142]
 [0.0 0.0]
 [1.0 2.4142]]

Kotlin

From Scala. <lang scala>import java.lang.Math.*

class Complex(val re: Double, val im: Double) {

   operator infix fun plus(x: Complex) = Complex(re + x.re, im + x.im)
   operator infix fun minus(x: Complex) = Complex(re - x.re, im - x.im)
   operator infix fun times(x: Double) = Complex(re * x, im * x)
   operator infix fun times(x: Complex) = Complex(re * x.re - im * x.im, re * x.im + im * x.re)
   operator infix fun div(x: Double) = Complex(re / x, im / x)
   val exp: Complex by lazy { Complex(cos(im), sin(im)) * (cosh(re) + sinh(re)) }
   override fun toString() = when {
       b == "0.000" -> a
       a == "0.000" -> b + 'i'
       im > 0 -> a + " + " + b + 'i'
       else -> a + " - " + b + 'i'
   }
   private val a = "%1.3f".format(re)
   private val b = "%1.3f".format(abs(im))

}</lang>

<lang scala>object FFT {

   fun fft(a: Array<Complex>) = _fft(a, Complex(0.0, 2.0), 1.0)
   fun rfft(a: Array<Complex>) = _fft(a, Complex(0.0, -2.0), 2.0)
   private fun _fft(a: Array<Complex>, direction: Complex, scalar: Double): Array<Complex> =
           if (a.size == 1)
               a
           else {
               val n = a.size
               require(n % 2 == 0, { "The Cooley-Tukey FFT algorithm only works when the length of the input is even." })
               var (evens, odds) = Pair(emptyArray<Complex>(), emptyArray<Complex>())
               for (i in a.indices)
                   if (i % 2 == 0) evens += a[i]
                   else odds += a[i]
               evens = _fft(evens, direction, scalar)
               odds = _fft(odds, direction, scalar)
               val pairs = (0 until n / 2).map {
                   val offset = (direction * (java.lang.Math.PI * it / n)).exp * odds[it] / scalar
                   val base = evens[it] / scalar
                   Pair(base + offset, base - offset)
               }
               var (left, right) = Pair(emptyArray<Complex>(), emptyArray<Complex>())
               for ((l, r) in pairs) { left += l; right += r }
               left + right
           }

}</lang>

<lang scala>fun Array<*>.println() = println(joinToString(prefix = "[", postfix = "]"))

fun main(args: Array<String>) {

   val data = arrayOf(Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0),
           Complex(0.0, 0.0), Complex(0.0, 2.0), Complex(0.0, 0.0), Complex(0.0, 0.0))
   val a = FFT.fft(data)
   a.println()
   FFT.rfft(a).println()

}</lang>

Output:
[4.000 + 2.000i, 2.414 + 1.000i, -2.000, 2.414 + 1.828i, 2.000i, -0.414 + 1.000i, 2.000, -0.414 - 3.828i]
[1.000, 1.000, 1.000, 1.000, 0.000, 2.000i, 0.000, 0.000]

lambdatalk

<lang scheme>

1) the function fft

{def fft

{lambda {:s :x}
 {if {= {list.length :x} 1}
  then :x
  else {let { {:s :s}
              {:ev {fft :s {evens :x}} }
              {:od {fft :s {odds  :x}} } }
       {let { {:ev :ev} {:t {rotate :s :od 0 {list.length :od}}} }
       {list.append {list.map Cadd :ev :t}
                    {list.map Csub :ev :t}} }}}}}

{def rotate

{lambda {:s :f :k :N}
 {if {list.null? :f}
  then nil
  else {cons {Cmul {car :f} {Cexp {Cnew 0 {/ {* :s {PI} :k} :N}}}}
             {rotate :s {cdr :f} {+ :k 1} :N}}}}}

2) functions for lists

We add to the existing {lambda talk}'s list primitives a small set of functions required by the function fft.

{def evens

{lambda {:l}
 {if {list.null? :l}
  then nil
  else {cons {car :l} {evens {cdr {cdr :l}}}}}}}

{def odds

{lambda {:l}
 {if {list.null? {cdr :l}}
  then nil
  else {cons {car {cdr :l}} {odds {cdr {cdr :l}}}}}}}

{def list.map

{def list.map.r 
 {lambda {:f :a :b :c}
  {if {list.null? :a}
   then :c
   else {list.map.r :f {cdr :a} {cdr :b} 
                       {cons {:f {car :a} {car :b}} :c}} }}}
{lambda {:f :a :b}
 {list.map.r :f {list.reverse :a} {list.reverse :b} nil}}}

{def list.append

{def list.append.r
 {lambda {:a :b}
  {if {list.null? :b}
   then :a
   else {list.append.r {cons {car :b} :a} {cdr :b}}}}}
{lambda {:a :b}
 {list.append.r :b {list.reverse :a}} }}

3) functions for Cnumbers

{lambda talk} has no primitive functions working on complex numbers. We add the minimal set required by the function fft.

{def Cnew

{lambda {:x :y}
 {cons :x :y} }} 

{def Cnorm

{lambda {:c}
 {sqrt {+ {* {car :c} {car :c}}
          {* {cdr :c} {cdr :c}}}} }}

{def Cadd

{lambda {:x :y}
 {cons {+ {car :x} {car :y}}
       {+ {cdr :x} {cdr :y}}} }}

{def Csub

{lambda {:x :y}
 {cons {- {car :x} {car :y}}
       {- {cdr :x} {cdr :y}}} }}

{def Cmul

{lambda {:x :y}
 {cons {- {* {car :x} {car :y}} {* {cdr :x} {cdr :y}}}
       {+ {* {car :x} {cdr :y}} {* {cdr :x} {car :y}}}} }}

{def Cexp

 {lambda {:x}
  {cons {* {exp {car :x}} {cos {cdr :x}}}
        {* {exp {car :x}} {sin {cdr :x}}}} }}

{def Clist

{lambda {:s}
 {list.new {map {lambda {:i} {cons :i 0}} :s}}}}

4) testing

Applying the fft function on such a sample (1 1 1 1 0 0 0 0) where numbers have been promoted as complex

{list.disp {fft -1 {Clist 1 1 1 1 0 0 0 0}}} ->

(4 0) (1 -2.414213562373095) (0 0) (1 -0.4142135623730949) (0 0) (0.9999999999999999 0.4142135623730949) (0 0) (0.9999999999999997 2.414213562373095)

A more usefull example can be seen in http://lambdaway.free.fr/lambdaspeech/?view=zorg

</lang>

Liberty BASIC

<lang lb>

   P =8
   S  =int( log( P) /log( 2) +0.9999)
   Pi =3.14159265
   R1 =2^S
   R =R1 -1
   R2 =div( R1,  2)
   R4 =div( R1,  4)
   R3 =R4 +R2
   Dim Re( R1), Im( R1), Co( R3)
   for N =0 to P -1
       read dummy: Re( N) =dummy
       read dummy: Im( N) =dummy
   next N
   data    1, 0,      1, 0,      1, 0,      1, 0,      0, 0,     0, 0,      0, 0,       0, 0
   S2 =div( S, 2)
   S1 =S -S2
   P1 =2^S1
   P2 =2^S2
   dim V( P1 -1)
   V( 0) =0
   DV =1
   DP =P1
   for J =1 to S1
       HA =div( DP, 2)
       PT =P1 -HA
       for I =HA to PT step DP
           V( I) =V( I -HA) +DV
       next I
       DV =DV +DV
       DP =HA
   next J
   K =2 *Pi /R1
   for X =0 to R4
       COX =cos( K *X)
       Co( X) =COX
       Co( R2 -X) =0 -COX
       Co( R2 +X) =0 -COX
   next X
   print "FFT: bit reversal"
   for I =0 to P1 -1
       IP =I *P2
       for J =0 to P2 -1
           H =IP +J
           G =V( J) *P2 +V( I)
           if G >H then temp =Re( G): Re( G) =Re( H): Re( H) =temp
           if G >H then temp =Im( G): Im( G) =Im( H): Im( H) =temp
       next J
   next I
   T =1
   for stage =0 to S -1
       print "  Stage:- "; stage
       D =div( R2, T)
       for Z =0 to T -1
           L   =D *Z
           LS  =L +R4
           for I =0 to D -1
               A      =2 *I *T +Z
               B      =A +T
               F1     =Re( A)
               F2     =Im( A)
               P1     =Co( L)  *Re( B)
               P2     =Co( LS) *Im( B)
               P3     =Co( LS) *Re( B)
               P4     =Co( L)  *Im( B)
               Re( A) =F1 +P1 -P2
               Im( A) =F2 +P3 +P4
               Re( B) =F1 -P1 +P2
               Im( B) =F2 -P3 -P4
           next I
       next Z
       T =T +T
   next stage
   print "   M          Re( M)       Im( M)"
   for M =0 to R
       if abs( Re( M)) <10^-5 then Re( M) =0
       if abs( Im( M)) <10^-5 then Im( M) =0
       print "   "; M, Re( M), Im( M)
   next M
   end


   wait
   function div( a, b)
       div =int( a /b)
   end function
   end

</lang>

   M          Re( M)       Im( M)
  0          4             0
  1          1.0           -2.41421356
  2          0             0
  3          1.0           -0.41421356
  4          0             0
  5          1.0           0.41421356
  6          0             0
  7          1.0           2.41421356

Lua

<lang Lua>-- operations on complex number complex = {__mt={} }

function complex.new (r, i)

 local new={r=r, i=i or 0} 
 setmetatable(new,complex.__mt)
 return new

end

function complex.__mt.__add (c1, c2)

 return complex.new(c1.r + c2.r, c1.i + c2.i)

end

function complex.__mt.__sub (c1, c2)

 return complex.new(c1.r - c2.r, c1.i - c2.i)

end

function complex.__mt.__mul (c1, c2)

 return complex.new(c1.r*c2.r - c1.i*c2.i,
                     c1.r*c2.i + c1.i*c2.r)

end

function complex.expi (i)

 return complex.new(math.cos(i),math.sin(i))

end

function complex.__mt.__tostring(c)

 return "("..c.r..","..c.i..")"

