Compound data type: Difference between revisions

m
→‎{{header|Wren}}: Changed to Wren S/H
(Add Plain English)
m (→‎{{header|Wren}}: Changed to Wren S/H)
 
(42 intermediate revisions by 25 users not shown)
Line 1:
{{task|BasicrBasic language learning}}
{{Data structure}}
 
Line 18:
 
=={{header|11l}}==
<langsyntaxhighlight lang="11l">T Point
Int x, y
 
F (x, y)
.x = x
.y = y</langsyntaxhighlight>
 
=={{header|ACL2}}==
<langsyntaxhighlight Lisplang="lisp">(defstructure point
(x (:assert (rationalp x)))
(y (:assert (rationalp y))))
Line 34:
(assign p1 (update-point (@ p1) :x 3)) ; Update the x value
(point-x (@ p1))
(point-p (@ p1)) ; Recognizer for points</langsyntaxhighlight>
 
{{out}}
Line 42:
3
T</pre>
=={{header|6502 Assembly}}==
 
The method below is a bit unusual compared to [[C]], where each member of a struct is stored consecutively. The addressing modes of 6502 make it much more efficient to store each member of many different structs consecutively. In other words, the index used to offset into <code>point_x</code> represents which instance of the data type the CPU is accessing. Of course, this assumes that you're willing to declare in advance how many active instances of that data type you'll ever have at once, a very frequent practice in the 8-bit assembly world but is absolutely ludicrous in high-level languages.
 
NESASM3 syntax:
<syntaxhighlight lang="6502asm">MAX_POINT_OBJECTS = 64 ; define a constant
 
.rsset $0400 ; reserve memory storage starting at address $0400
point_x .rs MAX_POINT_OBJECTS ; reserve 64 bytes for x-coordinates
point_y .rs MAX_POINT_OBJECTS ; reserve 64 bytes for y-coordinates</syntaxhighlight>
 
VASM syntax:
<syntaxhighlight lang="6502asm">MAX_POINT_OBJECTS equ 64
 
point_ram equ $0400
point_x equ point_ram
point_y equ point_ram+MAX_POINT_OBJECTS</syntaxhighlight>
 
So, for example, let's say we want to load our third (zero-indexed) point variable and copy it to zero page RAM addresses $00 and $01. We would do the following:
<syntaxhighlight lang="6502asm">MAX_POINT_OBJECTS equ 64
 
point_ram equ $0400
point_x equ point_ram
point_y equ point_ram+MAX_POINT_OBJECTS
 
LDX #3
LDA point_x,x
STA $00
LDA point_y,x
STA $01</syntaxhighlight>
 
=={{header|Action!}}==
{{libheader|Action! Tool Kit}}
<syntaxhighlight lang="action!">INCLUDE "D2:REAL.ACT" ;from the Action! Tool Kit
 
DEFINE REALPTR="CARD"
TYPE PointI=[INT x,y]
TYPE PointR=[REALPTR rx,ry]
 
PROC Main()
PointI p1
PointR p2
REAL realx,realy
 
Put(125) PutE() ;clear screen
 
p1.x=123
p1.y=4567
 
ValR("12.34",realx)
ValR("5.6789",realy)
p2.rx=realx
p2.ry=realy
 
PrintF("Integer point p1=(%I,%I)%E",p1.x,p1.y)
 
Print("Real point p2=(")
PrintR(p2.rx) Print(",")
PrintR(p2.ry) Print(")")
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Compound_data_type.png Screenshot from Atari 8-bit computer]
<pre>
Integer point p1=(123,4567)
Real point p2=(12.34,5.6789)
</pre>
 
=={{header|ActionScript}}==
<langsyntaxhighlight lang="actionscript">package
{
public class Point
Line 57 ⟶ 123:
}
}
}</langsyntaxhighlight>
 
=={{header|Ada}}==
===Tagged Type===
Ada tagged types are extensible through inheritance. The reserved word ''tagged'' causes the compiler to create a tag for the type. The tag identifies the position of the type in an inheritance hierarchy.
<langsyntaxhighlight lang="ada">type Point is tagged record
X : Integer := 0;
Y : Integer := 0;
end record;</langsyntaxhighlight>
 
===Record Type===
Ada record types are not extensible through inheritance. Without the reserved word ''tagged'' the record does not belong to an inheritance hierarchy.
<langsyntaxhighlight lang="ada">type Point is record
X : Integer := 0;
Y : Integer := 0;
end record;</langsyntaxhighlight>
 
====Parameterized Types====
An Ada record type can contain a discriminant. The discriminant is used to choose between internal structural representations. Parameterized types were introduced to Ada before tagged types. Inheritance is generally a cleaner solution to multiple representations than is a parameterized type.
<langsyntaxhighlight lang="ada">type Person (Gender : Gender_Type) is record
Name : Name_String;
Age : Natural;
Line 86 ⟶ 152:
null;
end case;
end record;</langsyntaxhighlight>
In this case every person will have the attributes of gender, name, age, and weight. A person with a male gender will also have a beard length.
 
Line 92 ⟶ 158:
===Tagged Type===
ALGOL 68 has only tagged-union/discriminants. And the tagging was strictly done by the ''type'' (MODE) of the members.
<langsyntaxhighlight lang="algol68">MODE UNIONX = UNION(
STRUCT(REAL r, INT i),
INT,
Line 99 ⟶ 165:
STRUCT(REAL rr),
STRUCT([]REAL r)
);</langsyntaxhighlight>
To extract the apropriate member of a UNION a '''conformity-clause''' has to be used.
<langsyntaxhighlight lang="algol68">UNIONX data := 6.6;
CASE data IN
(INT i): printf(($"r: "gl$,i)),
Line 109 ⟶ 175:
OUT
printf($"Other cases"l$)
ESAC;</langsyntaxhighlight>
The '''conformity-clause''' does mean that ALGOL 68 avoids the need for
[[duck typing]], but it also makes the tagged-union kinda tough to use,
Line 116 ⟶ 182:
ALGOL 68 record types are not extensible through inheritance but they
may be part of a larger STRUCT composition.
<langsyntaxhighlight lang="algol68">MODE POINT = STRUCT(
INT x,
INT y
);</langsyntaxhighlight>
====Parameterized Types====
An ALGOL 68 record type can contain a tagged-union/discriminant. The
tagged-union/discriminant is used to choose between internal structural
representations.
<langsyntaxhighlight lang="algol68">MODE PERSON = STRUCT(
STRING name,
REAL age,
Line 132 ⟶ 198:
VOID
) gender details
);</langsyntaxhighlight>
In this case every PERSON will have the attributes of gender details, name, age,
and weight. A PERSON may or may not have a beard. The sex is implied by the tagging.
 
=={{header|ALGOL W}}==
<langsyntaxhighlight lang="algolw">begin
% create the compound data type %
record Point( real x, y );
Line 146 ⟶ 212:
% access the fields of p - note Algol W uses x(p) where many languages would use p.x %
write( x(p), y(p) )
end.</langsyntaxhighlight>
 
=={{header|AmigaE}}==
<langsyntaxhighlight lang="amigae">OBJECT point
x, y
ENDOBJECT
Line 162 ⟶ 228:
pt.y := !3.14
END pt
ENDPROC</langsyntaxhighlight>
 
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
<lang ARM Assembly>
 
/* ARM assembly Raspberry PI */
Line 309 ⟶ 375:
iMagicNumber: .int 0xCCCCCCCD
 
</syntaxhighlight>
</lang>
 
=={{header|Arturo}}==
 
<syntaxhighlight lang="arturo">point: #[
===Using a dictionary===
x: 10
<lang arturo>point #{
xy: 1020
]
y 20
}
 
print point</langsyntaxhighlight>
 
{{out}}
 
<pre>#{ [x :10, y :20 }]</pre>
 
===Using a class={{header|ATS}}==
 
There are numerous ways to do this. The simplest is to use an "unboxed" tuple type:
<lang arturo>Point #{
x 0
y 0
 
<syntaxhighlight lang="ats">typedef point (t : t@ype+) = @(t, t)
init {
val p : point double = (1.0, 3.0)</syntaxhighlight>
x &0
y &1
}
}
 
point $(new ~Point 10 20)
 
print point</lang>
 
{{out}}
 
If one insists both that the type be unique (as opposed to an alias for a tuple) and that the notation to create a point be '''Point (x, y)''', then the following works:
<pre>#{ init <function: 0x1077534A0>, x 10, y 20 }</pre>
<syntaxhighlight lang="ats">datatype point (t : t@ype+) =
| Point of (t, t)
val p : point double = Point (1.0, 3.0)</syntaxhighlight>
 
=={{header|AutoHotkey}}==
Line 349 ⟶ 406:
[[wp:Monkey_patch|monkeypatched]] example.
 
