# Define a primitive data type

Define a primitive data type
You are encouraged to solve this task according to the task description, using any language you may know.

Demonstrate how to define a type that behaves like an integer but has a lowest valid value of 1 and a highest valid value of 10. Include all bounds checking you need to write, or explain how the compiler or interpreter creates those bounds checks for you.

## Contents

`type My_Type is range 1..10;`

The compiler identifies the range of valid values from the range specification 1..10 and automatically builds in bounds checking where it is needed. The compiler is smart enough to omit bounds checking when it is not needed.

`A : My_Type := 3;B : My_Type := A;`

The compiler will omit bounds checking for the assignment of A to B above because both values are of My_Type. A cannot hold a value outside the range of 1..10, therefore the assignment cannot produce an out of bounds result.

## ALGOL 68

### Built in or standard distribution routines

Bounded data types are not part of standard ALGOL 68, but can be implemented.

### Implementation example

Works with: ALGOL 68 version Standard - no extensions to language used
Works with: ALGOL 68G version Any - tested with release mk15-0.8b.fc9.i386
` # assume max int <= ABS - max negative int # INT max bounded = ( LENG max int * max int > long max int | ENTIER sqrt(max int) | max int );  MODE RANGE = STRUCT(INT lwb, upb); MODE BOUNDED = STRUCT(INT value, RANGE range); FORMAT bounded repr = \$g"["g(-0)":"g(-0)"]"\$;  # Define some useful operators for looping over ranges # OP LWB = (RANGE range)INT: lwb OF range,    UPB = (RANGE range)INT: upb OF range,    LWB = (BOUNDED bounded)INT: lwb OF range OF bounded,    UPB = (BOUNDED bounded)INT: upb OF range OF bounded;  PROC raise exception = ([]STRING args)VOID: (   put(stand error, ("exception: ",args, newline));   stop );  PROC raise not implemented error := ([]STRING args)VOID: raise exception(args); PROC raise bounds error := ([]STRING args)VOID: raise exception(args);  PRIO MIN=9, MAX=9; OP MIN = ([]INT list)INT: (    INT out:= list[LWB list];   FOR index FROM LWB list+1 TO UPB list DO IF list[index]<out THEN out :=list[index] FI OD;   out ); OP MAX = ([]INT list)INT: (    INT out:= list[LWB list];   FOR index FROM LWB list+1 TO UPB list DO IF list[index]>out THEN out :=list[index] FI OD;   out );  PRIO ASSERTIN = 6; OP ASSERTIN = (INT result, []RANGE range)BOUNDED: (     BOUNDED out = (result, (MAX lwb OF range, MIN upb OF range));     IF value OF out < lwb OF range OF out THEN       raise bounds error(("out of bounds", whole(result, int width)," < [",whole(MAX lwb OF range, int width),":]"))     ELIF value OF out > upb OF range OF out THEN       raise bounds error(("out of bounds", whole(result, int width)," > [:",whole(MIN upb OF range, int width),"]"))     FI;     out   ),   ASSERTIN = (LONG INT result, []RANGE range)BOUNDED: (     STRUCT (LONG INT value, RANGE range) out = (result, (MAX lwb OF range, MIN upb OF range));     IF value OF out < lwb OF range OF out THEN       raise bounds error(("out of bounds", whole(result, long int width)," < [",whole(MAX lwb OF range, int width),":]"))     ELIF value OF out > upb OF range OF out THEN       raise bounds error(("out of bounds", whole(result, long int width)," > [:",whole(MIN upb OF range, int width),"]"))     FI;     (SHORTEN value OF out, range OF out)   ),   ASSERTIN = (INT result, []BOUNDED bounds)BOUNDED: result ASSERTIN range OF bounds,   ASSERTIN = (LONG INT result, []BOUNDED bounds)BOUNDED: result ASSERTIN range OF bounds;  INT half max int = max int OVER 2; INT sqrt max int = ENTIER sqrt (max int);  OP + = (BOUNDED a, b)BOUNDED:           IF ABS value OF a < half max int AND ABS value OF b < half max int THEN            value OF a + value OF b ASSERTIN []BOUNDED(a,b)          ELSE            LENG value OF a + value OF b ASSERTIN []BOUNDED(a,b)          FI,    - = (BOUNDED a, b)BOUNDED: value OF a + -value OF b ASSERTIN []BOUNDED(a,b),    * = (BOUNDED a, b)BOUNDED:           IF ABS value OF a < sqrt max int AND ABS value OF b < sqrt max int THEN            value OF a * value OF b ASSERTIN []BOUNDED(a,b)          ELSE            LENG value OF a * value OF b ASSERTIN []BOUNDED(a,b)          FI,    /  = (BOUNDED a, b)REAL: value OF a / value OF b,    %  = (BOUNDED a, b)BOUNDED: value OF a % value OF b ASSERTIN []BOUNDED(a,b),    %* = (BOUNDED a, b)BOUNDED: value OF a %* value OF b ASSERTIN []BOUNDED(a,b),    ** = (BOUNDED a, INT exponent)BOUNDED: value OF a ** exponent ASSERTIN []BOUNDED(a);  OP OVER = (INT value, RANGE range)BOUNDED:   IF ABS lwb OF range > max bounded THEN     raise bounds error(("out of bounds, ABS", whole(lwb OF range, int width)," > [:",whole(max bounded, int width),"]"));     SKIP   ELIF ABS upb OF range > max bounded THEN     raise bounds error(("out of bounds, ABS", whole(upb OF range, int width)," > [:",whole(max bounded, int width),"]"));     SKIP   ELSE     value ASSERTIN []RANGE(range)   FI;  OP INTINIT = (BOUNDED range)REAL: value OF range;  OP <  = (BOUNDED a, b)BOOL: value OF a < value OF b,    >  = (BOUNDED a, b)BOOL: value OF a > value OF b,    <= = (BOUNDED a, b)BOOL: NOT ( value OF a > value OF b ),    >= = (BOUNDED a, b)BOOL: NOT ( value OF a < value OF b ),    =  = (BOUNDED a, b)BOOL: value OF a = value OF b,    /= = (BOUNDED a, b)BOOL: NOT (a = b);  # Monadic operators # OP - = (BOUNDED range)BOUNDED: -value OF range ASSERTIN []BOUNDED(range),    ABS = (BOUNDED range)BOUNDED: ABS value OF range ASSERTIN []BOUNDED(range);  COMMENT Operators for extended characters set, and increment/decrement: OP +:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a + b ),    +=: = (BOUNDED a, REF BOUNDED b)REF BOUNDED: ( b := a + b ),    -:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a - b ),    *:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a * b ),    %:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a % b ),    %*:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a %* b );  # OP aliases for extended character sets (eg: Unicode, APL, ALCOR and GOST 10859) # OP ×  = (BOUNDED a, b)BOUNDED: a * b,    ÷  = (BOUNDED a, b)INT: a OVER b,    ÷× = (BOUNDED a, b)BOUNDED: a MOD b,    ÷* = (BOUNDED a, b)BOUNDED: a MOD b,    %× = (BOUNDED a, b)BOUNDED: a MOD b,    ≤  = (BOUNDED a, b)BOUNDED: a <= b,    ≥  = (BOUNDED a, b)BOUNDED: a >= b,    ≠  = (BOUNDED a, b)BOOL: a /= b,    ↑  = (BOUNDED range, INT exponent)BOUNDED: value OF range ** exponent,     ÷×:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a MOD b ),    %×:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a MOD b ),    ÷*:= = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a := a MOD b );  # BOLD aliases for CPU that only support uppercase for 6-bit bytes  - wrist watches # OP OVER = (BOUNDED a, b)INT: a % b,    MOD = (BOUNDED a, b)BOUNDED: a %*b,    LT = (BOUNDED a, b)BOOL: a <  b,    GT = (BOUNDED a, b)BOOL: a >  b,    LE = (BOUNDED a, b)BOOL: a <= b,    GE = (BOUNDED a, b)BOOL: a >= b,    EQ = (BOUNDED a, b)BOOL: a =  b,    NE = (BOUNDED a, b)BOOL: a /= b,    UP = (BOUNDED range, INT exponent)BOUNDED: range**exponent;  # the required standard assignment operators # OP PLUSAB  = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a +:= b ), # PLUS #    PLUSTO  = (BOUNDED a, REF BOUNDED b)REF BOUNDED: ( a +=: b ), # PRUS #    MINUSAB = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a *:= b ),    DIVAB   = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a /:= b ),    OVERAB  = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a %:= b ),    MODAB   = (REF BOUNDED a, BOUNDED b)REF BOUNDED: ( a %*:= b ); END COMMENTTest: RANGE range = RANGE(0, 10000);   # override the default exception # raise bounds error := ([]STRING args)VOID: (      putf(stand error, (\$g\$, args, \$"- exiting to except bounds error"l\$));      except bounds error   );  BOUNDED a, b := 0 OVER range; FOR step FROM 4 BY 4 TO UPB range DO # something for pythagoras #   b := b + step OVER range;   a := ENTIER sqrt( 1.5 + 2 * value OF b ) OVER range OF b;   printf((\$"Sum of "\$, bounded repr, a * a, b * b,           \$" is "\$,    bounded repr, a * a + b * b, \$l\$)) OD; except bounds error:    SKIP`