end


-- Cooley–Tukey FFT (in-place, divide-and-conquer) -- Higher memory requirements and redundancy although more intuitive function fft(vect)

 local n=#vect
 if n<=1 then return vect end

-- divide

 local odd,even={},{}
 for i=1,n,2 do
   odd[#odd+1]=vect[i]
   even[#even+1]=vect[i+1]
 end

-- conquer

 fft(even);
 fft(odd);

-- combine

 for k=1,n/2 do
   local t=even[k] * complex.expi(-2*math.pi*(k-1)/n)
   vect[k] = odd[k] + t;
   vect[k+n/2] = odd[k] - t;
 end
 return vect

end

function toComplex(vectr)

 vect={}
 for i,r in ipairs(vectr) do
   vect[i]=complex.new(r)
 end
 return vect

end

-- test data = toComplex{1, 1, 1, 1, 0, 0, 0, 0};

-- this works for old lua versions & luaJIT (depends on version!) -- print("orig:", unpack(data)) -- print("fft:", unpack(fft(data)))

-- Beginning with Lua 5.2 you have to write print("orig:", table.unpack(data)) print("fft:", table.unpack(fft(data)))</lang>

Maple

Maple has a built-in package DiscreteTransforms, and FourierTransform and InverseFourierTransform are in the commands available from that package. The FourierTransform command offers an FFT method by default.

<lang Maple> with( DiscreteTransforms ):

FourierTransform( <1,1,1,1,0,0,0,0>, normalization=none ); </lang>

                         [       4. + 0. I        ]
                         [                        ]
                         [1. - 2.41421356237309 I ]
                         [                        ]
                         [       0. + 0. I        ]
                         [                        ]
                         [1. - 0.414213562373095 I]
                         [                        ]
                         [       0. + 0. I        ]
                         [                        ]
                         [1. + 0.414213562373095 I]
                         [                        ]
                         [       0. + 0. I        ]
                         [                        ]
                         [1. + 2.41421356237309 I ]

Optionally, the FFT may be performed inplace on a Vector of hardware double-precision complex floats. <lang Maple> v := Vector( [1,1,1,1,0,0,0,0], datatype=complex[8] ):

FourierTransform( v, normalization=none, inplace ):

v; </lang>

                         [       4. + 0. I        ]
                         [                        ]
                         [1. - 2.41421356237309 I ]
                         [                        ]
                         [       0. + 0. I        ]
                         [                        ]
                         [1. - 0.414213562373095 I]
                         [                        ]
                         [       0. + 0. I        ]
                         [                        ]
                         [1. + 0.414213562373095 I]
                         [                        ]
                         [       0. + 0. I        ]
                         [                        ]
                         [1. + 2.41421356237309 I ]

<lang Maple> InverseFourierTransform( v, normalization=full, inplace ):

v; </lang>

                       [          1. + 0. I          ]
                       [                             ]
                       [          1. + 0. I          ]
                       [                             ]
                       [          1. + 0. I          ]
                       [                             ]
                       [          1. + 0. I          ]
                       [                             ]
                       [          0. + 0. I          ]
                       [                             ]
                       [          0. + 0. I          ]
                       [                             ]
                       [                   -17       ]
                       [5.55111512312578 10    + 0. I]
                       [                             ]
                       [          0. + 0. I          ]

Mathematica / Wolfram Language

Mathematica has a built-in FFT function which uses a proprietary algorithm developed at Wolfram Research. It also has an option to tune the algorithm for specific applications. The options shown below, while not default, produce output that is consistent with most other FFT routines.

<lang Mathematica> Fourier[{1,1,1,1,0,0,0,0}, FourierParameters->{1,-1}] </lang>

Output:
{4. + 0. I, 1. - 2.4142136 I, 0. + 0. I, 1. - 0.41421356 I, 0. + 0. I, 1. + 0.41421356 I, 0. + 0. I, 1. + 2.4142136 I}

Here is a user-space definition for good measure.

<lang Mathematica>fft[{x_}] := {N@x} fft[l__] :=

Join[#, #] &@fft@l1 ;; ;; 2 + 
 Exp[(-2 \[Pi] I)/Length@l (Range@Length@l - 1)] (Join[#, #] &@
    fft[l2 ;; ;; 2])

fft[{1, 1, 1, 1, 0, 0, 0, 0}] // Column</lang>

Output:
4.
1. -2.41421 I
0. +0. I
1. -0.414214 I
0.
1. +0.414214 I
0. +0. I
1. +2.41421 I

MATLAB / Octave

Matlab/Octave have a builtin FFT function.

<lang MATLAB> fft([1,1,1,1,0,0,0,0]') </lang>

Output:
ans =

   4.00000 + 0.00000i
   1.00000 - 2.41421i
   0.00000 + 0.00000i
   1.00000 - 0.41421i
   0.00000 + 0.00000i
   1.00000 + 0.41421i
   0.00000 - 0.00000i
   1.00000 + 2.41421i

Maxima

<lang maxima>load(fft)$ fft([1, 2, 3, 4]); [2.5, -0.5 * %i - 0.5, -0.5, 0.5 * %i - 0.5]</lang>

Nim

Translation of: Python

<lang nim>import math, complex, strutils

  1. Works with floats and complex numbers as input

proc fft[T: float | Complex[float]](x: openarray[T]): seq[Complex[float]] =

 let n = x.len
 if n == 0: return
 result.newSeq(n)
 
 if n == 1:
   result[0] = (when T is float: complex(x[0]) else: x[0])
   return
 var evens, odds = newSeq[T]()
 for i, v in x:
   if i mod 2 == 0: evens.add v
   else: odds.add v
 var (even, odd) = (fft(evens), fft(odds))
 let halfn = n div 2
 for k in 0 ..< halfn:
   let a = exp(complex(0.0, -2 * Pi* float(k) / float(n))) * odd[k]
   result[k] = even[k] + a
   result[k + halfn] = even[k] - a

for i in fft(@[1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]):

 echo formatFloat(abs(i), ffDecimal, 3)</lang>
Output:
4.000
2.613
0.000
1.082
0.000
1.082
0.000
2.613

OCaml

This is a simple implementation of the Cooley-Tukey pseudo-code <lang OCaml>open Complex

let fac k n =

  let m2pi = -4.0 *. acos 0.0 in
  polar 1.0 (m2pi*.(float k)/.(float n))

let merge l r n =

  let f (k,t) x = (succ k, (mul (fac k n) x) :: t) in
  let z = List.rev (snd (List.fold_left f (0,[]) r)) in
  (List.map2 add l z) @ (List.map2 sub l z)

let fft lst =

  let rec ditfft2 a n s =
     if n = 1 then [List.nth lst a] else
     let odd = ditfft2 a (n/2) (2*s) in
     let even = ditfft2 (a+s) (n/2) (2*s) in
     merge odd even n in
  ditfft2 0 (List.length lst) 1;;

let show l =

  let pr x = Printf.printf "(%f %f) " x.re x.im in
  (List.iter pr l; print_newline ()) in

let indata = [one;one;one;one;zero;zero;zero;zero] in show indata; show (fft indata)</lang>

Output:
(1.000000 0.000000) (1.000000 0.000000) (1.000000 0.000000) (1.000000 0.000000) (0.000000 0.000000) (0.000000 0.000000) (0.000000 0.000000) (0.000000 0.000000) 
(4.000000 0.000000) (1.000000 -2.414214) (0.000000 0.000000) (1.000000 -0.414214) (0.000000 0.000000) (1.000000 0.414214) (0.000000 0.000000) (1.000000 2.414214) 

ooRexx

Translation of: PL/I

Output as shown in REXX

<lang oorexx>Numeric Digits 16 list='1 1 1 1 0 0 0 0' n=words(list) x=.array~new(n) Do i=1 To n

 x[i]=.complex~new(word(list,i),0)
 End

Call show 'FFT in',x call fft x Call show 'FFT out',x Exit

show: Procedure

 Use Arg data,x
 Say '---data---   num       real-part   imaginary-part'
 Say '----------   ---       ---------   --------------'
 Do i=1 To x~size
   say data right(i,7)'       ' x[i]~string
   End
 Return

fft: Procedure

 Use Arg in
 Numeric Digits 16
 n=in~size
 If n=1 Then Return
 odd=.array~new(n/2)
 even=.array~new(n/2)
 Do j=1 To n By 2; odd[(j+1)/2]=in[j]; End
 Do j=2 To n By 2; even[j/2]=in[j]; End
 Call fft odd
 Call fft even
 pi=3.14159265358979323E0
 n_2=n/2
 Do i=1 To n_2
   w=-2*pi*(i-1)/N
   t=.complex~new(rxCalcCos(w,,'R'),rxCalcSin(w,,'R'))*even[i]
   in[i]=odd[i]+t
   in[i+n_2]=odd[i]-t
   End
 Return
class complex
method init
 expose r i
 use strict arg r, i = 0