<langsyntaxhighlight AutoHotkeylang="autohotkey">point := Object()
point.x := 1
point.y := 0
</syntaxhighlight>
</lang>
 
=={{header|AWK}}==
As usual, arrays are the only data type more complex than a number or a string.<br>
Use quotes around constant strings as element selectors:
<langsyntaxhighlight lang="awk">BEGIN {
p["x"]=10
p["y"]=42
Line 367 ⟶ 424:
for (i in p) print( i, ":", p[i] )
}</langsyntaxhighlight>
{{out}}
<pre>
Line 377 ⟶ 434:
=={{header|Axe}}==
Axe does not have language support for custom data structures. However, they can be implemented from scratch using memory directly.
<langsyntaxhighlight lang="axe">Lbl POINT
r₂→{r₁}ʳ
r₃→{r₁+2}ʳ
r₁
Return</langsyntaxhighlight>
 
To initialize a POINT at memory address L₁ with (x, y) = (5, 10):
<syntaxhighlight lang ="axe">POINT(L₁,5,10)</langsyntaxhighlight>
 
The caller must ensure the buffer has enough free space to contain the object (in this case, 4 bytes).
Line 392 ⟶ 449:
{{works with|PowerBASIC}}
 
<langsyntaxhighlight lang="qb">TYPE Point
x AS INTEGER
y AS INTEGER
END TYPE</langsyntaxhighlight>
 
=={{header|BBC BASIC}}==
{{works with|BBC BASIC for Windows}}
<langsyntaxhighlight lang="bbcbasic"> DIM Point{x%, y%}</langsyntaxhighlight>
 
=={{header|Bracmat}}==
Line 406 ⟶ 463:
So we go object oriented and create a 'type' Point. We show that <code>x</code> and <code>y</code> are independent by changing the value of <code>x</code> and checking that <code>y</code> didn't change.
Bracmat does not have other typing systems than duck typing. The variable <code>Point</code> is not a class, but an object in its own right. The <code>new$</code> function creates a copy of <code>Point</code>.
<langsyntaxhighlight Bracmatlang="bracmat">( ( Point
= (x=)
(y=)
Line 416 ⟶ 473:
& 7:?(pt..x)
& out$(!(pt..x) !(pt..y))
);</langsyntaxhighlight>
{{out}}
<pre>3 4
Line 429 ⟶ 486:
=={{header|C}}==
 
<langsyntaxhighlight lang="c">typedef struct Point
{
int x;
int y;
} Point;</langsyntaxhighlight>
 
=={{header|C sharp|C#}}==
 
<langsyntaxhighlight lang="csharp">struct Point
{
public int x, y;
Line 444 ⟶ 501:
this.y = y;
}
}</langsyntaxhighlight>
 
=={{header|C++}}==
<langsyntaxhighlight lang="cpp">struct Point
{
int x;
int y;
};</langsyntaxhighlight>
 
It is also possible to add a constructor (this allows the use of <tt>Point(x, y)</tt> in expressions):
<langsyntaxhighlight lang="cpp">struct Point
{
int x;
int y;
Point(int ax, int ay): x(ax), y(ax) {}
};</langsyntaxhighlight>
 
Point can also be parametrized on the coordinate type:
<langsyntaxhighlight lang="cpp">template<typename Coordinate> struct point
{
Coordinate x, y;
Line 471 ⟶ 528:
 
// a point with floating point coordinates
Point<float> point2 = { 1.7, 3.6 };</langsyntaxhighlight>
Of course, a constructor can be added in this case as well.
 
=={{header|Clean}}==
===Record type===
<langsyntaxhighlight lang="clean">:: Point = { x :: Int, y :: Int }</langsyntaxhighlight>
===Parameterized Algebraic type===
<langsyntaxhighlight lang="clean">:: Point a = Point a a // usage: (Point Int)</langsyntaxhighlight>
===Synonym type===
<langsyntaxhighlight lang="clean">:: Point :== (Int, Int)</langsyntaxhighlight>
 
=={{header|Clojure}}==
<langsyntaxhighlight lang="clojure">(defrecord Point [x y])</langsyntaxhighlight>
This defines a datatype with constructor ''Point.'' and accessors '':x'' and '':y'' :
<langsyntaxhighlight lang="clojure">(def p (Point. 0 1))
(assert (= 0 (:x p)))
(assert (= 1 (:y p)))</langsyntaxhighlight>
 
=={{header|CLU}}==
CLU has two types of compound datatypes: ''struct''s, which are immutable, and ''record''s, which are mutable.
Aside from this, they work the same way.
 
<syntaxhighlight lang="clu">% Definitions
point = struct[x, y: int]
mutable_point = record[x, y: int]
 
% Initialization
p: point := point${x: 10, y: 20}
mp: mutable_point := mutable_point${x: 10, y: 20}</syntaxhighlight>
 
The fields can be accessed using the <code>.</code> syntax:
<syntaxhighlight lang="clu">foo := p.x
bar := p.y</syntaxhighlight>
 
''Record''s, but not ''struct''s, allow updating the fields in the same way.
<syntaxhighlight lang="clu">mp.x := 30
mp.y := 40</syntaxhighlight>
 
It should be noted that the special forms <code>p.x</code> and <code>mp.x := value</code>
are really only syntactic sugar, they are equivalent to the following method calls:
<syntaxhighlight lang="clu">foo := point$get_x(p)
bar := point$get_y(p)</syntaxhighlight>
 
<syntaxhighlight lang="clu">mutable_point$set_x(mp, 30)
mutable_point$set_y(mp, 40)</syntaxhighlight>
 
=={{header|COBOL}}==
A compound data item description is possible in COBOL as a subdivided record:
<lang cobol>
<syntaxhighlight lang="cobol"> DATA DIVISION.
01 Point.
05 x WORKING-STORAGE pic 9(3)SECTION.
05 y 01 pic 9(3)Point.
05 x USAGE IS BINARY-SHORT.
</lang>
05 y USAGE IS BINARY-SHORT.</syntaxhighlight>
Here the record <code>Point</code> has the subdivisions <code>x</code> and <code>y</code>, both of which are signed 16-bit binary integers.
 
=={{header|CoffeeScript}}==
<langsyntaxhighlight lang="coffeescript">
# Lightweight JS objects (with CS sugar).
point =
Line 518 ⟶ 605:
console.log p1.distance_from # [Function]
console.log p1.distance_from p2 # 13
</syntaxhighlight>
</lang>
 
=={{header|Common Lisp}}==
 
<langsyntaxhighlight lang="lisp">CL-USER> (defstruct point (x 0) (y 0)) ;If not provided, x or y default to 0
POINT</langsyntaxhighlight>
In addition to defining the ''point'' data type, the defstruct macro also created constructor and accessor functions:
<langsyntaxhighlight lang="lisp">CL-USER> (setf a (make-point)) ;The default constructor using the default values for x and y
#S(POINT :X 0 :Y 0)
CL-USER> (setf b (make-point :x 5.5 :y #C(0 1))) ;Dynamic datatypes are the default
Line 536 ⟶ 623:
3
CL-USER> (point-y b)
3</langsyntaxhighlight>
 
=={{header|Crystal}}==
Crystal's structs work very similarly to objects, but are allocated on the stack instead of the heap, and passed by value instead of by reference. More potential caveats are noted in the [https://crystal-lang.org/reference/syntax_and_semantics/structs.html language reference].
 
<syntaxhighlight lang="ruby">struct Point(T)
getter x : T
getter y : T
def initialize(@x, @y)
end
end
 
puts Point(Int32).new 13, 12 #=> Point(Int32)(@x=13, @y=12)</syntaxhighlight>
 
=={{header|D}}==
<langsyntaxhighlight lang="d">void main() {
// A normal POD struct
// (if it's nested and it's not static then it has a hidden
Line 585 ⟶ 684:
static assert(is(p6[0] == int));
static assert(p6[1] == 5);
}</langsyntaxhighlight>
 
=={{header|Delphi}}==
As defined in Types.pas:
 
<langsyntaxhighlight Delphilang="delphi"> TPoint = record
X: Longint;
Y: Longint;
end;
</syntaxhighlight>
</lang>
 
=={{header|Diego}}==
<syntaxhighlight lang="diego">use_namespace(rosettacode)_me();
 
add_struct(point)_arg(x,y);
 
with_point(point1)_arg(4,3);
 
// Since no datatype is specified for the args any datatype can be passed
with_point(point2)_arg(0.033,👣);
 
reset_namespace[];</syntaxhighlight>
 
=={{header|E}}==
 
<langsyntaxhighlight lang="e">def makePoint(x, y) {
def point {
to getX() { return x }
Line 604 ⟶ 715:
}
return point
}</langsyntaxhighlight>
 
=={{header|EchoLisp}}==
<langsyntaxhighlight lang="scheme">
(lib 'struct)
(struct Point (x y))
Line 620 ⟶ 731:
(Point 3 'albert)
❌ error: #number? : type-check failure : albert → 'Point:y'
</syntaxhighlight>
</lang>
 
=={{header|Ela}}==
Line 626 ⟶ 737:
Ela supports algebraic types:
 
<langsyntaxhighlight lang="ela">type Maybe = None | Some a</langsyntaxhighlight>
 
Except of regular algebraic types, Ela also provides a support for open algebraic types - which can be extended any time with new constructors:
 
<langsyntaxhighlight lang="ela">opentype Several = One | Two | Three
 
//Add new constructor to an existing type
data Several = Four</langsyntaxhighlight>
 
=={{header|Elena}}==
ELENA 6.x:
<lang elena>struct Point
<syntaxhighlight lang="elena">struct Point
{
prop int X : prop;
prop int Y : prop;
constructor new(int x, int y)
Line 647 ⟶ 759:
Y := y
}
}</langsyntaxhighlight>
 
=={{header|Elixir}}==
<langsyntaxhighlight lang="elixir">iex(1)> defmodule Point do
...(1)> defstruct x: 0, y: 0
...(1)> end
Line 667 ⟶ 779:
10
iex(8)> py
20</langsyntaxhighlight>
 
=={{header|Elm}}==
<langsyntaxhighlight lang="elm">
--Compound Data type can hold multiple independent values
--In Elm data can be compounded using List, Tuple, Record
Line 698 ⟶ 810:
--Each time a new record is generated
--END
</syntaxhighlight>
</lang>
 
=={{header|Erlang}}==
<langsyntaxhighlight lang="erlang">
-module(records_test).
-compile(export_all).
Line 712 ⟶ 824:
P2 = P1#point{x=3.0}, % creates a new point record with x set to 3.0, y is copied from P1
io:fwrite("X: ~f, Y: ~f~n",[P2#point.x,P2#point.y]).
</syntaxhighlight>
</lang>
 
=={{header|Euphoria}}==
{{works with|OpenEuphoria}}
<langsyntaxhighlight lang="euphoria">
enum x, y
 
Line 728 ⟶ 840:
printf(1,"x = %d, y = %3.3f\n",point)
printf(1,"x = %s, y = %3.3f\n",point)
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 738 ⟶ 850:
=={{header|F_Sharp|F#}}==
See the OCaml section as well. Here we create a list of points and print them out.
<langsyntaxhighlight lang="fsharp">type Point = { x : int; y : int }
 
let points = [
Line 744 ⟶ 856:
{x = 5; y = 5} ]
Seq.iter (fun p -> printfn "%d,%d" p.x p.y) points</langsyntaxhighlight>
 
=={{header|Factor}}==
<syntaxhighlight lang ="factor">TUPLE: point x y ;</langsyntaxhighlight>
 
=={{header|Fantom}}==
 
<langsyntaxhighlight lang="fantom">
// define a class to contain the two fields
// accessors to get/set the field values are automatically generated
Line 772 ⟶ 884:
}
}
</syntaxhighlight>
</lang>
 
{{out}}
Line 783 ⟶ 895:
There is no standard structure syntax in Forth, but it is easy to define words for creating and accessing data structures.
 