Output:

```Sum of          +9[0:10000]        +16[0:10000] is         +25[0:10000]
Sum of         +25[0:10000]       +144[0:10000] is        +169[0:10000]
Sum of         +49[0:10000]       +576[0:10000] is        +625[0:10000]
Sum of         +81[0:10000]      +1600[0:10000] is       +1681[0:10000]
Sum of        +121[0:10000]      +3600[0:10000] is       +3721[0:10000]
Sum of        +169[0:10000]      +7056[0:10000] is       +7225[0:10000]
out of bounds    +12544 > [:    +10000]- exiting to except bounds error
```

### Other libraries or implementation specific extensions

As of February 2009 no open source libraries to do this task have been located.

## C#

`public struct TinyInt{    private const int minimalValue = 1;    private const int maximalValue = 10;     private readonly int value;     private TinyInt(int i)    {        if (minimalValue > i || i > maximalValue)        {            throw new System.ArgumentOutOfRangeException();        }        value = i;    }     public static implicit operator int(TinyInt i)    {        return i.value;    }     public static implicit operator TinyInt(int i)    {        return new TinyInt(i);    }}`

## C++

Works with: g++

This class relies on implicit conversions to do most int operations; however the combined operations with assignment have to be coded explicitly.

`#include <stdexcept> class tiny_int{public:  tiny_int(int i):    value(i)  {    if (value < 1)      throw std::out_of_range("tiny_int: value smaller than 1");    if (value > 10)      throw std::out_of_range("tiny_int: value larger than 10");  }  operator int() const  {    return value;  }  tiny_int& operator+=(int i)  {    // by assigning to *this instead of directly modifying value, the    // constructor is called and thus the check is enforced    *this = value + i;    return *this;  }  tiny_int& operator-=(int i)  {    *this = value - i;    return *this;  }  tiny_int& operator*=(int i)  {    *this = value * i;    return *this;  }  tiny_int& operator/=(int i)  {    *this = value / i;    return *this;  }  tiny_int& operator<<=(int i)  {    *this = value << i;    return *this;  }  tiny_int& operator>>=(int i)  {    *this = value >> i;    return *this;  }  tiny_int& operator&=(int i)  {    *this = value & i;    return *this;  }  tiny_int& operator|=(int i)  {    *this = value | i;    return *this;  }private:  unsigned char value; // we don't need more space};`

## Clojure

Use proxy on java.lang.Number so it can be used in Clojure's math operations.