-- complex instances are immutable, so these are -- read only attributes

attribute r GET
attribute i GET
method add
 expose r i
 Numeric Digits 16
 use strict arg other
 if other~isa(.complex) then
    return self~class~new(r + other~r, i + other~i)
 else return self~class~new(r + other, i)
method subtract
 expose r i
 Numeric Digits 16
 use strict arg other
 if other~isa(.complex) then
    return self~class~new(r - other~r, i - other~i)
 else return self~class~new(r - other, i)
method "+"
 Numeric Digits 16
 -- need to check if this is a prefix plus or an addition
 if arg() == 0 then
     return self  -- we can return this copy since it is immutable
 else
     forward message("ADD")
method "-"
 Numeric Digits 16
 -- need to check if this is a prefix minus or a subtract
 if arg() == 0 then
     forward message("NEGATIVE")
 else
     forward message("SUBTRACT")
method times
 expose r i
 Numeric Digits 16
 use strict arg other
 if other~isa(.complex) then
    return self~class~new(r * other~r - i * other~i, r * other~i + i * other~r)
 else return self~class~new(r * other, i * other)
method "*"
 Numeric Digits 16
 forward message("TIMES")
method string
 expose r i
 Numeric Digits 12
 Select
   When i=0 Then
     If r=0 Then
       Return '0'
     Else
       Return format(r,1,9)
   When i>0 Then
     Return format(r,1,9)' +'format(i,1,9)'i'
   Otherwise
     Return format(r,1,9)' -'format(abs(i),1,9)'i'
   End
method formatnumber private
 use arg value
 Numeric Digits 16
 if value > 0 then return "+" value
 else return "-" value~abs
requires rxMath library</lang>
Output:
---data---   num       real-part   imaginary-part
----------   ---       ---------   --------------
FFT  in       1        1.000000000
FFT  in       2        1.000000000
FFT  in       3        1.000000000
FFT  in       4        1.000000000
FFT  in       5        0
FFT  in       6        0
FFT  in       7        0
FFT  in       8        0
---data---   num       real-part   imaginary-part
----------   ---       ---------   --------------
FFT out       1        4.000000000
FFT out       2        1.000000000 -2.414213562i
FFT out       3        0
FFT out       4        1.000000000 -0.414213562i
FFT out       5        0
FFT out       6        1.000000000 +0.414213562i
FFT out       7        0
FFT out       8        1.000000000 +2.414213562i

PARI/GP

Naive implementation, using the same testcase as Ada: <lang parigp>FFT(v)=my(t=-2*Pi*I/#v,tt);vector(#v,k,tt=t*(k-1);sum(n=0,#v-1,v[n+1]*exp(tt*n))); FFT([1,1,1,1,0,0,0,0])</lang>

Output:
[4.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000 - 2.4142135623730950488016887242096980786*I, 0.E-37 + 0.E-38*I, 1.0000000000000000000000000000000000000 - 0.41421356237309504880168872420969807856*I, 0.E-38 + 0.E-37*I, 0.99999999999999999999999999999999999997 + 0.41421356237309504880168872420969807860*I, 4.701977403289150032 E-38 + 0.E-38*I, 0.99999999999999999999999999999999999991 + 2.4142135623730950488016887242096980785*I]

Perl

Translation of: Raku

<lang Perl>use strict; use warnings; use Math::Complex;

sub fft {

   return @_ if @_ == 1;
   my @evn = fft(@_[grep { not $_ % 2 } 0 .. $#_ ]);
   my @odd = fft(@_[grep { $_ % 2 } 1 .. $#_ ]);
   my $twd = 2*i* pi / @_;
   $odd[$_] *= exp( $_ * -$twd ) for 0 .. $#odd;
   return
   (map { $evn[$_] + $odd[$_] } 0 .. $#evn ),
   (map { $evn[$_] - $odd[$_] } 0 .. $#evn );

}

print "$_\n" for fft qw(1 1 1 1 0 0 0 0);</lang>

Output:
4
1-2.41421356237309i
0
1-0.414213562373095i
0
1+0.414213562373095i
0
1+2.41421356237309i

Phix

<lang Phix>-- -- demo\rosetta\FastFourierTransform.exw -- ===================================== -- -- Originally written by Robert Craig and posted to EuForum Dec 13, 2001 --

constant REAL = 1, IMAG = 2

type complex(sequence x)

   return length(x)=2 and atom(x[REAL]) and atom(x[IMAG])

end type

function p2round(integer x) -- rounds x up to a power of two integer p = 1

   while p<x do
       p += p
   end while
   return p

end function

function log2(atom x) -- return log2 of x, or -1 if x is not a power of 2

   if x>0 then
       integer p = -1
       while floor(x)=x do
           x /= 2
           p += 1
       end while
       if x=0.5 then
           return p
       end if
   end if
   return -1

end function

function bitrev(sequence a) -- bitrev an array of complex numbers integer j=1, n = length(a)

   for i=1 to n-1 do
       if i<j then
           {a[i],a[j]} = {a[j],a[i]}
       end if
       integer k = n/2
       while k<j do
           j -= k
           k /= 2
       end while
       j = j+k
   end for
   return a

end function

function cmult(complex arg1, complex arg2) -- complex multiply

   return {arg1[REAL]*arg2[REAL]-arg1[IMAG]*arg2[IMAG],
           arg1[REAL]*arg2[IMAG]+arg1[IMAG]*arg2[REAL]}

end function

function ip_fft(sequence a) -- perform an in-place fft on an array of complex numbers -- that has already been bit reversed integer n = length(a) integer ip, le, le1 complex u, w, t

   for l=1 to log2(n) do
       le = power(2, l)
       le1 = le/2
       u = {1, 0}
       w = {cos(PI/le1), sin(PI/le1)}
       for j=1 to le1 do
           for i=j to n by le do
               ip = i+le1
               t = cmult(a[ip], u)
               a[ip] = sq_sub(a[i],t)
               a[i] = sq_add(a[i],t)
           end for
           u = cmult(u, w)
       end for
   end for
   return a

end function

function fft(sequence a) integer n = length(a)

   if log2(n)=-1 then
       puts(1, "input vector length is not a power of two, padded with 0's\n\n")
       n = p2round(n)
        -- pad with 0's 
       for j=length(a)+1 to n do
           a = append(a,{0, 0})
       end for
   end if
   a = ip_fft(bitrev(a))
   -- reverse output from fft to switch +ve and -ve frequencies
   for i=2 to n/2 do
       integer j = n+2-i
       {a[i],a[j]} = {a[j],a[i]}
   end for
   return a

end function

function ifft(sequence a) integer n = length(a)

   if log2(n)=-1 then ?9/0 end if -- (or as above?)
   a = ip_fft(bitrev(a))
   -- modifies results to get inverse fft
   for i=1 to n do
       a[i] = sq_div(a[i],n)
   end for
   return a

end function

constant a = {{1, 0},

             {1, 0},
             {1, 0},
             {1, 0},
             {0, 0},
             {0, 0},
             {0, 0},
             {0, 0}}

printf(1, "Results of %d-point fft:\n\n", length(a)) ppOpt({pp_Nest,1,pp_IntFmt,"%10.6f",pp_FltFmt,"%10.6f"}) pp(fft(a)) printf(1, "\nResults of %d-point inverse fft (rounded to 6 d.p.):\n\n", length(a)) pp(ifft(fft(a)))</lang>

Output:
Results of 8-point fft:

{{  4.000000,  0.000000},
 {  1.000000, -2.414214},
 {  0.000000,  0.000000},
 {  1.000000, -0.414214},
 {  0.000000,  0.000000},
 {  1.000000,  0.414214},
 {  0.000000,  0.000000},
 {  1.000000,  2.414214}}

Results of 8-point inverse fft (rounded to 6 d.p.):

{{  1.000000,  0.000000},
 {  1.000000, -0.000000},
 {  1.000000, -0.000000},
 {  1.000000, -0.000000},
 {  0.000000,  0.000000},
 {  0.000000,  0.000000},
 {  0.000000,  0.000000},
 {  0.000000,  0.000000}}

PHP

Complex Fourier transform the inverse reimplemented from the C++, Python & JavaScript variants on this page.

Complex Class File: <lang PHP> <?php

class Complex {

   public $real;
   public $imaginary;
   function __construct($real, $imaginary){
       $this->real = $real;
       $this->imaginary = $imaginary;
   }
   
   function Add($other, $dst){
       $dst->real = $this->real + $other->real;
       $dst->imaginary = $this->imaginary + $other->imaginary;
       return $dst;
   }
   
   function Subtract($other, $dst){
       $dst->real = $this->real - $other->real;
       $dst->imaginary = $this->imaginary - $other->imaginary;
       return $dst;
   }
       
   function Multiply($other, $dst){
       //cache real in case dst === this
       $r = $this->real * $other->real - $this->imaginary * $other->imaginary;
       $dst->imaginary = $this->real * $other->imaginary + $this->imaginary * $other->real;
       $dst->real = $r;
       return $dst;
   }
   function ComplexExponential($dst){
       $er = exp($this->real);
       $dst->real = $er * cos($this->imaginary);
       $dst->imaginary = $er * sin($this->imaginary);
       return $dst;
   }

}

</lang>

Example: <lang PHP> <?php

include 'complex.class.php';

function IFFT($amplitudes) {

   $N = count($amplitudes);
   $iN = 1 / $N;

   // Conjugate if imaginary part is not 0
   for($i = 0; $i < $N; ++$i){
       if($amplitudes[$i] instanceof Complex){
           $amplitudes[$i]->imaginary = -$amplitudes[$i]->imaginary;
       }
   }

   // Apply Fourier Transform
   $amplitudes = FFT($amplitudes);

   for($i = 0; $i < $N; ++$i){
       //Conjugate again
       $amplitudes[$i]->imaginary = -$amplitudes[$i]->imaginary;
       // Scale
       $amplitudes[$i]->real *= $iN;
       $amplitudes[$i]->imaginary *= $iN;
   }
   return $amplitudes;

}


function FFT($amplitudes) {

   $N = count($amplitudes);
   if($N <= 1){
       return $amplitudes;
   }

   $hN = $N / 2;
   
   $even =  array_pad(array() , $hN, 0);
   $odd =  array_pad(array() , $hN, 0);
   for($i = 0; $i < $hN; ++$i){
       $even[$i] = $amplitudes[$i*2];
       $odd[$i] = $amplitudes[$i*2+1];
   }
   $even = FFT($even);
   $odd = FFT($odd);