<langsyntaxhighlight lang="forth">: pt>x ( point -- x ) ;
: pt>y ( point -- y ) CELL+ ;
: .pt ( point -- ) dup pt>x @ . pt>y @ . ; \ or for this simple structure, 2@ . .
Line 789 ⟶ 901:
create point 6 , 0 ,
7 point pt>y !
.pt \ 6 7</langsyntaxhighlight>
 
{{works with|GNU Forth|0.6.2}}
Some Forths have mechanisms for declaring complex structures. For example, GNU Forth uses this syntax:
 
<langsyntaxhighlight lang="forth">struct
cell% field pt>x
cell% field pt>y
end-struct point%</langsyntaxhighlight>
 
=={{header|Fortran}}==
In ISO Fortran 90 or later, use a TYPE declaration, "constructor" syntax, and field delimiter syntax:
<langsyntaxhighlight lang="fortran">program typedemo
type rational ! Type declaration
integer :: numerator
Line 822 ⟶ 934:
oon_denoms = one_over_n%denominator ! Access denominator field in every
! rational array element & store
end program typedemo ! as integer array</langsyntaxhighlight>
 
=={{header|FreeBASIC}}==
<langsyntaxhighlight lang="freebasic">' FB 1.05.0 Win64
 
Type Point
Line 835 ⟶ 947:
Print p.x, p.y
Print p2.x, p2.y
Sleep</langsyntaxhighlight>
 
{{out}}
Line 843 ⟶ 955:
</pre>
 
=={{header|GoFutureBasic}}==
<syntaxhighlight lang="futurebasic">
<lang go>package main
CGRect r = {0, 0, 250, 100}
printf @"x = %.f : y = %.f : width = %.f : height = %.f", r.origin.x, r.origin.y, r.size.width, r.size.height
 
HandleEvents
import "fmt"
</syntaxhighlight>
{{output}}
<pre>
x = 0 : y = 0 : width = 250 : height = 100
 
</pre>
type point struct {
 
 
=={{header|Go}}==
<syntaxhighlight lang="go">type point struct {
x, y float64
}
</syntaxhighlight>
 
func main() {
fmt.Println(point{3, 4})
}</lang>
 
=={{header|Groovy}}==
 
===Declaration===
<langsyntaxhighlight lang="groovy">class Point {
int x
int y
Line 866 ⟶ 985:
Point(int x = 0, int y = 0) { this.x = x; this.y = y }
String toString() { "{x:${x}, y:${y}}" }
}</langsyntaxhighlight>
 
===Instantiation===
=====Direct=====
<langsyntaxhighlight lang="groovy">// Default Construction with explicit property setting:
def p0 = new Point()
assert 0 == p0.x
Line 886 ⟶ 1,005:
def p2 = new Point(36)
assert 36 == p2.x
assert 0 == p2.y</langsyntaxhighlight>
 
=====List-to-argument Substitution=====
There are several ways that a List can be substituted for constructor arguments via "type coercion" (casting).
<langsyntaxhighlight lang="groovy">// Explicit coersion from list with "as" keyword
def p4 = [36, -2] as Point
assert 36 == p4.x
Line 908 ⟶ 1,027:
Point p8 = [36]
assert 36 == p8.x
assert 0 == p8.y</langsyntaxhighlight>
 
=====Map-to-property Substitution=====
There are several ways to construct an object using a map (or a comma-separated list of map entries) that substitutes entries for class properties. The process is properly (A) instantiation, followed by (B) property mapping. Because the instantiation is not tied to the mapping, it requires the existence of a no-argument constructor.
<langsyntaxhighlight lang="groovy">// Direct map-based construction
def p3 = new Point([x: 36, y: -2])
assert 36 == p3.x
Line 942 ⟶ 1,061:
Point p9 = [y:-2]
assert 0 == p9.x
assert -2 == p9.y</langsyntaxhighlight>
 
=={{header|Haskell}}==
Line 982 ⟶ 1,101:
You can make a tuple literal by using a comma-delimited list surrounded by parentheses, without needing to declare the type first:
 
<langsyntaxhighlight lang="haskell">p = (2,3)</langsyntaxhighlight>
 
The type of <code>p</code> is <code>(Int, Int)</code>, using the same comma-delimited list syntax as the literal.
Line 997 ⟶ 1,116:
 
=={{header|Icon}} and {{header|Unicon}}==
<syntaxhighlight lang ="icon">record Point(x,y)</langsyntaxhighlight>
 
=={{header|IDL}}==
 
<langsyntaxhighlight lang="idl">point = {x: 6 , y: 0 }
point.y = 7
print, point
;=> { 6 7}</langsyntaxhighlight>
 
=={{header|J}}==
Line 1,010 ⟶ 1,129:
In a "real" J application, points would be represented by arrays of 2 (or N) numbers. None the less, sometimes objects (in the OO sense) are a better representation than arrays, so J supports them:
 
<langsyntaxhighlight lang="j"> NB. Create a "Point" class
coclass'Point'
 
NB. Define its constuctorconstructor
create =: 3 : 0
'X Y' =: y
Line 1,026 ⟶ 1,145:
10
Y__P
20</langsyntaxhighlight>
 
=={{header|Jakt}}==
<syntaxhighlight lang="jakt">
struct Point {
x: i64
y: i64
}
 
fn main() {
println("{}", Point(x: 3, y: 4))
}
</syntaxhighlight>
 
=={{header|Java}}==
Starting with Java 14 you can use a record
<syntaxhighlight lang="java">
record Point(int x, int y) { }
</syntaxhighlight>
Usage
<syntaxhighlight lang="java">
Point point = new Point(1, 2);
int x = point.x;
int y = point.y;
</syntaxhighlight>
<br />
Alternately
We use a class:
<langsyntaxhighlight lang="java">public class Point
{
public int x, y;
Line 1,043 ⟶ 1,186:
System.out.println("y = " + point.y );
}
}</langsyntaxhighlight>
 
=={{header|JavaScript}}==
 
<langsyntaxhighlight lang="javascript">//using object literal syntax
var point = {x : 1, y : 2};
 
Line 1,064 ⟶ 1,207:
}
}
point = new Point(1, 2);</langsyntaxhighlight>
 
=={{header|jq}}==
<langsyntaxhighlight lang="jq">{"x":1, "y":2}</langsyntaxhighlight>
 
If the emphasis in the task description is on "type", then an alternative approach would be to include a "type" key, e.g.
<langsyntaxhighlight lang="jq">{"x":1, "y":2, type: "Point"}</langsyntaxhighlight>
 
Using this approach, one can distinguish between objects of type "Point" and those that happen to have keys named "x" and "y".
Line 1,076 ⟶ 1,219:
=={{header|JSON}}==
 
<langsyntaxhighlight lang="json">{"x":1,"y":2}</langsyntaxhighlight>
 
=={{header|Julia}}==
'''Define the type''':
<langsyntaxhighlight lang="julia">struct Point{T<:Real}
x::T
y::T
end</langsyntaxhighlight>
The components of <code>Point</code> can be any sort of real number, though they do have to be of the same type.
 
'''Define a few simple operations for Point''':
<langsyntaxhighlight lang="julia">Base.:(==)(u::Point, v::Point) = u.x == v.x && u.y == v.y
Base.:-(u::Point) = Point(-u.x, -u.y)
Base.:+(u::Point, v::Point) = Point(u.x + v.x, u.y + v.y)
Base.:-(u::Point, v::Point) = u + (-v)</langsyntaxhighlight>
 
'''Have fun''':
<langsyntaxhighlight lang="julia">a, b, c = Point(1, 2), Point(3, 7), Point(2, 4)
@show a b c
@show a + b
Line 1,100 ⟶ 1,243:
@show a + b + c
@show a == b
@show a + a == c</langsyntaxhighlight>
 
{{out}}
Line 1,114 ⟶ 1,257:
 
=={{header|KonsolScript}}==
<langsyntaxhighlight KonsolScriptlang="konsolscript">Var:Create(
Point,
Number x,
Number y
)</langsyntaxhighlight>
 
Instanciate it with...
<langsyntaxhighlight KonsolScriptlang="konsolscript">function main() {
Var:Point point;
}</langsyntaxhighlight>
 
=={{header|Kotlin}}==
<langsyntaxhighlight lang="scala">data class Point(var x: Int, var y: Int)
 
fun main(args: Array<String>) {
Line 1,134 ⟶ 1,277:
p.y = 4
println(p)
}</langsyntaxhighlight>
 
{{out}}
Line 1,143 ⟶ 1,286:
 
