Character codes: Difference between revisions

m
Added Plain English
(→‎{{header|ALGOL 68}}: Ada solution added)
m (Added Plain English)
 
(357 intermediate revisions by more than 100 users not shown)
Line 1:
[[Category:Basic language learning]]
{{task|Text processing}}
[[Category:String manipulation]]
[[Category:Simple]]
{{task|Text processing}}
 
Given a character value in your language, print its code (could be ASCII code, Unicode code, or whatever your language uses). For example, the character 'a' (lowercase letter A) has a code of 97 in ASCII (as well as Unicode, as ASCII forms the beginning of Unicode). Conversely, given a code, print out the corresponding character.
 
;Task:
Given a character value in your language, print its code   (could be ASCII code, Unicode code, or whatever your language uses).
 
 
;Example:
The character   'a'   (lowercase letter A)   has a code of 97 in ASCII   (as well as Unicode, as ASCII forms the beginning of Unicode).
 
Conversely, given a code, print out the corresponding character.
<br><br>
=={{header|11l}}==
<syntaxhighlight lang="11l">print(‘a’.code) // prints "97"
print(Char(code' 97)) // prints "a"</syntaxhighlight>
=={{header|360 Assembly}}==
S/360 architecture and EBCDIC was born together.
In EBCDIC, the character 'a' (lowercase letter A) has a code of 129 in decimal and '81'x in hexadecimal.
To perform conversion, we use IC (insert character) and STC (store character) opcodes.
<syntaxhighlight lang="360asm">* Character codes EBCDIC 15/02/2017
CHARCODE CSECT
USING CHARCODE,R13 base register
B 72(R15) skip savearea
DC 17F'0' savearea
STM R14,R12,12(R13) prolog
ST R13,4(R15) " <-
ST R15,8(R13) " ->
LR R13,R15 " addressability
* Character to Decimal
SR R1,R1 r1=0
IC R1,=C'a' insert character 'a'
XDECO R1,PG
XPRNT PG,L'PG print -> 129
* Hexadecimal to character
SR R1,R1 r1=0
IC R1,=X'81' insert character X'81'
STC R1,CHAR store character r1
XPRNT CHAR,L'CHAR print -> 'a'
* Decimal to character
LH R1,=H'129' r1=129
STC R1,CHAR store character r1
XPRNT CHAR,L'CHAR print -> 'a'
*
XDUMP CHAR,L'CHAR dump -> X'81'
*
RETURN L R13,4(0,R13) epilog
LM R14,R12,12(R13) " restore
XR R15,R15 " rc=0
BR R14 exit
PG DS CL12
CHAR DS CL1
YREGS
END CHARCODE</syntaxhighlight>
{{out}}
<pre>
129
a
a
</pre>
=={{header|68000 Assembly}}==
The printing routine only understands ASCII characters as codes anyway, so the "given a code produce its character" part is trivial.
The <code>PrintChar</code> routine is omitted for brevity. It converts the two cursor variables to a FIX layer address and outputs the character using the NEOGEO's FIX layer (the layer where text is displayed). Characters are stored in ROM and arranged in ASCII order.
<syntaxhighlight lang="68000devpac"> JSR ResetCoords ;RESET TYPING CURSOR
 
MOVE.B #'A',D1
MOVE.W #25,D2
MOVE.B #0,(softCarriageReturn) ;new line takes the cursor to left edge of screen.
jsr PrintAllTheCodes
jsr ResetCoords
MOVE.B #8,(Cursor_X)
MOVE.B #'a',D1
MOVE.W #25,D2
MOVE.B #8,(softCarriageReturn)
;set the writing cursor to column 3 of the screen
;so we don't erase the old output.
jsr PrintAllTheCodes
 
forever:
bra forever
 
PrintAllTheCodes:
MOVE.B D1,D0
jsr PrintChar ;print the character as-is
MOVE.B #" ",D0
jsr PrintChar
MOVE.B #"=",D0
jsr PrintChar
MOVE.B #" ",D0
jsr PrintChar
MOVE.B D1,D0 ;get ready to print the code
JSR UnpackNibbles8
SWAP D0
ADD.B #$30,D0
JSR PrintChar
 
SWAP D0
CMP.B #10,D0
BCS noCorrectHex
ADD.B #$07,D0
noCorrectHex:
ADD.B #$30,D0
JSR PrintChar
MOVE.B (softCarriageReturn),D0
JSR doNewLine2 ;new line, with D0 as the carraige return point.
ADDQ.B #1,D1
DBRA D2,PrintAllTheCodes
rts
 