   $a = -2*PI();
   for($k = 0; $k < $hN; ++$k){
       if(!($even[$k] instanceof Complex)){
           $even[$k] = new Complex($even[$k], 0);
       }
       
       if(!($odd[$k] instanceof Complex)){
           $odd[$k] = new Complex($odd[$k], 0);
       }
       $p = $k/$N;
       $t = new Complex(0, $a * $p);
       
       $t->ComplexExponential($t);
       $t->Multiply($odd[$k], $t);
       
       
       $amplitudes[$k] = $even[$k]->Add($t, $odd[$k]);
       $amplitudes[$k + $hN] = $even[$k]->Subtract($t, $even[$k]);
   }
   return $amplitudes;

}

function EchoSamples(&$samples){

   echo "Index\tReal\t\t\t\tImaginary" . PHP_EOL;
   foreach($samples as $key=>&$sample){
       echo  "$key\t" . number_format($sample->real, 13) . "\t\t\t\t" . number_format($sample->imaginary, 13) . PHP_EOL;
   }

}


// Input Amplitudes $time_amplitude_samples = array(1,1,1,1,0,0,0,0);


// echo input for reference echo 'Input '. PHP_EOL; echo "Index\tReal" . PHP_EOL; foreach($time_amplitude_samples as $key=>&$sample){

   echo  "$key\t" . number_format($sample, 13) . PHP_EOL;

} echo PHP_EOL;

// Do FFT and echo results echo 'FFT '. PHP_EOL; $frequency_amplitude_samples = FFT($time_amplitude_samples); EchoSamples($frequency_amplitude_samples); echo PHP_EOL;

// Do inverse FFT and echo results echo 'Inverse FFT '. PHP_EOL; $frequency_back_to_time_amplitude_samples = IFFT($frequency_amplitude_samples); EchoSamples($frequency_back_to_time_amplitude_samples); echo PHP_EOL;

</lang>


Output:
Input
Index   Real
0       1.0000000000000
1       1.0000000000000
2       1.0000000000000
3       1.0000000000000
4       0.0000000000000
5       0.0000000000000
6       0.0000000000000
7       0.0000000000000

FFT
Index   Real                            Imaginary
0       4.0000000000000                         0.0000000000000
1       1.0000000000000                         -2.4142135623731
2       0.0000000000000                         0.0000000000000
3       1.0000000000000                         -0.4142135623731
4       0.0000000000000                         0.0000000000000
5       1.0000000000000                         0.4142135623731
6       0.0000000000000                         0.0000000000000
7       1.0000000000000                         2.4142135623731

Inverse FFT
Index   Real                            Imaginary
0       1.0000000000000                         0.0000000000000
1       1.0000000000000                         0.0000000000000
2       1.0000000000000                         0.0000000000000
3       1.0000000000000                         0.0000000000000
4       0.0000000000000                         0.0000000000000
5       0.0000000000000                         0.0000000000000
6       0.0000000000000                         0.0000000000000
7       0.0000000000000                         0.0000000000000

PicoLisp

Works with: PicoLisp version 3.1.0.3

<lang PicoLisp># apt-get install libfftw3-dev

(scl 4)

(de FFTW_FORWARD . -1) (de FFTW_ESTIMATE . 64)

(de fft (Lst)

  (let
     (Len (length Lst)
        In (native "libfftw3.so" "fftw_malloc" 'N (* Len 16))
        Out (native "libfftw3.so" "fftw_malloc" 'N (* Len 16))
        P (native "libfftw3.so" "fftw_plan_dft_1d" 'N
           Len In Out FFTW_FORWARD FFTW_ESTIMATE ) )
     (struct In NIL (cons 1.0 (apply append Lst)))
     (native "libfftw3.so" "fftw_execute" NIL P)
     (prog1 (struct Out (make (do Len (link (1.0 . 2)))))
        (native "libfftw3.so" "fftw_destroy_plan" NIL P)
        (native "libfftw3.so" "fftw_free" NIL Out)
        (native "libfftw3.so" "fftw_free" NIL In) ) ) )</lang>

Test: <lang PicoLisp>(for R (fft '((1.0 0) (1.0 0) (1.0 0) (1.0 0) (0 0) (0 0) (0 0) (0 0)))

  (tab (6 8)
     (round (car R))
     (round (cadr R)) ) )</lang>
Output:
 4.000   0.000
 1.000  -2.414
 0.000   0.000
 1.000  -0.414
 0.000   0.000
 1.000   0.414
 0.000   0.000
 1.000   2.414

PL/I

<lang PL/I>test: PROCEDURE OPTIONS (MAIN, REORDER); /* Derived from Fortran Rosetta Code */

 /* In-place Cooley-Tukey FFT */

FFT: PROCEDURE (x) RECURSIVE;

  DECLARE  x(*) COMPLEX FLOAT (18);
  DECLARE  t    COMPLEX FLOAT (18);
  DECLARE ( N, Half_N ) FIXED BINARY (31);
  DECLARE ( i, j ) FIXED BINARY (31);
  DECLARE (even(*), odd(*)) CONTROLLED COMPLEX FLOAT (18);
  DECLARE pi FLOAT (18) STATIC INITIAL ( 3.14159265358979323E0);
  N = HBOUND(x);
  if N <= 1 THEN return;
  allocate odd((N+1)/2), even(N/2);
   /* divide */
  do j = 1 to N by 2; odd((j+1)/2) = x(j); end;
  do j = 2 to N by 2; even(j/2)    = x(j); end;
   /* conquer */
  call fft(odd);
  call fft(even);
   /* combine */
  half_N = N/2;
  do i=1 TO half_N;
     t = exp(COMPLEX(0, -2*pi*(i-1)/N))*even(i);
     x(i)        = odd(i) + t;
     x(i+half_N) = odd(i) - t;
  end;
  FREE odd, even;

END fft;


  DECLARE data(8)  COMPLEX FLOAT (18) STATIC INITIAL (
                   1, 1, 1, 1, 0, 0, 0, 0);
  DECLARE ( i ) FIXED BINARY (31);
  call fft(data);
  do i=1 TO 8;
     PUT SKIP LIST ( fixed(data(i), 25, 12) );
  end;

END test;</lang>

Output:
    4.000000000000+0.000000000000I    
    1.000000000000-2.414213562373I    
    0.000000000000+0.000000000000I    
    1.000000000000-0.414213562373I    
    0.000000000000+0.000000000000I    
    0.999999999999+0.414213562373I    
    0.000000000000+0.000000000000I    
    0.999999999999+2.414213562373I

PowerShell

<lang PowerShell>Function FFT($Arr){

   $Len = $Arr.Count
   If($Len -le 1){Return $Arr}
   $Len_Over_2 = [Math]::Floor(($Len/2))
   $Output  = New-Object System.Numerics.Complex[] $Len
   $EvenArr = @()
   $OddArr  = @()
   For($i = 0; $i -lt $Len; $i++){
       If($i % 2){
           $OddArr+=$Arr[$i]
       }Else{
           $EvenArr+=$Arr[$i]
       }
   }
   $Even = FFT($EvenArr)
   $Odd  = FFT($OddArr)
   
   For($i = 0; $i -lt $Len_Over_2; $i++){
       $Twiddle = [System.Numerics.Complex]::Exp([System.Numerics.Complex]::ImaginaryOne*[Math]::Pi*($i*-2/$Len))*$Odd[$i]
       
       $Output[$i]             = $Even[$i] + $Twiddle
       $Output[$i+$Len_Over_2] = $Even[$i] - $Twiddle
   }
   
   Return $Output

} </lang>

Output:
PS C:\> FFT((1,1,1,1,0,0,0,0))

Real          Imaginary        Magnitude              Phase
----          ---------        ---------              -----
   4                  0                4                  0
   1  -2.41421356237309 2.61312592975275  -1.17809724509617
   0                  0                0                  0
   1 -0.414213562373095 1.08239220029239 -0.392699081698724
   0                  0                0                  0
   1  0.414213562373095 1.08239220029239  0.392699081698724
   0                  0                0                  0
   1   2.41421356237309 2.61312592975275   1.17809724509617

Prolog

Translation of: Python

Note: Similar algorithmically to the python example.

Works with: SWI Prolog version Version 6.2.6 by Jan Wielemaker, University of Amsterdam

<lang prolog>:- dynamic twiddles/2. %_______________________________________________________________ % Arithemetic for complex numbers; only the needed rules add(cx(R1,I1),cx(R2,I2),cx(R,I)) :- R is R1+R2, I is I1+I2. sub(cx(R1,I1),cx(R2,I2),cx(R,I)) :- R is R1-R2, I is I1-I2. mul(cx(R1,I1),cx(R2,I2),cx(R,I)) :- R is R1*R2-I1*I2, I is R1*I2+R2*I1. polar_cx(Mag, Theta, cx(R, I)) :-  % Euler R is Mag * cos(Theta), I is Mag * sin(Theta). %___________________________________________________ % FFT Implementation. Note: K rdiv N is a rational number, % making the lookup in dynamic database predicate twiddles/2 very % efficient. Also, polar_cx/2 gets called only when necessary- in % this case (N=8), exactly 3 times: (where Tf=1/4, 1/8, or 3/8). tw(0,cx(1,0)) :- !.  % Calculate e^(-2*pi*k/N) tw(Tf, Cx) :- twiddles(Tf, Cx), !.  % dynamic match? tw(Tf, Cx) :- polar_cx(1.0, -2*pi*Tf, Cx), assert(twiddles(Tf, Cx)).

fftVals(N, Even, Odd, V0, V1) :-  % solves all V0,V1 for N,Even,Odd nth0(K,Even,E), nth0(K,Odd,O), Tf is K rdiv N, tw(Tf,Cx), mul(Cx,O,M), add(E,M,V0), sub(E,M,V1).

split([],[],[]). % split [[a0,b0],[a1,b1],...] into [a0,a1,...] and [b0,b1,...] split([[V0,V1]|T], [V0|T0], [V1|T1]) :- !, split(T, T0, T1).

fft([H], [H]). fft([H|T], List) :- length([H|T],N), findall(Ve, (nth0(I,[H|T],Ve),I mod 2 =:= 0), EL), !, fft(EL, Even), findall(Vo, (nth0(I,T,Vo),I mod 2 =:= 0),OL), !, fft(OL, Odd), findall([V0,V1],fftVals(N,Even,Odd,V0,V1),FFTVals),  % calc FFT split(FFTVals,L0,L1), append(L0,L1,List). %___________________________________________________ test :- D=[cx(1,0),cx(1,0),cx(1,0),cx(1,0),cx(0,0),cx(0,0),cx(0,0),cx(0,0)], time(fft(D,DRes)), writef('fft=['), P is 10^3, !, (member(cx(Ri,Ii), DRes), R is integer(Ri*P)/P, I is integer(Ii*P)/P, write(R), (I>=0, write('+'),fail;write(I)), write('j, '), fail; write(']'), nl). </lang>

Output:
 test.
% 681 inferences, 0.000 CPU in 0.001 seconds (0% CPU, Infinite Lips)
fft=[4+0j, 1-2.414j, 0+0j, 1-0.414j, 0+0j, 1+0.414j, 0+0j, 1+2.414j, ]
true.