=={{header|Lambdatalk}}==
<langsyntaxhighlight lang="scheme">
1) a pair
{def P {P.new 1 2}}
Line 1,167 ⟶ 1,310:
{A.last {R}}
-> 2
</syntaxhighlight>
</lang>
 
=={{header|Lang}}==
<syntaxhighlight lang="lang">
&Point = {
$x
$y
}
</syntaxhighlight>
 
=={{header|Lasso}}==
In Lasso, a point could just be stored in the pair type. However, assuming we want to be able to access the points using the member methods [Point->x] and [Point->y], let's just create a type that inherits from the pair type:
<langsyntaxhighlight lang="lasso">define Point => type {
parent pair
 
Line 1,184 ⟶ 1,335:
local(point) = Point(33, 42)
#point->x
#point->y</langsyntaxhighlight>
 
{{out}}
Line 1,194 ⟶ 1,345:
Simply define a record in the LFE REPL (can also be used in include files, modules, etc.):
 
<langsyntaxhighlight lang="lisp">
(defrecord point
x
y)
</syntaxhighlight>
</lang>
 
Creating points:
Line 1,240 ⟶ 1,391:
=={{header|Lingo}}==
Point and Vector types are built-in. A custom "MyPoint" type can be implemented like this:
<langsyntaxhighlight lang="lingo">-- parent script "MyPoint"
property x
property y
Line 1,247 ⟶ 1,398:
me.y = py
return me
end</langsyntaxhighlight>
<langsyntaxhighlight lang="lingo">p = script("MyPoint").new(23, 42)
put p.x, p.y
-- 23 42</langsyntaxhighlight>
Construction could also be simplified by using a global wrapper function:
<langsyntaxhighlight lang="lingo">-- in some movie script
on MyPoint (x, y)
return script("MyPoint").new(x, y)
end</langsyntaxhighlight>
<langsyntaxhighlight lang="lingo">p = MyPoint(23, 42)
put p.x, p.y
-- 23 42</langsyntaxhighlight>
 
=={{header|Logo}}==
In Logo, a point is represented by a list of two numbers. For example, this will draw a triangle:
<langsyntaxhighlight lang="logo">setpos [100 100] setpos [100 0] setpos [0 0]
show pos ; [0 0]</langsyntaxhighlight>
Access is via normal list operations like FIRST and BUTFIRST (BF). X is FIRST point, Y is LAST point. For example, a simple drawing program which exits if mouse X is negative:
<langsyntaxhighlight lang="logo">until [(first mousepos) < 0] [ifelse button? [pendown] [penup] setpos mousepos]</langsyntaxhighlight>
 
=={{header|Lua}}==
Line 1,273 ⟶ 1,424:
Lua could use a simple table to store a compound data type Point(x, y):
 
<langsyntaxhighlight lang="lua">
a = {x = 1; y = 2}
b = {x = 3; y = 4}
Line 1,282 ⟶ 1,433:
print(a.x, a.y) --> 1 2
print(c.x, c.y) --> 4 6
</syntaxhighlight>
</lang>
 
==== Prototype Object ====
 
Furthermore, Lua could create a prototype object (OOP class emulation) to represent a compound data type Point(x, y) as the following:
<langsyntaxhighlight lang="lua">
cPoint = {} -- metatable (behaviour table)
function newPoint(x, y) -- constructor
Line 1,297 ⟶ 1,448:
return setmetatable(pointPrototype, cPoint) -- set behaviour and return the pointPrototype
end--newPoint
</syntaxhighlight>
</lang>
 
In the above example, the methods are declared inside the constructor so that they could access the closured values <code>x</code> and <code>y</code> (see usage example). The <code>pointPrototype:type</code> method could be used to extend the original <code>type</code> function available in Lua:
 
<langsyntaxhighlight lang="lua">
local oldtype = type; -- store original type function
function type(v)
Line 1,311 ⟶ 1,462:
end--if vType=="table"
end--type
</syntaxhighlight>
</lang>
 
The usage of metatable <code>cPoint</code> which stores the behavior of the <code>pointPrototype</code> enables additional behaviour to be added to the data type, such as:
 
<langsyntaxhighlight lang="lua">
function cPoint.__add(op1, op2) -- add the x and y components
if type(op1)=="point" and type(op2)=="point" then
Line 1,330 ⟶ 1,481:
end--if type(op1)
end--cPoint.__sub
</syntaxhighlight>
</lang>
 
Usage example:
 
<langsyntaxhighlight lang="lua">
a = newPoint(1, 2)
b = newPoint(3, 4)
Line 1,342 ⟶ 1,493:
print(c:getXY()) --> 4 6
print((a-b):getXY()) --> -2 -2 -- using __sub behaviour
</syntaxhighlight>
</lang>
 
=={{header|Maple}}==
<syntaxhighlight lang="maple">Point:= Record(x = 2,y = 4):
 
Point:-x;
Point:-y;</syntaxhighlight>
{{out}}
<pre>
2
4
</pre>
 
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Expressions like point[x, y] can be used without defining.
<langsyntaxhighlight lang="mathematica">In[1]:= a = point[2, 3]
 
Out[1]= point[2, 3]
Line 1,356 ⟶ 1,518:
In[3]:= a[[2]] = 4; a
 
Out[3]= point[2, 4]</langsyntaxhighlight>
 
Or you can just define a function.
<langsyntaxhighlight lang="mathematica">p[x] = 2; p[y] = 3;</langsyntaxhighlight>
Data will be stored as down values of the symbol ''p''.
 
=={{header|MATLAB}} / {{header|Octave}}==
 
<langsyntaxhighlight MATLABlang="matlab"> point.x=3;
point.y=4;</langsyntaxhighlight>
Alternatively, coordinates can be also stored as vectors
<langsyntaxhighlight MATLABlang="matlab"> point = [3,4];</langsyntaxhighlight>
 
=={{header|Maxima}}==
<langsyntaxhighlight lang="maxima">defstruct(point(x, y))$
 
p: new(point)$
Line 1,376 ⟶ 1,538:
q: point(1, 2)$
 
p@x: 5$</langsyntaxhighlight>
 
=={{header|MAXScript}}==
Point is a built-in object type in MAX, so...
<langsyntaxhighlight lang="maxscript">struct myPoint (x, y)
newPoint = myPoint x:3 y:4</langsyntaxhighlight>
In practice however, you'd use MAX's built in Point2 type
<langsyntaxhighlight lang="maxscript">newPoint = Point2 3 4</langsyntaxhighlight>
 
=={{header|MiniScript}}==
<langsyntaxhighlight MiniScriptlang="miniscript">Point = {}
Point.x = 0
Point.y = 0</langsyntaxhighlight>
 
=={{header|Modula-2}}==
<langsyntaxhighlight lang="modula2">TYPE Point = RECORD
x, y : INTEGER
END;</langsyntaxhighlight>
 
Usage:
<langsyntaxhighlight lang="modula2">VAR point : Point;
...
point.x := 12;
point.y := 7;</langsyntaxhighlight>
 
=={{header|Modula-3}}==
<langsyntaxhighlight lang="modula3">TYPE Point = RECORD
x, y: INTEGER;
END;</langsyntaxhighlight>
 
Usage:
Line 1,421 ⟶ 1,583:
=={{header|NetRexx}}==
Like Java, NetRexx uses the <tt>class</tt> instruction to create compound types. Unlike Java; NetRexx provides keywords to automatically generate getters and setters for <tt>class</tt> properties and will automatically generate intermediate methods based on defaults provided in method prototypes.
<langsyntaxhighlight NetRexxlang="netrexx">/* NetRexx */
options replace format comments java crossref symbols nobinary
 
Line 1,443 ⟶ 1,605:
res = 'X='getX()',Y='getY()
return res
</syntaxhighlight>
</lang>
{{out}}
<pre>
Line 1,450 ⟶ 1,612:
 
=={{header|Nim}}==
<langsyntaxhighlight lang="nim">type Point = tuple[x, y: int]
 
var p: Point = (12, 13)
var p2: Point = (x: 100, y: 200)</langsyntaxhighlight>
 
=={{header|Oberon-2}}==
<langsyntaxhighlight lang="oberon2">
MODULE Point;
TYPE
Line 1,477 ⟶ 1,639:
 
END Point.
</syntaxhighlight>
</lang>
 
=={{header|Objeck}}==
Classes are used for compound data types.
<langsyntaxhighlight lang="objeck">
class Point {
@x : Int;
Line 1,517 ⟶ 1,679:
}
}
</syntaxhighlight>
</lang>
 
=={{header|OCaml}}==
Line 1,524 ⟶ 1,686:
See [[wp:Algebraic_data_type|algebraic data type]]. The different options ("Empty", "Leaf", "Node") are called ''constructors'', and is associated with 0 or more arguments with the declared types; multiple arguments are declared with a syntax that looks like a tuple type, but it is not really a tuple.
 