`(defn tinyint [^long value]  (if (<= 1 value 10)    (proxy [Number] []      (doubleValue [] value)      (longValue [] value))    (throw (ArithmeticException. "integer overflow"))))`
Output:
```user=> (+ (tinyint 1) (tinyint 9))
10
user=> (* 4 (tinyint 6))
24
user=> (* 4 (tinyint 6.0))
24
user=> (/ (tinyint 3) (tinyint 5))
3/5
user=> (tinyint 11)
ArithmeticException integer overflow
user=> (.doubleValue (tinyint 9.4))
9.0```

## Common Lisp

The built-in integer type specifier provides range parameters. `deftype` may be used to define an alias for it.

`(deftype one-to-ten ()  '(integer 1 10))`

For a bounds check, one may use `typep` (a predicate) or `check-type` (signals an error if not of the type).

`(defun word (i)  (check-type i one-to-ten)  (case i    (1 "one")    (2 "two")    (3 "three")    (4 "four")    (5 "five")    (6 "six")    (7 "seven")    (8 "eight")    (9 "nine")    (10 "ten")))`

(Note that the above can be written without the separate check-type by using `ecase` instead of `case`, which signals an error when no case matches.)

To inform the compiler that a variable will be of a certain type, permitting optimizations, use a declaration:

`(dolist (i numbers)  (declare (type one-to-ten i))  ...)`

Note, however, that the standard does not specify what happens in the event that a declaration is false (though SBCL, for example, does perform type checks on any declaration except when `safety` is 0); use `check-type` for portable bounds checks.

## D

`import std.exception, std.string, std.traits; /++A bounded integral type template.Template params:- min: the minimal value- max: the maximal value- I: the type used to store the value internally+/struct BoundedInt(alias min, alias max, I = int){    // Static checks    static assert(isIntegral!(typeof(min)));    static assert(isIntegral!(typeof(max)));    static assert(isIntegral!I);    static assert(min < max);    static assert(cast(I) max == max, "Type " ~ I.stringof        ~ " cannot hold values up to " ~ max.stringof);     /// The actual value stored in this struct    private I _value;     /// Getter for the internal value    @property I internalValue()    {        return _value;    }     /// 'alias this' to make this struct look like a built-in integer    alias internalValue this;     /// Constructor    this(T)(T value)    {        opAssign(value);    }     /// Assignment operator    void opAssign(T)(T value)        if (isIntegral!T)    {        _value = checked(value);    }     /// Unary operators    auto opUnary(string op)() const    {        return checked(mixin(op ~ "_value"));    }     /// Binary operators    auto opBinary(string op, T)(T other) const    {        return checked(mixin("_value" ~ op ~ "other"));    }     /// ditto    auto opBinaryRight(string op, T)(T other) const        if (isIntegral!T)    {        return checked(mixin("_value" ~ op ~ "other"));    }     // Bounds enforcement    private I checked(T)(T value) const    {        enforce(value >= min && value <= max,            format("Value %s is out of bounds (%s to %s).", value, min, max));        return cast(I) value;    }} unittest{    alias MyInt = BoundedInt!(1, 10);    // alias BoundInt!(1, 10) MyInt; // D < 2.061     MyInt i = 4;    MyInt j = i + i;    assert(j / 2 == 4);    assert(2 + j == 10);    assert(i < 5);    assert(j > i);}`

## E

`def MyNumber := 1..10 for i :MyNumber in [0, 5, 10, 15, 20, 25] {    println(i)}`

(Note: The region guard, while provided with E, is entirely unprivileged code, and could be argued not to be "primitive".)

## Euphoria

In Euphoria types are special functions that may be used in declaring the allowed values for a variable. A type must have exactly one parameter and should return an atom that is either true (non-zero) or false (zero). Types can also be called just like other functions. The types object, sequence, atom and integer are predefined.

`type My_Type(integer i)    return i >= 1 and i <= 10end type`

## Fortran

Works with: Fortran version 90 and later

The module gives an example of how a bounded integer could be implemented in Fortran (not all the needed interfaces are implemented, and only the one for the + operator are shown). Bounds are checked at run-time.

`module Bounded  implicit none   type BoundedInteger     integer, private :: v         ! we cannot allow direct access to this, or we     integer, private :: from, to  !   can't check the bounds!     logical, private :: critical  end type BoundedInteger   interface assignment(=)     module procedure bounded_assign_bb, bounded_assign_bi !, &                    ! bounded_assign_ib  end interface   interface operator(+)     module procedure bounded_add_bbb !, bounded_add_bbi, &                    ! bounded_add_bib, bounded_add_ibb,   &                    ! bounded_add_iib, bounded_add_ibi,   &                    ! bounded_add_bii  end interface   private :: bounded_assign_bb, bounded_assign_bi, &             bounded_add_bbb contains   subroutine set_bound(bi, lower, upper, critical, value)    type(BoundedInteger), intent(out) :: bi    integer, intent(in) :: lower, upper    integer, intent(in), optional :: value    logical, intent(in), optional :: critical     bi%from = min(lower, upper)    bi%to = max(lower, upper)    if ( present(critical) ) then       bi%critical = critical    else       bi%critical = .false.    end if    if ( present(value) ) then       bi = value    end if  end subroutine set_bound   subroutine bounded_assign_bb(a, b)    type(BoundedInteger), intent(out) :: a    type(BoundedInteger), intent(in)  :: b     call bounded_assign_bi(a, b%v)   end subroutine bounded_assign_bb    subroutine bounded_assign_bi(a, b)    type(BoundedInteger), intent(out) :: a    integer,              intent(in)  :: b     if ( (a%from <= b) .and. (a%to >= b) ) then       a%v = b    else       write(0,*) "BoundedInteger: out of bound assignment"       if ( a%critical ) then          stop        else          if ( b < a%from ) then             a%v = a%from          else             a%v = a%to          end if          write(0,"(A,' (',I0, ')')") "BoundedInteger: set to nearest bound", a%v       end if    end if  end subroutine bounded_assign_bi    function bounded_add_bbb(a, b) result(c)    type(BoundedInteger) :: c    type(BoundedInteger), intent(in) :: a, b     integer :: t     c%from = max(a%from, b%from)    c%to   = min(a%to,   b%to)    t = a%v + b%v    if ( c%from <= t .and. c%to >= t ) then       c%v = t    else       write(0,*) "BoundedInteger: out of bound sum"       if ( a%critical .or. b%critical ) then          stop       else          if ( t < c%from ) then             c%v = c%from          else             c%v = c%to          end if          write(0,"(A,' (',I0,')')") "BoundedInteger: set to nearest bound", c%v       end if    end if  end function bounded_add_bbb end module Bounded`
`program BoundedTest  use Bounded  implicit none   type(BoundedInteger)     ::  a, b, c   call set_bound(a, 1, 10)  ! if we want to stop the program if a is out of bounds...  ! call set_bound(a, 1, 10, critical=.true.)  call set_bound(b, 1, 10)  call set_bound(c, 1, 10)  ! if we want to init c to a specific value...:  ! call set_bound(c, 1, 10, value=6)   a = 1         ! ok  a = 4         ! ok  a = -1        ! warning (a=1)  a = 11        ! warning (a=10)  a = 3         ! ok  b = a         ! ok  c = a + b     ! ok (3+3)  c = c + a     ! ok (6+3=9)  c = c + b     ! warning (c=10) end program BoundedTest`