Python

Python: Recursive

<lang python>from cmath import exp, pi

def fft(x):

   N = len(x)
   if N <= 1: return x
   even = fft(x[0::2])
   odd =  fft(x[1::2])
   T= [exp(-2j*pi*k/N)*odd[k] for k in range(N//2)]
   return [even[k] + T[k] for k in range(N//2)] + \
          [even[k] - T[k] for k in range(N//2)]

print( ' '.join("%5.3f" % abs(f)

               for f in fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])) )</lang>
Output:
4.000 2.613 0.000 1.082 0.000 1.082 0.000 2.613

Python: Using module numpy

<lang python>>>> from numpy.fft import fft >>> from numpy import array >>> a = array([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]) >>> print( ' '.join("%5.3f" % abs(f) for f in fft(a)) ) 4.000 2.613 0.000 1.082 0.000 1.082 0.000 2.613</lang>

R

The function "fft" is readily available in R <lang R>fft(c(1,1,1,1,0,0,0,0))</lang>

Output:
4+0.000000i 1-2.414214i 0+0.000000i 1-0.414214i 0+0.000000i 1+0.414214i 0+0.000000i 1+2.414214i

Racket

<lang racket>

  1. lang racket

(require math) (array-fft (array #[1. 1. 1. 1. 0. 0. 0. 0.])) </lang>

Output:
(fcarray
 #[4.0+0.0i
   1.0-2.414213562373095i
   0.0+0.0i
   1.0-0.4142135623730949i
   0.0+0.0i
   0.9999999999999999+0.4142135623730949i
   0.0+0.0i
   0.9999999999999997+2.414213562373095i])

Raku

(formerly Perl 6)

Works with: rakudo 2015-12

<lang perl6>sub fft {

   return @_ if @_ == 1;
   my @evn = fft( @_[0, 2 ... *] );
   my @odd = fft( @_[1, 3 ... *] ) Z*
   map &cis, (0, -tau / @_ ... *);
   return flat @evn »+« @odd, @evn »-« @odd;

}

.say for fft <1 1 1 1 0 0 0 0>;</lang>

Output:
4+0i
1-2.41421356237309i
0+0i
1-0.414213562373095i
0+0i
1+0.414213562373095i
0+0i
1+2.41421356237309i

For the fun of it, here is a purely functional version:

<lang perl6>sub fft {

   @_ == 1 ?? @_ !!
   fft(@_[0,2...*]) «+«
   fft(@_[1,3...*]) «*« map &cis, (0,-τ/@_...^-τ)

}</lang>

This particular version is numerically inaccurate though, because of the pi approximation. It is possible to fix it with the 'cisPi' function available in the TrigPi module:

<lang perl6>sub fft {

   use TrigPi;
   @_ == 1 ?? @_ !!
   fft(@_[0,2...*]) «+«
   fft(@_[1,3...*]) «*« map &cisPi, (0,-2/@_...^-2)

}</lang>

REXX

This REXX program is modeled after the   Run BASIC   version and is a   radix-2 DIC   (decimation-in-time)
form of the   Cooley-Turkey FFT   algorithm,   and as such, this simplified form assumes that the number of
data points is equal to an exact power of two.

Note that the REXX language doesn't have any higher math functions, such as the functions   COS   and   R2R
(cosine   and   reduce radians to a unit circle).

A normalization of radians function   (r2r)   has been included here, as well as the constant   pi.

This REXX program also adds zero values   if   the number of data points in the list doesn't exactly equal to a
power of two.   This is known as   zero-padding. <lang rexx>/*REXX program performs a fast Fourier transform (FFT) on a set of complex numbers. */ numeric digits length( pi() ) - length(.) /*limited by the PI function result. */ arg data /*ARG verb uppercases the DATA from CL.*/ if data= then data= 1 1 1 1 0 /*Not specified? Then use the default.*/ size=words(data); pad= left(, 5) /*PAD: for indenting and padding SAYs.*/

 do p=0  until  2**p>=size         ;   end      /*number of args exactly a power of 2? */
 do j=size+1 to 2**p;  data= data 0;   end      /*add zeroes to DATA 'til a power of 2.*/

size= words(data); ph= p % 2  ; call hdr /*╔═══════════════════════════╗*/

                       /* [↓] TRANSLATE allows I & J*/  /*║ Numbers in data can be in ║*/
        do j=0  for size                                /*║ seven formats:  real      ║*/
        _= translate( word(data, j+1), 'J', "I")        /*║                 real,imag ║*/
        parse  var  _    #.1.j    $  1     "," #.2.j  /*║                     ,imag ║*/
        if $=='J'  then parse var #.1.j #2.j "J" #.1.j  /*║                      nnnJ ║*/
                                                        /*║                      nnnj ║*/
          do m=1  for  2;      #.m.j= word(#.m.j 0, 1)  /*║                      nnnI ║*/
          end   /*m*/          /*omitted part?  [↑] */  /*║                      nnni ║*/
                                                        /*╚═══════════════════════════╝*/
        say pad ' FFT   in '     center(j+1, 7)     pad    fmt(#.1.j)     fmt(#.2.j, "i")
        end     /*j*/

say tran= pi()*2 / 2**p;  !.=0; hp= 2**p %2; A= 2**(p-ph); ptr= A; dbl= 1 say

        do p-ph;        halfPtr=ptr % 2
                    do i=halfPtr  by ptr  to A-halfPtr;  _= i - halfPtr;   !.i= !._ + dbl
                    end   /*i*/
        ptr= halfPtr;                     dbl= dbl + dbl
        end   /*p-ph*/
        do j=0  to 2**p%4;  cmp.j= cos(j*tran);      _= hp - j;            cmp._= -cmp.j
                                                     _= hp + j;            cmp._= -cmp.j
        end  /*j*/

B= 2**ph

        do i=0      for A;            q= i * B
            do j=0  for B;   h=q+j;   _= !.j*B+!.i;    if _<=h  then iterate
            parse value  #.1._  #.1.h  #.2._  #.2.h    with    #.1.h  #.1._  #.2.h  #.2._
            end   /*j*/                              /* [↑]  swap  two sets of values. */
        end       /*i*/

dbl= 1

        do p                    ;       w= hp % dbl
          do k=0   for dbl      ;      Lb= w * k            ;          Lh= Lb + 2**p % 4
            do j=0 for w        ;       a= j * dbl * 2 + k  ;           b=  a + dbl
            r= #.1.a;  i= #.2.a ;      c1= cmp.Lb * #.1.b   ;          c4= cmp.Lb * #.2.b
                                       c2= cmp.Lh * #.2.b   ;          c3= cmp.Lh * #.1.b
                                    #.1.a= r + c1 - c2      ;       #.2.a= i + c3 + c4
                                    #.1.b= r - c1 + c2      ;       #.2.b= i - c3 - c4
            end     /*j*/
          end       /*k*/
        dbl= dbl + dbl
        end         /*p*/

call hdr

        do z=0  for size
        say pad     " FFT  out "     center(z+1,7)    pad    fmt(#.1.z)    fmt(#.2.z,'j')
        end   /*z*/                             /*[↑] #s are shown with ≈20 dec. digits*/

exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ cos: procedure; parse arg x; q= r2r(x)**2; z=1; _=1; p=1 /*bare bones COS. */

      do k=2  by 2;  _=-_*q/(k*(k-1));  z=z+_;  if z=p  then return z;   p=z;  end  /*k*/

/*──────────────────────────────────────────────────────────────────────────────────────*/ fmt: procedure; parse arg y,j; y= y/1 /*prettifies complex numbers for output*/

    if abs(y) < '1e-'digits() %4  then y= 0;    if y=0 & j\==  then return 
    dp= digits()%3;  y= format(y, dp%6+1, dp);  if pos(.,y)\==0  then y= strip(y, 'T', 0)
    y=  strip(y, 'T', .);                       return left(y || j, dp)

/*──────────────────────────────────────────────────────────────────────────────────────*/ hdr: _=pad '   data    num' pad "  real─part  " pad pad '        imaginary─part       '

    say _;   say translate(_,  " "copies('═', 256),  " "xrange());                 return

/*──────────────────────────────────────────────────────────────────────────────────────*/ pi: return 3.1415926535897932384626433832795028841971693993751058209749445923078164062862 r2r: return arg(1) // ( pi() * 2 ) /*reduce the radians to a unit circle. */</lang> Programming note:   the numeric precision (decimal digits) is only restricted by the number of decimal digits in the  
pi   variable   (which is defined in the penultimate assignment statement in the REXX program.