<langsyntaxhighlight lang="ocaml">type tree = Empty
| Leaf of int
| Node of tree * tree
 
let t1 = Node (Leaf 1, Node (Leaf 2, Leaf 3))</langsyntaxhighlight>
 
===Record Type===
 
<langsyntaxhighlight lang="ocaml">type point = { x : int; y : int }</langsyntaxhighlight>
 
How to construct a point:
 
<langsyntaxhighlight lang="ocaml">let p = { x = 4; y = 5 }</langsyntaxhighlight>
 
You can use the dot (".") to access fields.
<langsyntaxhighlight lang="ocaml">p.x (* evaluates to 4 *)</langsyntaxhighlight>
 
Fields can be optionally declared to be mutable:
<langsyntaxhighlight lang="ocaml">type mutable_point = { mutable x2 : int; mutable y2 : int }</langsyntaxhighlight>
 
Then they can be assigned using the assignment operator "<-"
<langsyntaxhighlight lang="ocaml">let p2 = { x2 = 4; y2 = 5 } in
p2.x2 <- 6;
p2 (* evaluates to { x2 = 6; y2 = 5 } *)</langsyntaxhighlight>
 
===Tuple Type===
Line 1,553 ⟶ 1,715:
You can make a tuple literal by using a comma-delimited list, optionally surrounded by parentheses, without needing to declare the type first:
 
<langsyntaxhighlight lang="ocaml">let p = (2,3)</langsyntaxhighlight>
 
The type of <code>p</code> is a product (indicated by <code>*</code>) of the types of the components:
Line 1,563 ⟶ 1,725:
Using a class :
 
<langsyntaxhighlight lang="oforth">Object Class new: Point(x, y)</langsyntaxhighlight>
 
=={{header|ooRexx}}==
ooRexx uses class for compound data types.
<syntaxhighlight lang="oorexx">
<lang ooRexx>
p = .point~new(3,4)
say "x =" p~x
Line 1,579 ⟶ 1,741:
::attribute x
::attribute y
</syntaxhighlight>
</lang>
 
=={{header|OpenEdge/Progress}}==
Line 1,585 ⟶ 1,747:
The temp-table is a in memory database table. So you can query sort and iterate it, but is the data structure that comes closest.
 
<langsyntaxhighlight Progresslang="progress (Openedgeopenedge ABLabl)">def temp-table point
field x as int
field y as int
.</langsyntaxhighlight>
 
Another option would be a simple class.
 
=={{header|OxygenBasic}}==
<langsyntaxhighlight lang="oxygenbasic">
'SHORT FORM
type point float x,y
 
'FULL FORM
type point
Line 1,602 ⟶ 1,764:
float y
end type
 
</lang>
point p
 
'WITH DEFAULT VALUES
type point
float x = 1.0
float y = 1.0
end type
 
point p = {} 'assigns the set of default values
 
 
print p.x " " p.y
</syntaxhighlight>
 
=={{header|Oz}}==
A point can be represented by using a record value:
<langsyntaxhighlight lang="oz">P = point(x:1 y:2)</langsyntaxhighlight>
 
Now we can access the components by name: P.x and P.y
Often such values are deconstructed by pattern matching:
<langsyntaxhighlight lang="oz">case P of point(x:X y:Y) then
{Show X}
{Show Y}
end</langsyntaxhighlight>
 
=={{header|PARI/GP}}==
<langsyntaxhighlight lang="parigp">point.x=1;
point.y=2;</langsyntaxhighlight>
 
=={{header|Pascal}}==
<langsyntaxhighlight lang="pascal">type point = record
x, y: integer;
end;</langsyntaxhighlight>
 
=={{header|Perl}}==
 
===Array===
<langsyntaxhighlight lang="perl">my @point = (3, 8);</langsyntaxhighlight>
 
===Hash===
<langsyntaxhighlight lang="perl">my %point = (
x => 3,
y => 8
);</langsyntaxhighlight>
 
===Class instance===
<langsyntaxhighlight lang="perl">package Point;
 
use strict;
Line 1,644 ⟶ 1,819:
;
 
my $point = Point->new(x => 3, y => 8);</langsyntaxhighlight>
 
=={{header|Phix}}==
===traditional user defined type===
The sequence is a natural compound data type. The following would be the same without the type point and declaring p as a sequence, apart from the run-time error. There would be no difficulty defining point to have a string and two atoms.
<!--<syntaxhighlight lang="phix">(phixonline)-->
<lang Phix>enum x,y
<span style="color: #008080;">with</span> <span style="color: #008080;">javascript_semantics</span>
type point(object p)
<span style="color: #008080;">enum</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y</span>
return sequence(p) and length(p)=y and atom(p[x]) and atom(p[y])
<span style="color: #008080;">type</span> <span style="color: #000000;">point</span><span style="color: #0000FF;">(</span><span style="color: #004080;">object</span> <span style="color: #000000;">p</span><span style="color: #0000FF;">)</span>
end type
<span style="color: #008080;">return</span> <span style="color: #004080;">sequence</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">)</span> <span style="color: #008080;">and</span> <span style="color: #7060A8;">length</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">)=</span><span style="color: #000000;">y</span> <span style="color: #008080;">and</span> <span style="color: #004080;">atom</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">x</span><span style="color: #0000FF;">])</span> <span style="color: #008080;">and</span> <span style="color: #004080;">atom</span><span style="color: #0000FF;">(</span><span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">y</span><span style="color: #0000FF;">])</span>
 
<span style="color: #008080;">end</span> <span style="color: #008080;">type</span>
point p = {175,3.375}
 
<span style="color: #000000;">point</span> <span style="color: #000000;">p</span> <span style="color: #0000FF;">=</span> <span style="color: #0000FF;">{</span><span style="color: #000000;">175</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3.375</span><span style="color: #0000FF;">}</span>
p[x] -= p[y]*20
<span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">x</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">-=</span> <span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">y</span><span style="color: #0000FF;">]*</span><span style="color: #000000;">20</span>
 
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"point p is "</span><span style="color: #0000FF;">)</span>
puts(1,"point p is ")
<span style="color: #0000FF;">?</span><span style="color: #000000;">p</span>
?p
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"p[x]:%g, p[y]:%g\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">x</span><span style="color: #0000FF;">],</span><span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">y</span><span style="color: #0000FF;">]})</span>
printf(1,"p[x]:%g, p[y]:%g\n",{p[x],p[y]})
<span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">x</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span> <span style="color: #000080;font-style:italic;">-- fine</span>
 
<span style="color: #000000;">p</span><span style="color: #0000FF;">[</span><span style="color: #000000;">y</span><span style="color: #0000FF;">]</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"string"</span> <span style="color: #000080;font-style:italic;">-- run-time error (not pwa/p2js)</span>
p[x] = 0 -- fine
<!--</syntaxhighlight>-->
p[y] = "string" -- run-time error</lang>
{{out}}
<pre>
point p is {107.5,3.375}
p[x]:107.5, p[y]:3.375
 
C:\Program Files (x86)\Phix\test.exw:15
C:\Program Files (x86)\Phix\test.exw:12
type check failure, p is {0,"string"}
 
--> see C:\Program Files (x86)\Phix\ex.err
Press Enter...
</pre>
 
===classes===
{{libheader|Phix/Class}}
You could also use a class (not pwa/p2js)
<!--<syntaxhighlight lang="phix">-->
<span style="color: #008080;">class</span> <span style="color: #000000;">point</span>
<span style="color: #008080;">public</span> <span style="color: #004080;">atom</span> <span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">y</span>
<span style="color: #008080;">end</span> <span style="color: #008080;">class</span>
<span style="color: #000000;">point</span> <span style="color: #000000;">p</span> <span style="color: #0000FF;">=</span> <span style="color: #7060A8;">new</span><span style="color: #0000FF;">({</span><span style="color: #000000;">175</span><span style="color: #0000FF;">,</span><span style="color: #000000;">3.375</span><span style="color: #0000FF;">})</span>
<span style="color: #000000;">p</span><span style="color: #0000FF;">.</span><span style="color: #000000;">x</span> <span style="color: #0000FF;">-=</span> <span style="color: #000000;">p</span><span style="color: #0000FF;">.</span><span style="color: #000000;">y</span><span style="color: #0000FF;">*</span><span style="color: #000000;">20</span>
<span style="color: #7060A8;">printf</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #008000;">"p.x:%g, p.y:%g\n"</span><span style="color: #0000FF;">,{</span><span style="color: #000000;">p</span><span style="color: #0000FF;">.</span><span style="color: #000000;">x</span><span style="color: #0000FF;">,</span><span style="color: #000000;">p</span><span style="color: #0000FF;">.</span><span style="color: #000000;">y</span><span style="color: #0000FF;">})</span>
<span style="color: #000000;">p</span><span style="color: #0000FF;">.</span><span style="color: #000000;">x</span> <span style="color: #0000FF;">=</span> <span style="color: #000000;">0</span> <span style="color: #000080;font-style:italic;">-- fine</span>
<span style="color: #000000;">p</span><span style="color: #0000FF;">.</span><span style="color: #000000;">y</span> <span style="color: #0000FF;">=</span> <span style="color: #008000;">"string"</span> <span style="color: #000080;font-style:italic;">-- run-time error</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
p.x:107.5, p.y:3.375
 
C:\Program Files (x86)\Phix\test.exw:9
type error assigning "string" to point.y
 
--> see C:\Program Files (x86)\Phix\ex.err
Press Enter...
</pre>
 
=={{header|PHP}}==
 
<langsyntaxhighlight lang="php"># Using pack/unpack
$point = pack("ii", 1, 2);
 
Line 1,682 ⟶ 1,887:
list($x,$y) = unpack("ii", $point);
echo $x;
echo $y;</langsyntaxhighlight>
 
<langsyntaxhighlight lang="php"># Using array
$point = array('x' => 1, 'y' => 2);
 
Line 1,691 ⟶ 1,896:
 
# or simply:
echo $point['x'], ' ', $point['y'], "\n";</langsyntaxhighlight>
 
<langsyntaxhighlight lang="php"># Using class
class Point {
function __construct($x, $y) { $this->x = $x; $this->y = $y; }
Line 1,699 ⟶ 1,904:
}
$point = new Point(1, 2);
echo $point; # will call __tostring() in later releases of PHP 5.2; before that, it won't work so good.</langsyntaxhighlight>
 
=={{header|PicoLisp}}==
<langsyntaxhighlight PicoLisplang="picolisp">(class +Point)
 
(dm T (X Y)
Line 1,710 ⟶ 1,915:
(setq P (new '(+Point) 3 4))
 
(show P)</langsyntaxhighlight>
{{out}}
<pre>$52717735311266 (+Point)
Line 1,717 ⟶ 1,922:
 