 
UnpackNibbles8:
; INPUT: D0 = THE VALUE YOU WISH TO UNPACK.
; HIGH NIBBLE IN HIGH WORD OF D0, LOW NIBBLE IN LOW WORD. SWAP D0 TO GET THE OTHER HALF.
pushWord D1
CLR.W D1
MOVE.B D0,D1
CLR.L D0
MOVE.B D1,D0 ;now D0 = D1 = $000000II, where I = input
AND.B #$F0,D0 ;chop off bottom nibble
LSR.B #4,D0 ;downshift top nibble into bottom nibble of the word
SWAP D0 ;store in high word
AND.B #$0F,D1 ;chop off bottom nibble
MOVE.B D1,D0 ;store in low word
popWord D1
rts</syntaxhighlight>
Output can be seen [https://ibb.co/ngtDXpq here.]
=={{header|AArch64 Assembly}}==
{{works with|as|Raspberry Pi 3B version Buster 64 bits}}
<syntaxhighlight lang="aarch64 assembly">
/* ARM assembly AARCH64 Raspberry PI 3B */
/* program character64.s */
 
/*******************************************/
/* Constantes file */
/*******************************************/
/* for this file see task include a file in language AArch64 assembly*/
.include "../includeConstantesARM64.inc"
/*******************************************/
/* Initialized data */
/*******************************************/
.data
szMessCodeChar: .asciz "The code of character is : @ \n"
/*******************************************/
/* UnInitialized data */
/*******************************************/
.bss
sZoneconv: .skip 32
/*******************************************/
/* code section */
/*******************************************/
.text
.global main
main: // entry of program
mov x0,'A'
ldr x1,qAdrsZoneconv
bl conversion10S
ldr x0,qAdrszMessCodeChar
ldr x1,qAdrsZoneconv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess
mov x0,'a'
ldr x1,qAdrsZoneconv
bl conversion10S
ldr x0,qAdrszMessCodeChar
ldr x1,qAdrsZoneconv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess
mov x0,'1'
ldr x1,qAdrsZoneconv
bl conversion10S
ldr x0,qAdrszMessCodeChar
ldr x1,qAdrsZoneconv
bl strInsertAtCharInc // insert result at @ character
bl affichageMess
100: // standard end of the program */
mov x0,0 // return code
mov x8,EXIT // request to exit program
svc 0 // perform the system call
qAdrsZoneconv: .quad sZoneconv
qAdrszMessCodeChar: .quad szMessCodeChar
/********************************************************/
/* File Include fonctions */
/********************************************************/
/* for this file see task include a file in language AArch64 assembly */
.include "../includeARM64.inc"
</syntaxhighlight>
=={{header|ABAP}}==
In ABAP you must first cast the character to a byte field and back to a number in order to get its ASCII value.
<syntaxhighlight lang="abap">report zcharcode
data: c value 'A', n type i.
field-symbols <n> type x.
 
assign c to <n> casting.
move <n> to n.
write: c, '=', n left-justified.</syntaxhighlight>
{{Out}}<pre>A = 65</pre>
=={{header|ACL2}}==
Similar to Common Lisp:
<syntaxhighlight lang="lisp">(cw "~x0" (char-code #\a))
(cw "~x0" (code-char 97))</syntaxhighlight>
=={{header|Action!}}==
<syntaxhighlight lang="action!">PROC Main()
CHAR c=['a]
BYTE b=[97]
 
Put(c) Put('=) PrintBE(c)
PrintB(b) Put('=) Put(b)
RETURN</syntaxhighlight>
{{out}}
[https://gitlab.com/amarok8bit/action-rosetta-code/-/raw/master/images/Character_codes.png Screenshot from Atari 8-bit computer]
<pre>
a=97
97=a
</pre>
=={{header|ActionScript}}==
In ActionScript, you cannot take the character code of a character directly. Instead you must create a string and call charCodeAt with the character's position in the string as a parameter.
<syntaxhighlight lang="actionscipt">trace(String.fromCharCode(97)); //prints 'a'
trace("a".charCodeAt(0));//prints '97'</syntaxhighlight>
=={{header|Ada}}==
<syntaxhighlight lang="ada">with Ada.Text_IO; use Ada.Text_IO;
<ada>
with Ada.Text_IO; use Ada.Text_IO;
 