output   when using the default inputs of:     1   1   1   1   0
         data      num         real─part                        imaginary─part       
      ══════════   ═══       ═════════════               ════════════════════════════
       FFT   in     1              1
       FFT   in     2              1
       FFT   in     3              1
       FFT   in     4              1
       FFT   in     5              0
       FFT   in     6              0
       FFT   in     7              0
       FFT   in     8              0


         data      num         real─part                        imaginary─part       
      ══════════   ═══       ═════════════               ════════════════════════════
       FFT  out     1              4
       FFT  out     2              1                        -2.4142135623730950488
       FFT  out     3              0
       FFT  out     4              1                        -0.4142135623730950488
       FFT  out     5              0
       FFT  out     6              1                         0.4142135623730950488
       FFT  out     7              0
       FFT  out     8              1                         2.4142135623730950488

Ruby

<lang ruby>def fft(vec)

 return vec if vec.size <= 1
 evens_odds = vec.partition.with_index{|_,i| i.even?}
 evens, odds = evens_odds.map{|even_odd| fft(even_odd)*2} 
 evens.zip(odds).map.with_index do |(even, odd),i|
   even + odd * Math::E ** Complex(0, -2 * Math::PI * i / vec.size)
 end

end

fft([1,1,1,1,0,0,0,0]).each{|c| puts "%9.6f %+9.6fi" % c.rect}</lang>

Output:
 4.000000 +0.000000i
 1.000000 -2.414214i
-0.000000 -0.000000i
 1.000000 -0.414214i
 0.000000 -0.000000i
 1.000000 +0.414214i
 0.000000 -0.000000i
 1.000000 +2.414214i

Run BASIC

<lang runbasic>cnt = 8 sig = int(log(cnt) /log(2) +0.9999)

pi = 3.14159265 real1 = 2^sig

real = real1 -1 real2 = int(real1 / 2) real4 = int(real1 / 4) real3 = real4 +real2

dim rel(real1) dim img(real1) dim cmp(real3)

for i = 0 to cnt -1

   read rel(i)
   read img(i)

next i

data 1,0, 1,0, 1,0, 1,0, 0,0, 0,0, 0,0, 0,0

sig2 = int(sig / 2) sig1 = sig -sig2 cnt1 = 2^sig1 cnt2 = 2^sig2

dim v(cnt1 -1) v(0) = 0 dv = 1 ptr = cnt1

for j = 1 to sig1

   hlfPtr = int(ptr / 2)
   pt     = cnt1 - hlfPtr
   for i = hlfPtr to pt step ptr
       v(i) = v(i -hlfPtr) + dv
   next i
   dv = dv + dv
   ptr = hlfPtr

next j

k = 2 *pi /real1

for x = 0 to real4

   cmp(x)         = cos(k *x)
   cmp(real2 - x) = 0 - cmp(x)
   cmp(real2 + x) = 0 - cmp(x)

next x

print "fft: bit reversal"

for i = 0 to cnt1 -1

   ip = i *cnt2
   for j = 0 to cnt2 -1
       h = ip +j
       g = v(j) *cnt2 +v(i)
       if g >h then 
               temp   = rel(g)
               rel(g) = rel(h)
               rel(h) = temp
               temp   = img(g)
               img(g) = img(h)
               img(h) = temp
        end if
   next j

next i

t = 1 for stage = 1 to sig

   print "  stage:- "; stage
   d = int(real2 / t)
   for ii = 0 to t -1
       l   = d *ii
       ls  = l +real4
       for i = 0 to d -1
           a      = 2 *i *t +ii
           b      = a +t
           f1     = rel(a)
           f2     = img(a)
           cnt1   = cmp(l)  *rel(b)
           cnt2   = cmp(ls) *img(b)
           cnt3   = cmp(ls) *rel(b)
           cnt4   = cmp(l)  *img(b)
           rel(a) = f1 + cnt1 - cnt2
           img(a) = f2 + cnt3 + cnt4
           rel(b) = f1 - cnt1 + cnt2
           img(b) = f2 - cnt3 - cnt4
       next i
   next ii
   t = t +t

next stage

print " Num real imag" for i = 0 to real

   if abs(rel(i)) <10^-5 then rel(i) = 0
   if abs(img(i)) <10^-5 then img(i) = 0
   print "   "; i;"   ";using("##.#",rel(i));"    ";img(i)

next i end</lang>

  Num   real   imag
   0    4.0    0
   1    1.0    -2.41421356
   2    0.0    0
   3    1.0    -0.414213565
   4    0.0    0
   5    1.0    0.414213562
   6    0.0    0
   7    1.0    2.41421356

Rust

Translation of: C

<lang rust>extern crate num; use num::complex::Complex; use std::f64::consts::PI;

const I: Complex<f64> = Complex { re: 0.0, im: 1.0 };

pub fn fft(input: &[Complex<f64>]) -> Vec<Complex<f64>> {

   fn fft_inner(
       buf_a: &mut [Complex<f64>],
       buf_b: &mut [Complex<f64>],
       n: usize,    // total length of the input array
       step: usize, // precalculated values for t
   ) {
       if step >= n {
           return;
       }
       fft_inner(buf_b, buf_a, n, step * 2);
       fft_inner(&mut buf_b[step..], &mut buf_a[step..], n, step * 2);
       // create a slice for each half of buf_a:
       let (left, right) = buf_a.split_at_mut(n / 2);
       for i in (0..n).step_by(step * 2) {
           let t = (-I * PI * (i as f64) / (n as f64)).exp() * buf_b[i + step];
           left[i / 2] = buf_b[i] + t;
           right[i / 2] = buf_b[i] - t;
       }
   }
   // round n (length) up to a power of 2:
   let n_orig = input.len();
   let n = n_orig.next_power_of_two();
   // copy the input into a buffer:
   let mut buf_a = input.to_vec();
   // right pad with zeros to a power of two:
   buf_a.append(&mut vec![Complex { re: 0.0, im: 0.0 }; n - n_orig]);
   // alternate between buf_a and buf_b to avoid allocating a new vector each time:
   let mut buf_b = buf_a.clone();
   fft_inner(&mut buf_a, &mut buf_b, n, 1);
   buf_a

}

fn show(label: &str, buf: &[Complex<f64>]) {

   println!("{}", label);
   let string = buf
       .into_iter()
       .map(|x| format!("{:.4}{:+.4}i", x.re, x.im))
       .collect::<Vec<_>>()
       .join(", ");
   println!("{}", string);

}

fn main() {

   let input: Vec<_> = [1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0]
       .into_iter()
       .map(|x| Complex::from(x))
       .collect();
   show("input:", &input);
   let output = fft(&input);
   show("output:", &output);

}</lang>

Output:
input:
1.0000+0.0000i, 1.0000+0.0000i, 1.0000+0.0000i, 1.0000+0.0000i, 0.0000+0.0000i, 0.0000+0.0000i, 0.0000+0.0000i, 0.0000+0.0000i
output:
4.0000+0.0000i, 1.0000-2.4142i, 0.0000+0.0000i, 1.0000-0.4142i, 0.0000+0.0000i, 1.0000+0.4142i, 0.0000+0.0000i, 1.0000+2.4142i

Scala

Library: Scala
Works with: Scala version 2.10.4

Imports and Complex arithmetic: <lang Scala>import scala.math.{ Pi, cos, sin, cosh, sinh, abs }

case class Complex(re: Double, im: Double) {

   def +(x: Complex): Complex = Complex(re + x.re, im + x.im)
   def -(x: Complex): Complex = Complex(re - x.re, im - x.im)
   def *(x: Double):  Complex = Complex(re * x, im * x)
   def *(x: Complex): Complex = Complex(re * x.re - im * x.im, re * x.im + im * x.re)
   def /(x: Double):  Complex = Complex(re / x, im / x)
   override def toString(): String = {
       val a = "%1.3f" format re
       val b = "%1.3f" format abs(im)
       (a,b) match {
           case (_, "0.000") => a
           case ("0.000", _) => b + "i"
           case (_, _) if im > 0 => a + " + " + b + "i"
           case (_, _) => a + " - " + b + "i"
       }
   }

}

def exp(c: Complex) : Complex = {

   val r = (cosh(c.re) + sinh(c.re))
   Complex(cos(c.im), sin(c.im)) * r

}</lang>

The FFT definition itself: <lang Scala>def _fft(cSeq: Seq[Complex], direction: Complex, scalar: Int): Seq[Complex] = {

   if (cSeq.length == 1) {
       return cSeq
   }
   val n = cSeq.length
   assume(n % 2 == 0, "The Cooley-Tukey FFT algorithm only works when the length of the input is even.")
       
   val evenOddPairs = cSeq.grouped(2).toSeq
   val evens = _fft(evenOddPairs map (_(0)), direction, scalar)
   val odds  = _fft(evenOddPairs map (_(1)), direction, scalar)
   def leftRightPair(k: Int): Pair[Complex, Complex] = {
       val base = evens(k) / scalar
       val offset = exp(direction * (Pi * k / n)) * odds(k) / scalar
       (base + offset, base - offset)
   }
   val pairs = (0 until n/2) map leftRightPair
   val left  = pairs map (_._1)
   val right = pairs map (_._2)
   left ++ right

}

def fft(cSeq: Seq[Complex]): Seq[Complex] = _fft(cSeq, Complex(0, 2), 1) def rfft(cSeq: Seq[Complex]): Seq[Complex] = _fft(cSeq, Complex(0, -2), 2)</lang>

Usage: <lang Scala>val data = Seq(Complex(1,0), Complex(1,0), Complex(1,0), Complex(1,0),

              Complex(0,0), Complex(0,2), Complex(0,0), Complex(0,0))

println(fft(data)) println(rfft(fft(data)))</lang>

Output:
Vector(4.000 + 2.000i, 2.414 + 1.000i, -2.000, 2.414 + 1.828i, 2.000i, -0.414 + 1.000i, 2.000, -0.414 - 3.828i)
Vector(1.000, 1.000, 1.000, 1.000, 0.000, 2.000i, 0.000, 0.000)

Scilab

Scilab has a builtin FFT function.