=={{header|Pike}}==
<syntaxhighlight lang="pike">
<lang Pike>
class Point {
int x, y;
Line 1,732 ⟶ 1,937:
write("%d %d\n", point->x, point->y);
}
</syntaxhighlight>
</lang>
{{Out}}
<pre>
Line 1,739 ⟶ 1,944:
 
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">
<lang PL/I>
define structure
1 point,
Line 1,746 ⟶ 1,951:
 
 
</syntaxhighlight>
</lang>
 
=={{header|Plain English}}==
<langsyntaxhighlight lang="plainenglish">A cartesian point is a record with an x coord and a y coord.</langsyntaxhighlight>
 
=={{header|Pop11}}==
 
<langsyntaxhighlight lang="pop11">uses objectclass;
define :class Point;
slot x = 0;
slot y = 0;
enddefine;</langsyntaxhighlight>
 
=={{header|PowerShell}}==
{{works with|PowerShell|5}}
<syntaxhighlight lang="powershell">
<lang PowerShell>
class Point {
[Int]$a
Line 1,780 ⟶ 1,985:
$p1.add()
$p2.mul()
</syntaxhighlight>
</lang>
<b>Output:</b>
<pre>
Line 1,790 ⟶ 1,995:
Prolog terms ARE compound data types, there is no need to specifically define a type.
for the purpose of this exercise you could define a rule like so:
<syntaxhighlight lang ="prolog">point(10, 20).</langsyntaxhighlight>
This will create static point that can be called:
<langsyntaxhighlight lang="prolog">?- point(X,Y).
X = 10,
Y = 20.</langsyntaxhighlight>
terms can be passed around as values and can have a complex nested structure of any size, eg:
<langsyntaxhighlight lang="prolog">person_location(person(name(N), age(A)), point(X, Y)).</langsyntaxhighlight>
 
=={{header|PureBasic}}==
 
A basic [http://www.purebasic.com/documentation/reference/structures.html structure] is implemented as;
<langsyntaxhighlight PureBasiclang="purebasic">Structure MyPoint
x.i
y.i
EndStructure</langsyntaxhighlight>
 
=={{header|Python}}==
 
The simplest way it to use a tuple, or a list if it should be mutable:
<langsyntaxhighlight lang="python">X, Y = 0, 1
p = (3, 4)
p = [3, 4]
 
print p[X]</langsyntaxhighlight>
 
If needed, you can use class:
 
<langsyntaxhighlight lang="python">class Point:
def __init__(self, x=0, y=0):
self.x = x
Line 1,823 ⟶ 2,028:
 
p = Point()
print p.x</langsyntaxhighlight>
 
One could also simply instantiate a generic object and "monkeypatch" it:
 
<langsyntaxhighlight lang="python">class MyObject(object): pass
point = MyObject()
point.x, point.y = 0, 1
# objects directly instantiated from "object()" cannot be "monkey patched"
# however this can generally be done to it's subclasses</langsyntaxhighlight>
 
=== Dictionary ===
Mutable. Can add keys (attributes)
<langsyntaxhighlight lang="python">pseudo_object = {'x': 1, 'y': 2}</langsyntaxhighlight>
 
 
Line 1,842 ⟶ 2,047:
As of Python 2.6 one can use the ''collections.namedtuple'' factory to create classes which associate field names with elements of a tuple. This allows one to perform all normal operations on the contained tuples (access by indices or slices, packing and unpacking) while also allowing elements to be accessed by name.
 
<langsyntaxhighlight lang="python">>>> from collections import namedtuple
>>> help(namedtuple)
Help on function namedtuple in module collections:
Line 1,868 ⟶ 2,073:
Point(x=100, y=22)
 
>>></langsyntaxhighlight>
 
=={{header|QB64}}==
<syntaxhighlight lang="qb64">Type Point
x As Double
y As Double
End Type
 
Dim p As Point
p.x = 15.42
p.y = 2.412
 
Print p.x; p.y</syntaxhighlight>
{{out}}
<pre> 15.42 2.412</pre>
 
=={{header|Quackery}}==
 
The single ubiquitous compound data type in Quackery is the ''nest'' (a ''mostly'' immutable dynamic array), a sequence of items wrapped in square brackets. (''Mostly'' immutable; i.e. immutable except under limited circumstances beyond the scope of this discussion. When we refer to changing the contents of a nest here, this is casual speech; a shorthand for saying "creating a new instance of the nest, identical the previous instance except where it differs".)
 
Presented here are two solutions to the task, the "quick and dirty" solution; sufficient to the task described here, and the "overkill" solution; extending the Quackery compiler to facilitate complex compound data structures akin to structs in C etc.
 
===Quick and Dirty===
 
The word <code>point</code> creates an instance of a nest with two elements, both initialised to zero. The word <code>x</code> specifies the location of the zeroth element within the nest, and the word <code>y</code> specifies the location of the first element within the nest. <code>peek</code> returns the value stored in a specified location, and <code>poke</code> changes the value stored in a specified location, returning the modified nest.
 
<syntaxhighlight lang="quackery">
[ ' [ 0 0 ] ] is point ( --> [ )
 
[ 0 ] is x ( --> n )
 
[ 1 ] is y ( --> n )
 
point
dup x peek echo cr
99 swap y poke
y peek echo cr</syntaxhighlight>
 
{{out}}
 
<pre>0
99</pre>
 
===Overkill===
 
The "overkill" solution automates the process of creating new structures with the word <code>struct{</code>, which extends the Quackery compiler to allow the definition of complex compound data structures as follows.
 
<syntaxhighlight lang="quackery"> struct{
item.0
{ item.1.0
item.1.1
{ item.1.2.0
item.1.2.1
item.1.2.2
item.1.2.3
} item.1.2
item.1.3
} item.1
item.2
}struct mystruct</syntaxhighlight>
 
Once defined, the word <code>mystruct</code> will place a new instance of the described structure, with each item initialised to <code>null</code>, on the stack. (The behaviour of <code>null</code> is to place a reference to itself on the stack, as a convenience for debugging, and to allow code to identify elements within the structure that have not had a value assigned to them.)
 
The various names defined within the struct (e.g. <code>item.1.2.1</code>) return a ''path'' - a means of locating a specific item within the struct, for use by <code>{peek}</code> and <code>{poke}</code>, which have the same behaviours as <code>peek</code> and <code>poke</code>, except the they take a path to an item within a struct as an argument, rather than a number specifying an item within a nest.
 
Names following a <code>}</code> within the definition of a struct (e.g. <code>} item.1.2</code>) return a path to the compound data structure preceding it within the structure. In the example, <code>item.1.2</code> returns the path to <code>{ item.1.2.0 item.1.2.1 item.1.2.2 item.1.2.3 }</code>
 
<syntaxhighlight lang="quackery"> mystruct ( create new instance of a mystruct )
dup echo cr ( this is what it looks like )
789 swap item.1.3 {poke} ( change one of the items )
dup echo cr ( this is what it looks like now )
item.1.3 {peek} echo cr ( retrieve the specified item )
</syntaxhighlight>
 
{{out}}
 
<pre>[ null [ null null [ null null null null ] null ] null ]
[ null [ null null [ null null null null ] 789 ] null ]
789</pre>
 
The words <code>{peek}</code>, <code>{poke}</code>, <code>null</code>, and the building word (i.e. compiler extension) <code>struct{</code> defined:
 
<syntaxhighlight lang="text"> [ witheach peek ] is {peek} ( { p --> x )
 
[ dip dup
witheach [ peek dup ]
drop ] is depack ( { p --> * )
 
[ reverse
witheach
[ dip swap poke ] ] is repack ( * p --> { )
 
[ dup dip
[ rot dip
[ depack drop ] ]
repack ] is {poke} ( x { p --> { )
 
[ this ] is null ( --> [ )
 
[ stack ] is {}.path ( --> s )
protect {}.path
 
[ stack ] is {}.struct ( --> s )
protect {}.struct
 
[ nextword dup
$ "" = if
[ $ "Unexpected end of struct."
message put
bail ] ] is {}.checknext ( [ $ --> [ $ $ )
 
[ dup $ "{" =
over $ "}" = or
swap $ "}struct" = or if
[ $ "Name missing after }."
message put
bail ] ] is {}.checkname ( [ $ $ --> [ $ )
 
[ nested
namenest take
join
namenest put
' [ ' ]
{}.path share nested join
actiontable take
1 stuff
actiontable put ] is {}.addpath ( [ $ $ --> [ $ )
 
[ nested
namenest take
join
namenest put
' [ ' ]
{}.struct share nested join
actiontable take
1 stuff
actiontable put ] is {}.addstruct ( [ $ $ --> [ $ )
 
[ {}.path take
dup -1 peek
1+
swap -1 poke
-1 join
{}.path put
[] {}.struct put ] is {}.{ ( [ $ --> [ $ )
 
[ {}.struct size 3 < if
[ $ "Badly formed struct."
message put bail ]
trim {}.checknext
dup {}.checkname
{}.path take
-1 split drop
{}.path put
{}.addpath
{}.struct take
{}.struct take
swap nested join
{}.struct put ] is {}.} ( [ $ --> [ $ )
 
[ {}.path take
dup -1 peek
1+
swap -1 poke
{}.path put
{}.addpath
{}.struct take
' [ null ] join
{}.struct put ] is {}.name ( [ $ --> [ $ )
 
[ trim {}.checknext
{}.struct size
2 != if
[ $ "Badly formed struct."
message put
bail ]
{}.addstruct ] is {}.}struct ( [ $ --> [ $ )
 
[ ' [ -1 ] {}.path put
[] {}.struct put
[ trim {}.checknext
dup $ "{" = iff
[ drop {}.{ ] again
dup $ "}" = iff
[ drop {}.} ] again
dup $ "}struct" = iff
[ drop {}.}struct ] done
{}.name again ]
{}.struct release
{}.path release ] builds struct{ ( [ $ --> [ $ )</syntaxhighlight>
 
Finally we use <code>struct{</code> etc. to fulfil the requirements go the task.
 