Haskell doesn't have any built-in subrange types. However, it is possible to declare arbitrary types that "behave like" any of the built-in types on the "usual" numeric etc. operations, because these operations are defined by type-classes. So we generalize the task a bit, and first declare a generic container type that supports an additional check operation. Then, we lift any operation in the base type to the container type, by executing the check after each operation:

`{-# OPTIONS -fglasgow-exts #-} data Check a b = Check { unCheck :: b } deriving (Eq, Ord) class Checked a b where  check :: b -> Check a b lift  f x = f (unCheck x)liftc f x = check \$ f (unCheck x) lift2  f x y = f (unCheck x) (unCheck y)lift2c f x y = check \$ f (unCheck x) (unCheck y)lift2p f x y = (check u, check v) where (u,v) = f (unCheck x) (unCheck y) instance Show b => Show (Check a b) where  show (Check x)        = show x  showsPrec p (Check x) = showsPrec p x instance (Enum b, Checked a b) => Enum (Check a b) where  succ = liftc succ  pred = liftc pred  toEnum   = check . toEnum  fromEnum = lift fromEnum instance (Num b, Checked a b) => Num (Check a b) where  (+) = lift2c (+)  (-) = lift2c (-)  (*) = lift2c (*) negate = liftc negate  abs    = liftc abs   signum = liftc signum  fromInteger = check . fromInteger instance (Real b, Checked a b) => Real (Check a b) where  toRational = lift toRational instance (Integral b, Checked a b) => Integral (Check a b) where  quot = lift2c quot  rem  = lift2c rem  div  = lift2c div  mod  = lift2c mod         quotRem = lift2p quotRem  divMod  = lift2p divMod  toInteger = lift toInteger`

Now we can declare the a subrange 1..10 of integer like this:

`newtype TinyInt = TinyInt Int instance Checked TinyInt Int where  check x | x >= 0 && x <= 10  =  Check x          | otherwise          =  error "Out of range"`

In the same way, we could now declare the subtype of the even integers:

`newtype EvenInt = EvenInt Int  instance Checked EvenInt Int where   check x | even x     =  Check x           | otherwise  =  error "Not even"`

Similarly, we could declare the subtype of floating point numbers with restricted exponent, and so on.

## Java

The closest you can get to defining a primitive type in Java is making a new wrapper class with methods for math operations.

This example class throws an exception if the value is out of the bounds; it is implemented only in the assignment method "assign" and the addition method "add". The class can be easily extended.

`class BoundedIntOutOfBoundsException extends Exception{  public BoundedIntOutOfBoundsException(int v, int l, int u) {    super("value " + v + " is out of bounds [" + l + "," + u + "]");  }} class BoundedInt {  private int value;  private int lower;  private int upper;   public BoundedInt(int l, int u) {    lower = Math.min(l, u);    upper = Math.max(l, u);  }   private boolean checkBounds(int v) {    return (v >= this.lower) && (v <= this.upper);  }   public void assign(BoundedInt i) throws BoundedIntOutOfBoundsException {{    assign(i.value()); //could still throw Exception if the other BoundedInt has different bounds  }   public void assign(int v) throws BoundedIntOutOfBoundsException {    if ( checkBounds(v) ) {      this.value = v;    } else {      throw new BoundedIntOutOfBoundsException(v, this.lower, this.upper);    }  }   public int add(BoundedInt i) throws BoundedIntOutOfBoundsException {    return add(i.value());  }   public int add(int i) throws BoundedIntOutOfBoundsException {    if ( checkBounds(this.value + i) ) {      this.value += i;    }  else {      throw new BoundedIntOutOfBoundsException(this.value + i, this.lower, this.upper);    }    return this.value;  }   public int value() {    return this.value;  }}  public class Bounded {  public static void main(String[] args) throws BoundedIntOutOfBoundsException {    BoundedInt a = new BoundedInt(1, 10);    BoundedInt b = new BoundedInt(1, 10);     a.assign(6);    try {      b.assign(12);    } catch (Exception e) {      System.out.println(e.getMessage());    }    b.assign(9);    try {      a.add(b.value());    } catch (Exception e) {      System.out.println(e.getMessage());    }  }}`

## JavaScript

`function Num(n){    n = Math.floor(n);    if(isNaN(n))        throw new TypeError("Not a Number");    if(n < 1 || n > 10)        throw new TypeError("Out of range");    this._value = n;}Num.prototype.valueOf = function() { return this._value; }Num.prototype.toString = function () { return this._value.toString();} var w = new Num(3), x = new Num(4); WScript.Echo(w + x); //7WScript.Echo(x - w); //1WScript.Echo(w * x); //12WScript.Echo(w / x); //0.75WScript.Echo(w < x); //trueWScript.Echo(x < w); //false var y = new Num(0); //TypeErrorvar z = new Num(11); //TypeError `

## jq

In the following, we define a new type named "smallint", with arithmetic operations that either return the "smallint" one would expect from ordinary arithmetic, or else return nothing (an empty stream), as opposed to returning null or raising an error. The choice of an empty stream is made to highlight this alternative.

By design, jq's types are constrained to be JSON types, so jq's type system cannot be used to create a new type, but we can create a parallel type system based on JSON objects. We shall do so using the convention that if an object has a key named "type", then the type of the object will be the given value:
`def typeof:  if type == "object" and has("type") then .type else type end;`
We also define a generic "pretty-print" filter:
`def pp:  if type == "object" and has("type") then "\(.type)::\(.value)"  else .  end;`
Our instances of smallint will look like this: {"type": "smallint", "value": 0}

This definition ensures that jq's basic tests for equality and inequality (== and !=) can be used for the instances of smallint.

In fact the builtin comparison functions (< and >) will also have the correct semantics, as will sort and unique.

As of this writing, the official release of jq does not support modules, so we will not use jq's new module system here, but it would allow us to place all the smallint functions in a Smallint module.

To generate instances of smallint, we define a function, smallint(i), that will return an instance corresponding to an integer, i, if it is in range. As noted above, it will otherwise return nothing at all (as opposed to null or raising an error):
`def smallint(i): i as \$i  | if (i|type) == "number" and i == (i|floor) and i > 0 and i < 11 then {"type": "smallint", "value": i}     else empty      end ; # A convenience function to save typing:def s(i): smallint(i); # To convert from the pretty-print representation back to smallint:def tosmallint:  if type == "string" and startswith("smallint::") then     split("::") | smallint( .[1] | tonumber )  else empty  end ;`
That leaves just basic arithmetic operations: add minus times mod div
`def add(a;b): smallint(a.value + b.value);def minus(a;b): smallint(a.value - b.value);def times(a;b): smallint(a.value * b.value);def mod(a;b): smallint(a.value % b.value);def divide(a;b): smallint( (a.value / b.value) | floor );`
Examples:
`s(1) < s(3)            # => trueadd( s(1); s(2)) | pp  # "smallint::3"add( s(6); s(6))       # (nothing)`