<lang Scilab>fft([1,1,1,1,0,0,0,0]')</lang>

SequenceL

<lang sequencel>import <Utilities/Complex.sl>; import <Utilities/Math.sl>; import <Utilities/Sequence.sl>;

fft(x(1)) :=

   let
       n := size(x);
       
       top := fft(x[range(1,n-1,2)]);
       bottom := fft(x[range(2,n,2)]);
       
       d[i] := makeComplex(cos(2.0*pi*i/n), -sin(2.0*pi*i/n)) foreach i within 0...(n / 2 - 1);
       
       z := complexMultiply(d, bottom);
   in
       x when n <= 1
   else
       complexAdd(top,z) ++ complexSubtract(top,z);</lang>
Output:
cmd:>fft(makeComplex([1,1,1,1,0,0,0,0],0))
[(Imaginary:0.00000000,Real:4.00000000),(Imaginary:-2.41421356,Real:1.00000000),(Imaginary:0.00000000,Real:0.00000000),(Imaginary:-0.41421356,Real:1.00000000),(Imaginary:0.00000000,Real:0.00000000),(Imaginary:0.41421356,Real:1.00000000),(Imaginary:0.00000000,Real:0.00000000),(Imaginary:2.41421356,Real:1.00000000)]

Sidef

Translation of: Perl

<lang ruby>func fft(arr) {

   arr.len == 1 && return arr
   var evn = fft([arr[^arr -> grep { .is_even }]])
   var odd = fft([arr[^arr -> grep { .is_odd  }]])
   var twd = (Num.tau.i / arr.len)
   ^odd -> map {|n| odd[n] *= ::exp(twd * n)}
   (evn »+« odd) + (evn »-« odd)

}

var cycles = 3 var sequence = 0..15 var wave = sequence.map {|n| ::sin(n * Num.tau / sequence.len * cycles) } say "wave:#{wave.map{|w| '%6.3f' % w }.join(' ')}" say "fft: #{fft(wave).map { '%6.3f' % .abs }.join(' ')}"</lang>

Output:
wave: 0.000  0.924  0.707 -0.383 -1.000 -0.383  0.707  0.924  0.000 -0.924 -0.707  0.383  1.000  0.383 -0.707 -0.924
fft:  0.000  0.000  0.000  8.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  8.000  0.000  0.000

Stata

Mata

See the fft function in Mata help, and in the FAQ: How can I calculate the Fourier coefficients of a discretely sampled function in Stata?.

<lang>. mata

a=1,2,3,4
fft(a)
            1         2         3         4
   +-----------------------------------------+
 1 |       10   -2 - 2i        -2   -2 + 2i  |
   +-----------------------------------------+
end</lang>

fft command

Stata can also compute FFT using the undocumented fft command. Here is an example showing its syntax. A time variable must have been set prior to calling this command. Notice that in order to get the same result as Mata's fft() function, in both the input and the output variables the imaginary part must be passed first.

<lang stata>clear set obs 4 gen t=_n gen x=_n gen y=0 tsset t fft y x, gen(v u) list u v, noobs</lang>

Output

  +-----------------+
  |  u            v |
  |-----------------|
  | 10            0 |
  | -2           -2 |
  | -2   -2.449e-16 |
  | -2            2 |
  +-----------------+

Swift

Translation of: Kotlin

<lang swift>import Foundation import Numerics

typealias Complex = Numerics.Complex<Double>

extension Complex {

 var exp: Complex {
   Complex(cos(imaginary), sin(imaginary)) * Complex(cosh(real), sinh(real))
 }
 var pretty: String {
   let fmt = { String(format: "%1.3f", $0) }
   let re = fmt(real)
   let im = fmt(abs(imaginary))
   if im == "0.000" {
     return re
   } else if re == "0.000" {
     return im
   } else if imaginary > 0 {
     return re + " + " + im + "i"
   } else {
     return re + " - " + im +  "i"
   }
 }

}

func fft(_ array: [Complex]) -> [Complex] { _fft(array, direction: Complex(0.0, 2.0), scalar: 1) } func rfft(_ array: [Complex]) -> [Complex] { _fft(array, direction: Complex(0.0, -2.0), scalar: 2) }

private func _fft(_ arr: [Complex], direction: Complex, scalar: Double) -> [Complex] {

 guard arr.count > 1 else {
   return arr
 }
 let n = arr.count
 let cScalar = Complex(scalar, 0)
 precondition(n % 2 == 0, "The Cooley-Tukey FFT algorithm only works when the length of the input is even.")
 var (evens, odds) = arr.lazy.enumerated().reduce(into: ([Complex](), [Complex]()), {res, cur in
   if cur.offset & 1 == 0 {
     res.0.append(cur.element)
   } else {
     res.1.append(cur.element)
   }
 })
 evens = _fft(evens, direction: direction, scalar: scalar)
 odds = _fft(odds, direction: direction, scalar: scalar)
 let (left, right) = (0 ..< n / 2).map({i -> (Complex, Complex) in
   let offset = (direction * Complex((.pi * Double(i) / Double(n)), 0)).exp * odds[i] / cScalar
   let base = evens[i] / cScalar
   return (base + offset, base - offset)
 }).reduce(into: ([Complex](), [Complex]()), {res, cur in
   res.0.append(cur.0)
   res.1.append(cur.1)
 })
 
 return left + right

}

let dat = [Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0), Complex(1.0, 0.0),

          Complex(0.0, 0.0), Complex(0.0, 2.0), Complex(0.0, 0.0), Complex(0.0, 0.0)]

print(fft(dat).map({ $0.pretty })) print(rfft(f).map({ $0.pretty }))</lang>

Output:
["4.000 + 2.000i", "2.414 + 1.000i", "-2.000", "2.414 + 1.828i", "2.000", "-0.414 + 1.000i", "2.000", "-0.414 - 3.828i"]
["1.000", "1.000", "1.000", "1.000", "0.000", "2.000", "0.000", "0.000"]

SystemVerilog

Translation of: Java

Differently from the java implementation I have not implemented a complex type. I think it would worth only if the simulators supported operator overloading, since it is not the case I prefer to expand the complex operations, that are trivial for any electrical engineer to understand :D

I could have written a more beautiful code by using non-blocking assignments in the bit_reverse_order function, but it could not be coded in a function, so FFT could not be implemented as a function as well.

<lang SystemVerilog>

package math_pkg;

 // Inspired by the post
 // https://community.cadence.com/cadence_blogs_8/b/fv/posts/create-a-sine-wave-generator-using-systemverilog
 // import functions directly from C library
 //import dpi task      C Name = SV function name
 import "DPI" pure function real cos (input real rTheta);
 import "DPI" pure function real sin(input real y);
 import "DPI" pure function real atan2(input real y, input real x);

endpackage : math_pkg


// Encapsulates the functions in a parameterized class // The FFT is implemented using floating point arithmetic (systemverilog real) // Complex values are represented as a real vector [1:0], the index 0 is the real part // and the index 1 is the imaginary part. class fft_fp #(

 parameter LOG2_NS = 7,
 parameter NS = 1<<LOG2_NS

);


 static function void bit_reverse_order(input real buffer_in[0:NS-1][1:0], output real buffer[0:NS-1][1:0]);
 begin
   for(reg [LOG2_NS:0] j = 0; j < NS; j = j + 1) begin
     reg [LOG2_NS-1:0] ij;
     ij = {<<{j[LOG2_NS-1:0]}}; // Right to left streaming
     buffer[j][0] = buffer_in[ij][0];
     buffer[j][1] = buffer_in[ij][1];
   end    
 end
 endfunction
 // SystemVerilog FFT implementation translated from Java
 static function void transform(input real buffer_in[0:NS-1][1:0], output real buffer[0:NS-1][1:0]);
 begin
   static real pi = math_pkg::atan2(0.0, -1.0);
   bit_reverse_order(buffer_in, buffer);
   for(int N = 2; N <= NS; N = N << 1) begin
     for(int i = 0; i < NS; i = i + N) begin
       for(int k =0; k < N/2; k = k + 1) begin
         int evenIndex;
         int oddIndex;
         real theta;
         real wr, wi;
         real zr, zi;
         evenIndex = i + k;
         oddIndex  = i + k + (N/2);
         theta     = (-2.0*pi*k/real'(N));
         // Call to the DPI C functions 
         // (it could be memorized to save some calls but I dont think it worthes)
         // w = exp(-2j*pi*k/N);
         wr = math_pkg::cos(theta); 
         wi = math_pkg::sin(theta);
         // x = w * buffer[oddIndex]
         zr = buffer[oddIndex][0] * wr - buffer[oddIndex][1] * wi;
         zi = buffer[oddIndex][0] * wi + buffer[oddIndex][1] * wr;
         // update oddIndex before evenIndex 
         buffer[ oddIndex][0] = buffer[evenIndex][0] - zr;
         buffer[ oddIndex][1] = buffer[evenIndex][1] - zi;
         // because evenIndex is in the rhs
         buffer[evenIndex][0] = buffer[evenIndex][0] + zr;
         buffer[evenIndex][1] = buffer[evenIndex][1] + zi;
       end
     end
   end
 end
 endfunction
 // Implements the inverse FFT using the following identity
 // ifft(x) = conj(fft(conj(x))/NS;
 static function void invert(input real buffer_in[0:NS-1][1:0], output real buffer[0:NS-1][1:0]);
   real tmp[0:NS-1][1:0];
 begin
   // Conjugates the input
   for(int i = 0; i < NS; i = i + 1) begin
     tmp[i][0] = buffer_in[i][0];
     tmp[i][1] = -buffer_in[i][1];
   end
   transform(tmp, buffer);
   // Conjugate and scale the output
   for(int i = 0; i < NS; i = i + 1) begin
     buffer[i][0] = buffer[i][0]/NS;
     buffer[i][1] = -buffer[i][1]/NS;
   end
 end
 endfunction