<syntaxhighlight lang="quackery"> struct{ x y }struct point
point
dup x {peek} echo cr
99 swap y {poke}
y {peek} echo cr</syntaxhighlight>
 
{{out}}
 
<pre>null
99
</pre>
 
=={{header|R}}==
R uses the list data type for compound data.
<langsyntaxhighlight Rlang="r">mypoint <- list(x=3.4, y=6.7)
# $x
# [1] 3.4
Line 1,891 ⟶ 2,299:
# [1] 1
# $d$f
# [1] TRUE</langsyntaxhighlight>
 
=={{header|Racket}}==
Line 1,897 ⟶ 2,305:
The most common method uses structures (similar to records):
 
<langsyntaxhighlight lang="racket">
#lang racket
(struct point (x y))
</syntaxhighlight>
</lang>
 
Alternatively, you can define a class:
 
<langsyntaxhighlight lang="racket">
#lang racket
(define point% ; classes are suffixed with % by convention
Line 1,910 ⟶ 2,318:
(super-new)
(init-field x y)))
</syntaxhighlight>
</lang>
 
=={{header|Raku}}==
Line 1,917 ⟶ 2,325:
 
===Array===
<syntaxhighlight lang="raku" perl6line>my @point = 3, 8;
 
my Int @point = 3, 8; # or constrain to integer elements</langsyntaxhighlight>
 
===Hash===
<syntaxhighlight lang="raku" perl6line>my %point = x => 3, y => 8;
 
my Int %point = x => 3, y => 8; # or constrain the hash to have integer values</langsyntaxhighlight>
 
===Class instance===
<syntaxhighlight lang="raku" perl6line>class Point { has Real ($.x is rw; has, $.y) is rw; }
my Point $point .= new(: x => 3, y => 8);</langsyntaxhighlight>
 
===[http://design.raku.org/S32/Containers.html#Set Set]===
<syntaxhighlight lang="raku" perl6line>my $s1 = set <a b c d>; # order is not preserved
my $s2 = set <c d e f>;
say $s1 (&) $s2; # OUTPUT«set(c, e)»
say $s1 ∩ $s2; # we also do Unicode</langsyntaxhighlight>
 
=={{header|REXX}}==
<langsyntaxhighlight lang="rexx">x= -4.9
y= 1.7
 
point=x y</langsyntaxhighlight>
:: ---or---
<langsyntaxhighlight lang="rexx">x= -4.1
y= 1/4e21
 
Line 1,949 ⟶ 2,357:
bpoint=point
 
gpoint=5.6 7.3e-12</langsyntaxhighlight>
 
=={{header|Ring}}==
<langsyntaxhighlight lang="ring">
see new point {x=10 y=20} class point x y
</syntaxhighlight>
</lang>
Output
<langsyntaxhighlight lang="ring">
x: 10.000000
y: 20.000000
</syntaxhighlight>
</lang>
 
=={{header|Ruby}}==
<langsyntaxhighlight lang="ruby">Point = Struct.new(:x,:y)
pt = Point.new(6,7)
puts pt.x #=> 6
Line 1,976 ⟶ 2,384:
pt.each_pair{|member, value| puts "#{member} : #{value}"}
#=> x : 2
#=> y : 5</langsyntaxhighlight>
 
=={{header|Rust}}==
Line 1,983 ⟶ 2,391:
 
====C-like struct====
<langsyntaxhighlight lang="rust"> // Defines a generic struct where x and y can be of any type T
struct Point<T> {
x: T,
Line 1,991 ⟶ 2,399:
let p = Point { x: 1.0, y: 2.5 }; // p is of type Point<f64>
println!("{}, {}", p.x, p.y);
} </langsyntaxhighlight>
 
====Tuple struct====
These are basically just named tuples.
<langsyntaxhighlight lang="rust">struct Point<T>(T, T);
fn main() {
let p = Point(1.0, 2.5);
println!("{},{}", p.0, p.1);
}</langsyntaxhighlight>
===Tuples===
<langsyntaxhighlight lang="rust"> fn main() {
let p = (0.0, 2.4);
println!("{},{}", p.0, p.1);
}</langsyntaxhighlight>
 
=={{header|Scala}}==
<langsyntaxhighlight lang="scala">case class Point(x: Int = 0, y: Int = 0)
 
val p = Point(1, 2)
println(p.y) //=> 2</langsyntaxhighlight>
 
=={{header|Scheme}}==
Using [http://srfi.schemers.org/srfi-9/srfi-9.html SRFI 9]:
<langsyntaxhighlight lang="scheme">(define-record-type point
(make-point x y)
point?
(x point-x)
(y point-y))</langsyntaxhighlight>
 
=={{header|Seed7}}==
<langsyntaxhighlight lang="seed7">const type: Point is new struct
var integer: x is 0;
var integer: y is 0;
end struct;</langsyntaxhighlight>
 
=={{header|Shen}}==
<langsyntaxhighlight lang="shen">(datatype point
X : number; Y : number;
====================
[point X Y] : point;)</langsyntaxhighlight>
Pairs (distinct from cons cells) are also supported, in which case a point would be denoted by (number * number):
<langsyntaxhighlight lang="shen">(2+) (@p 1 2)
(@p 1 2) : (number * number)</langsyntaxhighlight>
 
=={{header|Sidef}}==
<langsyntaxhighlight lang="ruby">struct Point {x, y};
var point = Point(1, 2);
say point.y; #=> 2</langsyntaxhighlight>
 
=={{header|SIMPOL}}==
The <code>point</code> type is pre-defined in [SIMPOL], so we will call this mypoint.
 
<langsyntaxhighlight lang="simpol">type mypoint
embed
integer x
integer y
end type</langsyntaxhighlight>
 
The <code>embed</code> keyword is used here as a toggle to indicate that all following properties are embedded in the type. The other toggle is <code>reference</code>, which only places a reference to an object in the type, but the reference assigned before the property can be used. These keywords can also be placed on the same line, but then they only apply to that line of the type definition.
Line 2,053 ⟶ 2,461:
A type in [SIMPOL] can be just a container of values and other structures, but it can also include methods. These are implemented outside the type definition, but must be part of the same compiled unit.
 
<langsyntaxhighlight lang="simpol">type mypoint
embed
integer x
Line 2,062 ⟶ 2,470:
me.x = x
me.y = y
end function me</langsyntaxhighlight>
 
=={{header|SNOBOL4}}==
 
<langsyntaxhighlight lang="snobol"> data('point(x,y)')
p1 = point(10,20)
p2 = point(10,40)
output = "Point 1 (" x(p1) "," y(p1) ")"
output = "Point 2 (" x(p2) "," y(p2) ")"
end</langsyntaxhighlight>
 
=={{header|Standard ML}}==
Line 2,078 ⟶ 2,486:
See [[wp:Algebraic_data_type|algebraic data type]]. The different options ("Empty", "Leaf", "Node") are called ''constructors'', and is associated with 0 or 1 arguments with the declared types; multiple arguments are handled with tuples.
 
<langsyntaxhighlight lang="sml">datatype tree = Empty
| Leaf of int
| Node of tree * tree
 
val t1 = Node (Leaf 1, Node (Leaf 2, Leaf 3))</langsyntaxhighlight>
 
===Tuple Type===
Line 2,088 ⟶ 2,496:
You can make a tuple literal by using a comma-delimited list surrounded by parentheses, without needing to declare the type first:
 
<langsyntaxhighlight lang="sml">val p = (2,3)</langsyntaxhighlight>
 
The type of <code>p</code> is a product (indicated by <code>*</code>) of the types of the components:
Line 2,105 ⟶ 2,513:
You can make a record literal by using a comma-delimited list of <code>key = value</code> pairs surrounded by curly braces, without needing to declare the type first:
 
<langsyntaxhighlight lang="sml">val p = { x = 4, y = 5 }</langsyntaxhighlight>
 
The type of <code>p</code> is a comma-delimited list of <code>key:type</code> pairs of the types of the fields:
Line 2,119 ⟶ 2,527:
See '''[https://www.stata.com/help.cgi?m2_struct struct]''' in Stata help.
 
<langsyntaxhighlight lang="stata">mata
struct Point {
real scalar x, y
Line 2,134 ⟶ 2,542:
test()
30
end</langsyntaxhighlight>
 
=={{header|Swift}}==
<langsyntaxhighlight Swiftlang="swift">// Structure
struct Point {
var x:Int
Line 2,155 ⟶ 2,563:
self.y = y
}
}</langsyntaxhighlight>
 
=={{header|Tcl}}==
This can be done using an associative array:
<langsyntaxhighlight lang="tcl">array set point {x 4 y 5}
set point(y) 7
puts "Point is {$point(x),$point(y)}"
# => Point is {4,7}</langsyntaxhighlight>
Or a dictionary:
{{works with|Tcl|8.5}}
<langsyntaxhighlight lang="tcl">set point [dict create x 4 y 5]
dict set point y 7
puts "Point is {[dict get $point x],[dict get $point y]}"</langsyntaxhighlight>
Or an object:
{{works with|Tcl|8.6}}
<langsyntaxhighlight lang="tcl">oo::class create Point {
variable x y
constructor {X Y} {set x $X;set y $Y}
Line 2,179 ⟶ 2,587:
Point create point 4 5
point y 7
puts "Point is [point show]"</langsyntaxhighlight>
 
=={{header|TI-89 BASIC}}==
 
TI-89 BASIC does not have user-defined data structures. The specific example of a point is best handled by using the built-in vectors or complex numbers.
 