## Lasso

`define dint => type {   data private value    public oncreate(value::integer) => {	fail_if(#value < 1,#value+' less than 1 ')	fail_if(#value > 10,#value+' greater than 10')	.value = #value   }    public +(rhs::integer) => dint(.value + #rhs)   public -(rhs::integer) => dint(.value - #rhs)   public *(rhs::integer) => dint(.value * #rhs)   public /(rhs::integer) => dint(.value / #rhs)   public %(rhs::integer) => dint(.value % #rhs)    public asstring() => string(.value) } dint(1) // 1dint(10) // 10 dint(0) // Error: 0 less than 1dint(2) - 5 // Error: -3 less than 1 dint(11) // Error: 11 greater than 10dint(10) + 1 // Error: 11 greater than 10dint(10) * 2 // Error: 20 greater than 10 `

## MATLAB

In a weird way MATLAB has no primitive data types. All data types are defined as a MATLAB class somewhere in the MATLAB install directory. Therefore, to define a primitive data type, you define a class. Below is a class called "RingInt" that has the properties of an integer data type, but the values are restricted in the range [1,10]. Include in the definition are functions that overload some of the built-in MATLAB operators, e.g. addition and subtraction.

In a folder named "@RingInt" RingInt.m:

`classdef RingInt     properties        value    end     methods         %RingInt constructor                function theInt = RingInt(varargin)            if numel(varargin) == 0                theInt.value = 1;            elseif numel(varargin) > 1                error 'The RingInt constructor can''''t take more than 1 argument.';            else                 %Makes sure any doubles are coerced to ints                if not(isinteger(varargin{1}))                    varargin{1} = int32(varargin{1});                end                 %Maps out of bound values to the proper range                if varargin{1} > 10                    theInt.value = varargin{1} - (10 * (idivide(varargin{1},10,'ceil') - 1));                elseif varargin{1} < 1                      theInt.value = varargin{1} + (10 * (idivide(abs(varargin{1}),10,'floor') + 1));                else                    theInt.value = varargin{1};                end            end        end %constructor         %Overload the "+" operator         function sum = plus(firstNumber,secondNumber)             if isa(firstNumber,'RingInt') && isa(secondNumber,'RingInt')                sum = firstNumber.value + secondNumber.value;            elseif isa(firstNumber,'RingInt') && not(isa(secondNumber,'RingInt'))                sum = firstNumber.value + secondNumber;            else                sum = secondNumber.value + firstNumber;            end             sum = RingInt(sum);         end %+         %Overload the "-" operator         function difference = minus(firstNumber,secondNumber)             if isa(firstNumber,'RingInt') && isa(secondNumber,'RingInt')                difference = firstNumber.value - secondNumber.value;            elseif isa(firstNumber,'RingInt') && not(isa(secondNumber,'RingInt'))                difference = firstNumber.value - secondNumber;            else                difference = firstNumber - secondNumber.value;            end             difference = RingInt(difference);         end %-         %Overload the "==" operator        function trueFalse = eq(firstNumber,secondNumber)             if isa(firstNumber,'RingInt') && isa(secondNumber,'RingInt')                trueFalse = firstNumber.value == secondNumber.value;            else                error 'You can only compare a RingInt to another RingInt';            end         end %==          %Overload the display() function        function display(ringInt)            disp(ringInt);        end         %Overload the disp() function        function disp(ringInt)            disp(sprintf('\nans =\n\n\t %d\n',ringInt.value));        end     end %methodsend %classdef  `

Sample Usage:

`>> RingInt(10) + 1 ans = 	 1 >> RingInt(5) - 20 ans = 	 5 >> a = RingInt(3) ans = 	 3 >> a == RingInt(3) ans =      1`

## Modula-3

In Modula-3, subrange types are automatically subtypes of their base type, so if you define a type called `MyInt` to be the subrange [1..10] then `MyInt` is a subtype of `INTEGER`. If we defined `MyChar` as the subrange ['A'..'C'] then `MyChar` would be a subtype of `CHAR`.

`TYPE MyInt = [1..10];`

`MyInt` can now be used anywhere an `INTEGER` can, such as the standard arithmetic functions. Trying to assign a value outside of the range of `MyInt` will result in a compile time warning, and/or a runtime error.

## Nim

Subranges are supported by the language and automatically boundchecked:

`var x: range[1..10] = 10 x = 5 x = x + 6 # Runtime error: Value out of range x = 12 # Compile error: Invalid conversion`

## OCaml

`exception Out_of_bounds type 'a bounds = { min: 'a; max: 'a } type 'a bounded = { value: 'a; bounds: 'a bounds } let mk_bounds ~min ~max = { min=min; max=max } ;;(** val mk_bounds : min:'a -> max:'a -> 'a bounds *) let check_bounds ~value ~bounds =  if value < bounds.min || value > bounds.max then    raise Out_of_bounds ;;(** val check_bounds : value:'a -> bounds:'a bounds -> unit *) let mk_bounded ~value ~bounds =  check_bounds ~value ~bounds;  { value=value; bounds=bounds } ;;(** val mk_bounded : value:'a -> bounds:'a bounds -> 'a bounded *) let op f a b =  let res = f a.value b.value in  if a.bounds <> b.bounds then    invalid_arg "different bounds";        check_bounds res a.bounds;  (mk_bounded res a.bounds)  ;;            (** val op : ('a -> 'a -> 'a) -> 'a bounded -> 'a bounded -> 'a bounded *)`

Using in the interactive top level:

`# let range = mk_bounds 1 10 ;;val range : int bounds = {min = 1; max = 10} # let a = mk_bounded 2 range ;;val a : int bounded = {value = 2; bounds = {min = 1; max = 10}} # let b = mk_bounded 5 range ;;val b : int bounded = {value = 5; bounds = {min = 1; max = 10}} # let c = mk_bounded 14 range ;;Exception: Out_of_bounds. # op ( + ) a b ;;- : int bounded = {value = 7; bounds = {min = 1; max = 10}}`

which can be used with floats in the same way:

`# let rf = mk_bounds 1.0 10.0 ;;val rf : float bounds = {min = 1.; max = 10.} # let a = mk_bounded 2.2 rf     and b = mk_bounded 5.6 rf in  op ( +. ) a b ;;- : float bounded = {value = 7.8; bounds = {min = 1.; max = 10.}}`

## ooRexx

`/* REXX ----------------------------------------------------------------* 21.06.2014 Walter Pachl* implements a data type tinyint that can have an integer value 1..10* 22.06.2014 WP corrected by Rony Flatscher to handle arithmetic*---------------------------------------------------------------------*/a=.tinyint~new(1)  ; Say 'a='||a~valueSay '2*a='||(2*a)Say 'a*2='||((0+a)*2)say "---> rony was here: :)"say "The above statement was in effect: '(0+a)*2', NOT 'a*2*, hence it worked!"say "These statements work now:"say "(a)*2:" (a)*2say "a*2:  " a*2say "<--- rony was here, The end. :)"b=.tinyint~new(11); Say 'b='||b~valueb=.tinyint~new('B'); Say 'b='||b~valuesay 'b='||(b)           -- show string valueSay '2*b='||(2*b)::class tinyint::method init  Expose v  Use Arg i  Select    When datatype(i,'W') Then Do      If i>=1 & i<=10 Then        v=i      Else Do        Say 'Argument 1 must be between 1 and 10'        Raise Syntax 88.907 array(1,1,10,i)        End      End    Otherwise Do      Say 'Argument 1 must be a whole number between 1 and 10'      Raise Syntax 88.905 array(1,i)      End    End::method string  Expose v  Return v::method value  Expose v  Return v -- rgf, 20140622, intercept unknown messages, forward arithmetic messages to string value::method unknown  expose v  use arg methName, methArgs  if wordpos(methName, "+ - * / % //")>0 then  -- an arithmetic message in hand?    forward message (methName) to (v) array (methArgs[1]) `

output