endclass </lang>

Now let's perform the standard test <lang SystemVerilog> /// @Author: Alexandre Felipe (o.alexandre.felipe@gmail.com) /// @Date: 2018-Jan-25 /// module fft_model_sanity;

 initial begin
   real x[0:7][1:0]; // input data
   real X[0:7][1:0]; // transformed data
   real y[0:7][1:0]; // inverted data
   for(int i = 0; i < 8; i = i + 1)x[i][0] = 0.0;
   for(int i = 4; i < 8; i = i + 1)x[i][1] = 0.0;
   for(int i = 0; i < 4; i = i + 1)x[i][0] = 1.0;
   fft_fp #(.LOG2_NS(3), .NS(8))::transform(x, X);
   $display("Direct FFT");
   for(int i = 0; i < 8; i = i + 1) begin
     $display("(%f, %f)", X[i][0], X[i][1]);
   end
   $display("Inverse FFT");
   fft_fp #(.LOG2_NS(3), .NS(8))::invert(X, y);
   for(int i = 0; i < 8; i = i + 1) begin
     $display("(%f, %f)", y[i][0], y[i][1]);
   end
 end

endmodule </lang> By running the sanity test it outputs the following

Direct FFT
(4.000000, 0.000000)
(1.000000, -2.414214)
(0.000000, 0.000000)
(1.000000, -0.414214)
(0.000000, 0.000000)
(1.000000, 0.414214)
(0.000000, 0.000000)
(1.000000, 2.414214)
Inverse FFT
(1.000000, 0.000000)
(1.000000, -0.000000)
(1.000000, 0.000000)
(1.000000, -0.000000)
(0.000000, 0.000000)
(0.000000, 0.000000)
(0.000000, -0.000000)
(0.000000, 0.000000)

Giving some indication that the test is correct.

A more reliable test is to implement the Discrete Fourier Transform by its definition and compare the results obtained by FFT and by definition evaluation. For that let's create a class with a random data vector, and each time the vector is randomized the FFT is calculated and the output is compared by the result obtained by the definition.

<lang SystemVerilog> /// @Author: Alexandre Felipe (o.alexandre.felipe@gmail.com) /// @Date: 2018-Jan-25 /// class fft_definition_checker #(

 parameter LOG2_NS = 3,
 parameter NS = 1<<LOG2_NS,
 parameter NB = 10);
   rand logic [NB:0] x_bits[0:NS-1][1:0];
   static real TWO_PI = 2.0*math_pkg::atan2(0.0, -1.0);
   real w[0:NS-1][1:0];
   function new;
     foreach(w[i]) begin
       w[i][0] = math_pkg::cos(TWO_PI * i / real'(NS));
       w[i][1] =-math_pkg::sin(TWO_PI * i / real'(NS));
     end
   endfunction
   function void post_randomize;
      real x[0:NS-1][1:0];
      real X[0:NS-1][1:0];
      real X_ref[0:NS-1][1:0];
      real errorEnergy;
   begin
     // Convert randomized binary numbers to real (floating point)
     foreach(x_bits[i]) begin
       x[i][0] = x_bits[i][0];
       x[i][1] = x_bits[i][1];
     end
     
     ////               START THE MAGIC HERE           ////
     fft_fp #(.LOG2_NS(LOG2_NS), .NS(NS))::transform(x, X);
     ////                 END OF THE MAGIC            //// 


     /// Calculate X_ref, the discrete Fourier transform by the definition ///
     foreach(X_ref[k]) begin
       X_ref[k] = '{0.0, 0.0};
       foreach(x[i]) begin
         X_ref[k][0] = X_ref[k][0] + x[i][0] * w[(i*k) % NS][0] - x[i][1] * w[(i*k) % NS][1];
         X_ref[k][1] = X_ref[k][1] + x[i][0] * w[(i*k) % NS][1] + x[i][1] * w[(i*k) % NS][0];
       end
     end
     
     // Measure the error
     errorEnergy = 0.0;
     foreach(X[k]) begin
       errorEnergy = errorEnergy + (X_ref[k][0] - X[k][0]) * (X_ref[k][0] - X[k][0]);
       errorEnergy = errorEnergy + (X_ref[k][1] - X[k][1]) * (X_ref[k][1] - X[k][1]);
     end
     $display("FFT of %d integers %d bits (error @ %g)", NS, NB, errorEnergy / real'(NS));
   end
   endfunction

endclass </lang>

Now let's create a code that tests the FFT with random inputs for different sizes. Uses a generate block since the number of samples is a parameter and must be defined at compile time. <lang SystemVerilog> /// @Author: Alexandre Felipe (o.alexandre.felipe@gmail.com) /// @Date: 2018-Jan-25 /// module fft_test_by_definition;

 genvar LOG2_NS;
 generate for(LOG2_NS = 3; LOG2_NS < 7; LOG2_NS = LOG2_NS + 1) begin
   initial begin
     fft_definition_checker #(.NB(10), .LOG2_NS(LOG2_NS), .NS(1<<LOG2_NS)) chkInst;
     chkInst = new;
     repeat(5) assert(chkInst.randomize()); // randomize and check the outputs
   end
 end
 endgenerate

endmodule </lang>

Simulating the fft_test_by_definition we get the following output:

FFT of           8 integers          10 bits (error @ 3.11808e-25)
FFT of           8 integers          10 bits (error @ 7.86791e-25)
FFT of           8 integers          10 bits (error @ 7.26776e-25)
FFT of           8 integers          10 bits (error @ 2.75458e-25)
FFT of           8 integers          10 bits (error @ 4.83061e-25)
FFT of          16 integers          10 bits (error @ 1.73615e-24)
FFT of          16 integers          10 bits (error @ 3.00742e-24)
FFT of          16 integers          10 bits (error @ 1.70818e-24)
FFT of          16 integers          10 bits (error @ 2.47367e-24)
FFT of          16 integers          10 bits (error @ 2.13661e-24)
FFT of          32 integers          10 bits (error @ 9.52803e-24)
FFT of          32 integers          10 bits (error @ 1.19533e-23)
FFT of          32 integers          10 bits (error @ 6.50223e-24)
FFT of          32 integers          10 bits (error @ 8.05807e-24)
FFT of          32 integers          10 bits (error @ 7.07355e-24)
FFT of          64 integers          10 bits (error @ 3.54266e-23)
FFT of          64 integers          10 bits (error @ 2.952e-23)
FFT of          64 integers          10 bits (error @ 3.41618e-23)
FFT of          64 integers          10 bits (error @ 3.66977e-23)
FFT of          64 integers          10 bits (error @ 3.4069e-23)

As expected the error is small and it increases with the number of terms in the FFT.

Tcl

Library: Tcllib (Package: math::constants)
Library: Tcllib (Package: math::fourier)

<lang tcl>package require math::constants package require math::fourier

math::constants::constants pi

  1. Helper functions

proc wave {samples cycles} {

   global pi
   set wave {}
   set factor [expr {2*$pi * $cycles / $samples}]
   for {set i 0} {$i < $samples} {incr i} {

lappend wave [expr {sin($factor * $i)}]

   }
   return $wave

} proc printwave {waveName {format "%7.3f"}} {

   upvar 1 $waveName wave
   set out [format "%-6s" ${waveName}:]
   foreach value $wave {

append out [format $format $value]

   }
   puts $out

} proc waveMagnitude {wave} {

   set out {}
   foreach value $wave {

lassign $value re im lappend out [expr {hypot($re, $im)}]

   }
   return $out

}

set wave [wave 16 3] printwave wave

  1. Uses FFT if input length is power of 2, and a less efficient algorithm otherwise

set fft [math::fourier::dft $wave]

  1. Convert to magnitudes for printing

set fft2 [waveMagnitude $fft] printwave fft2</lang>

Output:
wave:   0.000  0.924  0.707 -0.383 -1.000 -0.383  0.707  0.924  0.000 -0.924 -0.707  0.383  1.000  0.383 -0.707 -0.924
fft2:   0.000  0.000  0.000  8.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  0.000  8.000  0.000  0.000

Ursala

The fftw library is callable from Ursala using the syntax ..u_fw_dft for a one dimensional forward discrete Fourier transform operating on a list of complex numbers. Ordinarily the results are scaled so that the forward and reverse transforms are inverses of each other, but additional scaling can be performed as shown below to conform to convention. <lang ursala>#import nat

  1. import flo

f = <1+0j,1+0j,1+0j,1+0j,0+0j,0+0j,0+0j,0+0j> # complex sequence of 4 1's and 4 0's

g = c..mul^*D(sqrt+ float+ length,..u_fw_dft) f # its fft

  1. cast %jLW

t = (f,g)</lang>

Output:
(
   <
      1.000e+00+0.000e+00j,
      1.000e+00+0.000e+00j,
      1.000e+00+0.000e+00j,
      1.000e+00+0.000e+00j,
      0.000e+00+0.000e+00j,
      0.000e+00+0.000e+00j,
      0.000e+00+0.000e+00j,
      0.000e+00+0.000e+00j>,
   <
      4.000e+00+0.000e+00j,
      1.000e+00-2.414e+00j,
      0.000e+00+0.000e+00j,
      1.000e+00-4.142e-01j,
      0.000e+00+0.000e+00j,
      1.000e+00+4.142e-01j,
      0.000e+00+0.000e+00j,
      1.000e+00+2.414e+00j>)

zkl

<lang zkl>var [const] GSL=Import("zklGSL"); // libGSL (GNU Scientific Library) v:=GSL.ZVector(8).set(1,1,1,1); GSL.FFT(v).toList().concat("\n").println(); // in place</lang>

Output:
(4.00+0.00i)
(1.00-2.41i)
(0.00+0.00i)
(1.00-0.41i)
(0.00+0.00i)
(1.00+0.41i)
(0.00+0.00i)
(1.00+2.41i)