=={{header|Transd}}==
<syntaxhighlight lang="Scheme">#lang transd
 
// If the Point type needs encapsulation and/or methods, it should be
// implemented as class. Otherwise, the named tuple will do.
 
class Point: {
x: Double(), y: Double(),
@init: (λ _x Double() _y Double() (= x _x) (= y _y)),
@to-String: (λ ss StringStream() (textout to: ss
"Point( x: " x "; y: " y " )"))
// ... other methods can be defined here ...
}
 
MainModule: {
Point2: typealias(Tuple<Double Double>()),
_start: (λ
(with pt Point(2.5 3.7)
(lout "Class: " pt)
)
(with pt Point2(2.5 3.7)
(lout "\nNamed tuple: " pt)
)
)
}</syntaxhighlight>
{{out}}
<pre>
Class: Point( x: 2.5; y: 3.7 )
 
Named tuple: [[2.5, 3.7]]
</pre>
 
=={{header|TXR}}==
Line 2,189 ⟶ 2,629:
In TXR Lisp, a structure type can be created:
 
<langsyntaxhighlight lang="txrlisp">(defstruct point nil (x 0) (y 0))</langsyntaxhighlight>
 
If it is okay for the coordinates to be initialized to <tt>nil</tt>, it can be condensed to:
 
<langsyntaxhighlight lang="txrlisp">(defstruct point nil x y)</langsyntaxhighlight>
 
The <tt>nil</tt> denotes that a <tt>point</tt> has no supertype: it doesn't inherit from anything.
Line 2,199 ⟶ 2,639:
This structure type can then be instantiated using the <tt>new</tt> macro (not the only way):
 
<langsyntaxhighlight lang="txrlisp">(new point) ;; -> #S(point x 0 y 0)
(new point x 1) ;; -> #S(point x 1 y 0)
(new point x 1 y 1) ;; -> #S(point x 1 y 1)</langsyntaxhighlight>
 
A structure can support optional by-order-of-arguments ("boa") construction by providing a "boa constructor". The <tt>defstruct</tt> syntactic sugar does this if a function-like syntax is used in place of the structure name:
 
<langsyntaxhighlight lang="txrlisp">(defstruct (point x y) nil (x 0) (y 0))</langsyntaxhighlight>
 
The existing construction methods continue to work, but in addition, this is now possible:
 
<langsyntaxhighlight lang="txrlisp">(new (point 3 4)) -> #S(point x 3 y 4)</langsyntaxhighlight>
 
Slot access syntax is supported. If variable <tt>p</tt> holds a point, then <tt>p.x</tt> designates the <tt>x</tt> slot, as a syntactic place which can be accessed and stored:
 
<langsyntaxhighlight lang="txrlisp">(defun displace-point-destructively (p delta)
(inc p.x delta.x)
(inc p.y delta.y))</langsyntaxhighlight>
 
=={{header|UNIX Shell}}==
{{works with|ksh93}}
ksh93 allows you to define new compound types with the <tt>typeset -T</tt> command.
<langsyntaxhighlight lang="bash">typeset -T Point=(
typeset x
typeset y
Line 2,230 ⟶ 2,670:
echo ${p.x} ${p.y}
Point q=(x=3 y=4)
echo ${q.x} ${q.y}</langsyntaxhighlight>
{{out}}
<pre>( x=1 y=2 )
Line 2,237 ⟶ 2,677:
 
You can also declare compound variables "on the fly" without using a defined type:
<langsyntaxhighlight lang="bash">point=()
point.x=5
point.y=6
echo $point
echo ${point.x} ${point.y}</langsyntaxhighlight>
{{out}}
<pre>( x=5 y=6 )
Line 2,248 ⟶ 2,688:
=={{header|Ursala}}==
A record type with two untyped fields named <code>x</code> and <code>y</code> can be declared like this.
<syntaxhighlight lang Ursala="ursala">point :: x y</langsyntaxhighlight>
A constant instance of the record can be declared like this.
<langsyntaxhighlight Ursalalang="ursala">p = point[x: 'foo',y: 'bar']</langsyntaxhighlight>
A function returning a value of this type can be defined like this,
<langsyntaxhighlight Ursalalang="ursala">f = point$[x: g,y: h]</langsyntaxhighlight>
where <code>g</code> and <code>h</code> are functions. Then <code>f(p)</code> would evaluate to
<code>point[x: g(p),y: h(p)]</code> for a given argument <code>p</code>. Accessing the fields of
a record can be done like this.
<langsyntaxhighlight Ursalalang="ursala">t = ~x p
u = ~y p</langsyntaxhighlight>
where <code>p</code> is any expression of the defined type. A real application wouldn't be written
this way because pairs of values <code>(x,y)</code> are a common idiom.
 
=={{header|Vala}}==
<langsyntaxhighlight lang="vala">struct Point {
int x;
int y;
}</langsyntaxhighlight>
 
=={{header|VBA}}==
<langsyntaxhighlight lang="vb">Type point
x As Integer
y As Integer
End Type</langsyntaxhighlight>
 
=={{header|Vim Script}}==
One cannot create new data types in Vim Script. A point could be represented by a dictionary:
 
<langsyntaxhighlight lang="vim">function MakePoint(x, y) " 'Constructor'
return {"x": a:x, "y": a:y}
endfunction
Line 2,284 ⟶ 2,724:
 
echon "Point 1: x = " p1.x ", y = " p1.y "\n"
echon "Point 2: x = " p2.x ", y = " p2.y "\n"</langsyntaxhighlight>
 
{{Out}}
Line 2,295 ⟶ 2,735:
 
A simple structure with two public, mutable fields:
<langsyntaxhighlight lang="vbnet">Structure Point
Public X, Y As Integer
End Structure</langsyntaxhighlight>
 
=== Immutable Structures ===
Line 2,309 ⟶ 2,749:
Below is the same <code>Point</code> as above, except with an immutable API.
 
<langsyntaxhighlight lang="vbnet">Structure ImmutablePoint
ReadOnly Property X As Integer
ReadOnly Property Y As Integer
Line 2,317 ⟶ 2,757:
Me.Y = y
End Sub
End Structure</langsyntaxhighlight>
 
=={{header|V (Vlang)}}==
Vlang also supports embedding structs into other structs and assigning methods to structs.
<syntaxhighlight lang="v (vlang)">struct Point {
x int
y int
}
 
// main() declaration can be skipped in one file programs
// we can define whether immutable or mutable by using the "mut" keyword
 
mut p := Point{
x: 10
y: 20
}
 
// struct fields are accessed using a dot
 
println("Value of p.x is: $p.x")
println("Show the struct:\n $p")
 
// alternative literal syntax can be used for structs with 3 fields or fewer
 
p = Point{30, 40}
assert p.x == 30
println("Show the struct again after change:\n $p")
</syntaxhighlight>
{{out}}
<pre>
Value of p.x is: 10
Show the struct:
Point{
x: 10
y: 20
}
Show the struct again after change:
Point{
x: 30
y: 40
}
</pre>
 
=={{header|Wren}}==
<langsyntaxhighlight ecmascriptlang="wren">class Point {
construct new(x, y) {
_x = x
Line 2,342 ⟶ 2,823:
p.y = 3
// print without using the toString method
System.printAll(["(", p.x, ", ", p.y, ")"])</langsyntaxhighlight>
 
{{out}}
Line 2,355 ⟶ 2,836:
===Attributes===
Attributes are often used for simple values. This is how a point might be represented in SVG, for example.
<langsyntaxhighlight lang="xml"><point x="20" y="30"/>
 
<!-- context is a point node. The '@' prefix selects named attributes of the current node. -->
<fo:block>Point = <xsl:value-of select="@x"/>, <xsl:value-of select="@y"/></fo:block></langsyntaxhighlight>
 
===Children===
More complex, multivariate, and nested data structures can be represented using child nodes.
<langsyntaxhighlight lang="xml"><circle>
<point>
<x>20</x>
Line 2,370 ⟶ 2,851:
</circle>
 
<!-- context is a circle node. Children are accessed using a path-like notation (hence the name "XPath"). --></langsyntaxhighlight>
<fo:block>Circle center = <xsl:value-of select="point/x"/>, <xsl:value-of select="point/y"/></fo:block>
 
=={{header|Z80 Assembly}}==
We'll declare the following C struct:
<syntaxhighlight lang="c">struct Point{
char x;
char y;
}</syntaxhighlight>
 
and then execute the following C code as Z80 Assembly below.
<syntaxhighlight lang="c">struct Point myPoint;
myPoint.x = 3;
myPoint.y = 5;</syntaxhighlight>
 
<syntaxhighlight lang="z80">;I'm arbitrarily choosing &1100 as the memory location of our Point variable.
ld hl,&1100
ld (hl),3
inc hl
ld (hl),5
ret</syntaxhighlight>
 
=={{header|zkl}}==
The OO solution:
<langsyntaxhighlight lang="zkl">class Point{ var x,y;
fcn init(x,y){self.x=x.toFloat(); self.y=y.toFloat(); }
fcn toString{ "P(%f,%f)".fmt(x,y) }
Line 2,381 ⟶ 2,881:
//... __opEQ == etc
}
Point(1,2).println() //-->P(1.000000,2.000000)</langsyntaxhighlight>
which can be pretty heavy weight. [read only] lists can work just as well:
<langsyntaxhighlight lang="zkl">point:=T(1,2); points:=T( T(1,2), L(3,4) )</langsyntaxhighlight>
 
{{omit from|bc}}
Line 2,389 ⟶ 2,889:
 
=={{header|zonnon}}==
<langsyntaxhighlight lang="zonnon">
{ref,public} (* class *)
Point = object(ord,abs: integer)
Line 2,413 ⟶ 2,913:
self.y := abs;
end Point;
</syntaxhighlight>
</lang>
9,476

edits