```a=1
2*a=2
a*2=2
---> rony was here: :)
The above statement was in effect: '(0+a)*2', NOT 'a*2*, hence it worked!
These statements work now:
(a)*2: 2
a*2:   2
<--- rony was here, The end. :)
Argument 1 must be between 1 and 10

28 *-*               Raise Syntax 88.907 array(1,1,10,i)
*-* Compiled method NEW with scope "Object"
14 *-* b=.tinyint~new(11);
Error 88 running D:\tinyint2.rex line 28:  Invalid argument
Error 88.907:  Argument 1 must be in the range 1 to 10; found "11"
```

## Oz

Normally new data types are implemented as classes or as abstract data types in modules. We cannot extend operators, though.

In this case we are lucky. As a feature of constraint programming we can easily constrain the domain of integers.

`declare  Iin  I::1#10  I = {Pow 2 4}`

Output:

```%***************************** failure **************************
%**
%** Tell: I{1#10} = 16
%**
%** Call Stack:
%** procedure 'IntPow' in file "/Users/raph/devel/mozdss-branch/mozart/share/lib/base/Number.oz", line 32, column 3, PC = 16461488
%**--------------------------------------------------------------
```

## Pascal

Works with: Free_Pascal

The details of range checks are compiler specific. With Freepascal range checks can also be enabled on the command line with the -Cr option.

`Program BoundInteger(output); {\$RANGECHECKS ON} type  TPartialInteger = 1..10; var  testvar: TPartialInteger;  i: integer; begin  for i := 1 to 11 do  begin    writeln(i);    testvar := i;  end;end.`

Output:

```% ./BoundInteger
1
2
3
4
5
6
7
8
9
10
11
Runtime error 201 at \$000113A6
\$000113A6
\$0002F586
\$00011309
\$00011238
\$00000001
```

## Perl

Works with: Perl version 5
`package One_To_Ten;use Carp qw(croak);use Tie::Scalar qw();use base qw(Tie::StdScalar); sub STORE {    my \$self = shift;    my \$val = int shift;    croak 'out of bounds' if \$val < 1 or \$val > 10;    \$\$self = \$val;}; package main;tie my \$t, 'One_To_Ten';\$t = 3;   # ok\$t = 5.2; # ok, silently coerced to int\$t = -2;  # dies, too small\$t = 11;  # dies, too big\$t = 'xyzzy';# dies, too small. string is 0 interpreted numerically`

## Perl 6

`subset OneToTen of Int where 1..10 my OneToTen \$n = 5;\$n += 6;`

Here the result 11 fails to smartmatch against the range `1..10`, so the second assignment throws an exception. You may use any valid smartmatch predicate within a `where` clause, so the following one-argument closure is also legal:

`subset Prime of Int where -> \$n { \$n > 1 and so \$n %% none 2 .. \$n.sqrt }`

## Phix

Translation of: Euphoria

In Phix types are special functions that may be used in declaring the allowed values for a variable. A type must have exactly one parameter and should return true (non-zero) or false (zero). Types can also be called just like other functions. The types object, sequence, string, atom and integer are predefined.

`type iten(integer i)    return i>=1 and i<=10end type`

You can then declare variables of the new type just as you would the builtins

`integer iiten i10`

and typechecking occurs automatically

`i = 11  -- finei10 = 11  -- runtime error`

## PicoLisp

Translation of: Java
`(class +BoundedInt)# value lower upper (dm T (Low Up)   (=: lower (min Low Up))   (=: upper (max Low Up)) ) (de "checkBounds" (Val)   (if (>= (: upper) Val (: lower))      Val      (throw 'boundedIntOutOfBounds         (pack            "value " Val            " is out of bounds [" (: lower) "," (: upper) "]" ) ) ) ) (dm set> (Val)   (=: value ("checkBounds" Val)) ) (dm +> (Val)   (=: value ("checkBounds" (+ Val (: value)))) ) (dm val> ()   (: value) ) (de main ()   (let (A (new '(+BoundedInt) 1 10)  B (new '(+BoundedInt) 1 10))      (set> A 6)      (when (catch 'boundedIntOutOfBounds (set> B 12) NIL)         (prinl @) )      (set> B 9)      (when (catch 'boundedIntOutOfBounds (+> A (val> B)) NIL)         (prinl @) ) ) )`

Output:

```: (main)
value 12 is out of bounds [1,10]
value 15 is out of bounds [1,10]```

## Python

This doesn't really apply as Python names don't have a type, but something can be done:

`>>> class num(int):    def __init__(self, b):        if 1 <= b <= 10:            return int.__init__(self+0)        else:            raise ValueError,"Value %s should be >=0 and <= 10" % b  >>> x = num(3)>>> x = num(11) Traceback (most recent call last):  File "<pyshell#394>", line 1, in <module>    x = num(11)  File "<pyshell#392>", line 6, in __init__    raise ValueError,"Value %s should be >=0 and <= 10" % bValueError: Value 11 should be >=0 and <= 10>>> x3>>> type(x)<class '__main__.num'>>>>`

## Racket

Most Racket programmers will use contracts to enforce additional guarantees on values. In the following example, the program exports x with a contract that ensures it is a number between 1 and 10.

` #lang racket (provide (contract-out [x 1-to-10/c])) (define 1-to-10/c (between/c 1 10)) (define x 5) `

In Typed Racket, it is possible to define a type that only contains the integers from 1 to 10. However, this type is inconvenient to use and is unlikely to be used in practice.

` #lang typed/racket (define-type 1UpTo10 (U 1 2 3 4 5 6 7 8 9 10)) ;; type-checks(: x 1UpTo10)(define x 3) ;; does not type-check(: y 1UpTo10)(define y 18) `

## Retro

`{{  variable update---reveal---  : .limited @update &! &@ if update off ;  : to       dup 1 10 within [ update on ] [ drop "Out of bounds\n" puts ] if ;  : limited: create 1 , &.limited reclass ;}}`

This creates a data element that returns a value from 1 to 10. Alteration of the value is possible using to.

`limited: foo1 to foofoo .s51 to foofoo .sbye`

## Ruby

```Some object-oriented languages won't let you subclass the "basic" data types
like integers. Other languages implement those data types as classes, so you
can subclass them, no questions asked. Ruby implements numbers as classes
(Integer, with its concrete subclasses Fixnum and Bignum), and you can subclass
those classes. If you try, though, you'll quickly discover that your subclasses
are useless: they don't have constructors.

Ruby jealously guards the creation of new Integer objects. This way it ensures
that, for instance, there can be only one Fixnum instance for a given number

The easiest way to delegate all methods is to create a class that's nearly empty
and define a method_missing method.
```
`require 'test/unit'include Test::Unit::Assertions class MyInt  @@min = 1  @@max = 10   attr_reader :value  private :value   def initialize(val)    begin      v = Integer(val)    rescue ArgumentError      raise ArgumentError, "invalid value '#{val}', must be an integer"    end     unless v.between?(@@min, @@max)      raise ArgumentError, "invalid value '#{v}', must be between #{@@min} and #{@@max}"    end     @value = v  end   def method_missing(m, *args)    super unless @value.respond_to?(m)    myint_args = args.collect do |arg|      arg.kind_of?(self.class) ? arg.to_int : arg    end    result = @value.send(m, *myint_args)    return result if m == :coerce    case result    when Integer      MyInt.new(result)    when Array      result.collect do |element|        element.kind_of?(Integer) ? MyInt.new(element) : element      end    else      result    end  end   def respond_to?(method)    super or @value.respond_to? method  end   def to_int    @value  end  def to_f    Float(@value)  end  def to_s    @value.to_s  end  def inspect    to_s  endend  assert_raise(ArgumentError) { MyInt.new("foo") }    # => invalid value 'foo', must be an integerassert_raise(ArgumentError) { MyInt.new(11) }       # => invalid value '11', must be an integer a = MyInt.new(7)b = MyInt.new(5) c = 5 + aassert_kind_of(Fixnum, c)assert_equal(12, c) c = a + 2assert_kind_of(MyInt, c)assert_equal(9, c.to_int) c = a + 2.8assert_kind_of(Float, c)assert_equal(9.8, c) c = a - bassert_kind_of(MyInt, c)assert_equal(2, c.to_int) assert_raise(ArgumentError) { c = a + b }    # => invalid value '12', must be an integerassert_raise(ArgumentError) { c = b - a }    # => invalid value '-2', must be an integer`

## Scala

Library: Scala
`  class TinyInt(val int: Byte) {    import TinyInt._    require(int >= lower && int <= upper, "TinyInt out of bounds.")     override def toString = int.toString  }   object TinyInt {    val (lower, upper) = (1, 10)     def apply(i: Byte) = new TinyInt(i)  }   val test = (TinyInt.lower to TinyInt.upper).map(n => TinyInt(n.toByte))`

## Sidef

`class MyInt(value) {     def min = 1;    def max = 10;     method new(value is Number) {        (value > max) || (value < min) && (            die "Invalid value '#{value}': must be between #{min} and #{max}";        );        !value.is_int && (            die "Invalid value '#{value}': must be an integer";        );    }     method new(value) {        die "Invalid value '#{value}'; expected a number";    }     method get_value {        value.get_value.get_value;    }     method AUTOLOAD(name, *args) {        var result = value.(name)(args...);         result.is_a(Number) &&            return MyInt(result.int);         result;    }} ### Tests:#var a = MyInt(2);    # creates a new object of type `MyInt`a += 7;              # adds 7 to asay a;               # => 9say a/2;             # => 4 var b = (a - 3);     # b is of type `MyInt`say b;               # => 6 say a.to_hex;        # => "0x9" -- an hexadecimal string a -= 7;              # a=2say (a + b);         # => 8 -- the result of (2 + 6) a += 4;              # a=6say a+b;             # error: Invalid value '12'; must be between 1 and 10`

## Tcl

Tcl does not attach types to values or variables, but it does allow the programmer to create traces on variables that can be used to enforce type-like constraints among other things. Traces are procedures that execute when variables are read, written and/or unset. (Traces are also available for commands and for the execution of a script.) Tcl's compiler does not enforce these constraints; they're strictly runtime entities.

`namespace eval ::myIntType {    variable value_cache    array set value_cache {}    variable type integer    variable min 1    variable max 10    variable errMsg "cannot set %s to %s: must be a \$type between \$min and \$max"}proc ::myIntType::declare varname {    set ns [namespace current]    uplevel [list trace add variable \$varname write \${ns}::write]    uplevel [list trace add variable \$varname unset \${ns}::unset_var]}proc ::myIntType::unset_var {varname args} {    variable value_cache    unset value_cache(\$varname)}proc ::myIntType::validate {value} {    variable type    variable min    variable max    expr {[string is \$type -strict \$value] && \$min <= \$value && \$value <= \$max}}proc ::myIntType::write {varname args} {    variable value_cache    upvar \$varname var    set value \$var    if {[validate \$value]} {        set value_cache(\$varname) \$value    } else {        if {[info exists value_cache(\$varname)]} {            set var \$value_cache(\$varname)        }        variable errMsg        error [format \$errMsg \$varname \$value]    }}`

So, in an interactive tclsh we can see:

```% myIntType::declare foo
% set foo ;# regular Tcl error:  foo is declared but still unset
can't read "foo": no such variable
% set foo bar
can't set "foo": cannot set foo to bar: must be a integer between 1 and 10
% set foo 3
3
% incr foo 10
can't set "foo": cannot set foo to 13: must be a integer between 1 and 10
% incr foo -10
can't set "foo": cannot set foo to -7: must be a integer between 1 and 10
% set foo 0
can't set "foo": cannot set foo to 0: must be a integer between 1 and 10
% set foo
3
% set foo [expr {\$foo * 1.5}]
can't set "foo": cannot set foo to 4.5: must be a integer between 1 and 10
% set foo
3
% unset foo
% ```

## Toka

`needs quotes{  variable update  [ update @ [ ! ] [ @ ] ifTrueFalse update off ] is action  [ dup >r 0 11 r> within [ update on ] [ drop ." Out of bounds\n " ] ifTrueFalse ]  [ ` [ invoke cell-size malloc # ` action compile ` ] invoke is ]} is value:1-10:  is to value:1-10: foo1 to foofoo .`

## UNIX Shell

Works with: ksh93

ksh93 has

• compound variables and
• "discipline functions" which get fired at get/set/unset events
`typeset -i boundedintfunction boundedint.set {    nameref var=\${.sh.name}    if (( 1 <= .sh.value && .sh.value <= 10 )); then        # stash the valid value as a backup, in case we need to restore it        typeset -i var.previous_value=\${.sh.value}    else        print -u2 "value out of bounds"        # restore previous value        .sh.value=\${var.previous_value}    fi} boundedint=-5; echo \$boundedintboundedint=5;  echo \$boundedintboundedint=15; echo \$boundedint`
Output:
```value out of bounds
0
5
value out of bounds
5```

## Ursala

We define a new record type `my_number`, having two fields, of which one is the number and the other is the pair of bounds. Fields in records can have initializing functions, and any function can throw an exception, so we make the initializing function of the number field that which throws an exception if it's outside the bounds. The initializing function of the bounds field sets its default values to 1 and 10. The initializing functions are automatically evaluated any time a record of type `_my_number` is constructed by a function of the form `my_number\$[...]`, so we can proceed to define all the arithmetic operations we need as functions of this form in terms of the corresponding operations on natural numbers with no further bounds checking required.

`#import nat my_number ::  the_number %n  -|~bounds.&BZ,~&B+ nleq~~lrlXPrX@G+ ~/the_number bounds|-?(~the_number,<'out of bounds'>!%)bounds     %nW ~bounds.&B?(~bounds,(1,10)!) add = my_number\$[the_number: sum+ ~the_number~~]mul = my_number\$[the_number: product+ ~the_number~~]`

test program:

`#cast _my_number total = add(my_number[the_number: 3],my_number[the_number: 4])`

output:

```my_number[the_number: 7,bounds: (1,10)]
```

test program demonstrating bounds checking:

`#cast _my_number total = mul(my_number[the_number: 3],my_number[the_number: 4])`

compile-time diagnostic output:

```fun:prim.fun:3:12: out of bounds
```

Note that restricted types are not idiomatic in Ursala if all we really want is integer arithmetic with run-time bounds checking, which can be done more directly like this.

`#import nat #library+ #import    ^|A(~&,//+ nrange(1,10)?</~& <'out of bounds'>!%)*    ~&n-=<'sum','difference','product','quotient','remainder'>*~ %QI nat`

This code creates a new library of functions of natural numbers by selecting several of them by name from the standard `nat` library and putting a wrapper around each one that checks the bounds on the result and throws an exception if necessary. These functions can be used as drop-in replacements for the standard ones.

## Visual Basic

VB can't really do primitive data types, but they can be faked with classes.

TinyInt.cls:

`Private mvarValue As Integer Public Property Let Value(ByVal vData As Integer)    If (vData > 10) Or (vData < 1) Then        Error 380   'Invalid property value; could also use 6, Overflow    Else        mvarValue = vData    End IfEnd Property Public Property Get Value() As Integer    Value = mvarValueEnd Property Private Sub Class_Initialize()    'vb defaults to 0 for numbers; let's change that...    mvarValue = 1End Sub`

Usage (in this case, from a form):

`Public x As TinyInt Private Sub Form_Click()    '0-11, to give chance of errors; also not integers, because VB massages data to fit, if possible.    x = Rnd * 12    Me.Print xEnd Sub Private Sub Form_Load()    Randomize Timer    Set x = New TinyInt '"Set = New" REQUIREDEnd Sub`

## Visual Basic .NET

Visual Basic .NET has full support for creating your own primitives, but every operator has to be implemented explicitly. Often developers will only implement the parts they are using and skip the rest.

Also note that some operators return a Double instead of a new LimitedInt. This was by choice in order to match the behavior of Integers in VB.

`Structure LimitedInt  Implements IComparable(Of LimitedInt)  Implements IEquatable(Of LimitedInt)   Private m_Value As Integer 'treat the default, 0 as being really 1   Public ReadOnly Property Value() As Integer    Get      Return If(m_Value = 0, 1, m_Value)    End Get  End Property   Public Sub New(ByVal value As Integer)    If value < 1 Or value > 10 Then Throw New ArgumentOutOfRangeException("value")    m_Value = value  End Sub   Public Function CompareTo(ByVal other As LimitedInt) As Integer Implements System.IComparable(Of LimitedInt).CompareTo    Return Me.Value - other.Value  End Function   Public Overloads Function Equals(ByVal other As LimitedInt) As Boolean Implements System.IEquatable(Of LimitedInt).Equals    Return Me.Value = other.Value  End Function   Public Overrides Function GetHashCode() As Integer    Return Value.GetHashCode  End Function   Public Overrides Function Equals(ByVal obj As Object) As Boolean    If TypeOf obj Is LimitedInt Then Return CType(obj, LimitedInt) = Me  End Function   Public Shared Operator =(ByVal left As LimitedInt, ByVal right As LimitedInt) As Boolean    Return left.Equals(right)  End Operator   Public Shared Operator <>(ByVal left As LimitedInt, ByVal right As LimitedInt) As Boolean    Return Not (left = right)  End Operator   Public Shared Operator +(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value + right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator -(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value - right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator *(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value * right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator /(ByVal left As LimitedInt, ByVal right As LimitedInt) As Double    Return left.Value / right.Value  End Operator   Public Shared Operator \(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value \ right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator Mod(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value Mod right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator And(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value And right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator Or(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value Or right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator Xor(ByVal left As LimitedInt, ByVal right As LimitedInt) As LimitedInt    Dim temp As Integer = left.Value Xor right.Value    Select Case temp      Case 1 To 10 : Return New LimitedInt(temp)      Case Else : Throw New OverflowException    End Select  End Operator   Public Shared Operator ^(ByVal left As LimitedInt, ByVal right As LimitedInt) As Double    Return left.Value ^ right.Value  End Operator   Public Shared Operator <(ByVal left As LimitedInt, ByVal right As LimitedInt) As Boolean    Return left.Value < right.Value  End Operator   Public Shared Operator >(ByVal left As LimitedInt, ByVal right As LimitedInt) As Boolean    Return left.Value > right.Value  End Operator   Public Shared Operator <=(ByVal left As LimitedInt, ByVal right As LimitedInt) As Boolean    Return left.Value <= right.Value  End Operator   Public Shared Operator >=(ByVal left As LimitedInt, ByVal right As LimitedInt) As Boolean    Return left.Value >= right.Value  End Operator   Public Shared Widening Operator CType(ByVal left As LimitedInt) As Integer    Return left.Value  End Operator   Public Shared Narrowing Operator CType(ByVal left As Integer) As LimitedInt    Return New LimitedInt(left)  End Operator End Structure`

## Visual FoxPro

Visual FoxPro can't define primitives but they can be emulated with custom classes.

` LOCAL o As BoundedInto = NEWOBJECT("BoundedInt")DO WHILE NOT o.lHasError    o.nValue = o.nValue + 2 && will get as far as 9.    ? o.nValueENDDO DEFINE CLASS BoundedInt As CustomnValue = 1	&& default valuelHasError = .F. PROCEDURE nValue_Assign(tnValue)*!* This method will check the parameter and if*!* it is out of bounds, the value will remain unchanged *!* and an error generated.tnValue = CAST(tnValue As I)IF BETWEEN(tnValue, 1, 10)    THIS.nValue = tnValueELSE    ERROR "Value must be between 1 and 10."ENDIFENDPROC PROCEDURE Error(nError, cMethod, nLine)IF nError = 1098    MESSAGEBOX(MESSAGE(), 0, "Error")ELSE    DODEFAULT()ENDIF 		THIS.lHasError = .T.ENDDEFINE		 `