procedure Char_Code is
begin
Put_Line (Character'Val (97) & " =" & Integer'Image (Character'Pos ('a')));
end Char_Code;</syntaxhighlight>
The predefined language attributes S'Pos and S'Val for every discrete subtype, and Character is such a type, yield the position of a value and value by its position correspondingly.
</ada>
{{out}}
The predefined language attributes S'Pos and S'Val for every discrete subtype, and Character is such a type, yield the position of a value and value by its position correspondingly. Sample output.
<pre>a = 97</pre>
=={{header|Aime}}==
a = 97
<syntaxhighlight lang="aime"># prints "97"
</pre>
o_integer('a');
o_byte('\n');
# prints "a"
o_byte(97);
o_byte('\n');</syntaxhighlight>
=={{header|ALGOL 68}}==
In ALGOL 68 the FORMAT'''format''' $g$ is type aware, hence the type conversion operators ABS'''abs''' & REPR'''repr''' are used to set the type.
<syntaxhighlight lang="algol68">main:(
main:(
printf(($gl$, ABS "a")); # for ASCII this prints "+97" EBCDIC prints "+129" #
printf(($gl$, REPR 97)) # for ASCII this prints "a"; EBCDIC prints "/" #
)</syntaxhighlight>
)
''Character conversions'' may be available in the ''standard precludeprelude'' so that when
a foreign tape is mounted, the characters will be converted transparently as the tape's
records are read.
<syntaxhighlight lang="algol68">FILE tape;
INT errno = open(tape, "/dev/tape1", stand out channel)
make conv(tape, ebcdic conv);
FOR record DO getf(tape, ( ~ )) OD; ~ # etc ... #</syntaxhighlight>
Every CHANNEL'''channel''' has an associated standard character conversion that can be determined
using the ''stand conv'' query routine and then the conversion applied to a particular
file/tape. eg.
<syntaxhighlight lang="algol68"> make conv(tape, stand conv(stand out channel))</syntaxhighlight>
=={{header|ALGOL W}}==
<syntaxhighlight lang="algolw">begin
% display the character code of "a" (97 in ASCII) %
write( decode( "a" ) );
% display the character corresponding to 97 ("a" in ASCII) %
write( code( 97 ) );
end.</syntaxhighlight>
=={{header|APL}}==
{{works with|Dyalog APL}}
{{works with|GNU APL}}
In GNU APL and Dyalog, <tt>⎕UCS</tt> with an integer returns the corresponding Unicode character:
<syntaxhighlight lang="apl"> ⎕UCS 97
a</syntaxhighlight>
and <tt>⎕UCS</tt> with a character returns the corresponding code:
<syntaxhighlight lang="apl"> ⎕UCS 'a'
97</syntaxhighlight>
Like most things in APL, <tt>⎕UCS</tt> can also be used with an array or with a string (which is an array of characters):
<syntaxhighlight lang="apl"> ⎕UCS 65 80 76
APL
⎕UCS 'Hello, world!'
72 101 108 108 111 44 32 119 111 114 108 100 33</syntaxhighlight>
=={{header|AppleScript}}==
<syntaxhighlight lang="applescript">log(id of "a")
log(id of "aA")</syntaxhighlight>
{{out}}
<pre>(*97*)
(*97, 65*)</pre>
 
The converse instruction is <tt>character id</tt> — or either of its synonyms <tt>string id</tt> and <tt>Unicode text id</tt>. Because of a bug admitted to in Apple's AppleScript Language Guide, the expression <tt>text id</tt>, which one might expect to work, can't be used.
 
<syntaxhighlight lang="applescript">character id 97
--> "a"
 
character id {72, 101, 108, 108, 111, 33}
--> "Hello!"
 
string id {72, 101, 108, 108, 111, 33}
--> "Hello!"
 
Unicode text id {72, 101, 108, 108, 111, 33}
--> "Hello!"</syntaxhighlight>
=={{header|ARM Assembly}}==
{{works with|as|Raspberry Pi}}
<syntaxhighlight lang="arm assembly">
/* ARM assembly Raspberry PI */
/* program character.s */
 
/* Constantes */
.equ STDOUT, 1 @ Linux output console
.equ EXIT, 1 @ Linux syscall
.equ WRITE, 4 @ Linux syscall
/* Initialized data */
.data
szMessCodeChar: .ascii "The code of character is :"
sZoneconv: .fill 12,1,' '
szCarriageReturn: .asciz "\n"
 
/* UnInitialized data */
.bss
 
/* code section */
.text
.global main
main: /* entry of program */
push {fp,lr} /* saves 2 registers */
mov r0,#'A'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
mov r0,#'a'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
mov r0,#'1'
ldr r1,iAdrsZoneconv
bl conversion10S
ldr r0,iAdrszMessCodeChar
bl affichageMess
100: /* standard end of the program */
mov r0, #0 @ return code
pop {fp,lr} @restaur 2 registers
mov r7, #EXIT @ request to exit program
swi 0 @ perform the system call
iAdrsZoneconv: .int sZoneconv
iAdrszMessCodeChar: .int szMessCodeChar
/******************************************************************/
/* display text with size calculation */
/******************************************************************/
/* r0 contains the address of the message */
affichageMess:
push {fp,lr} /* save registres */
push {r0,r1,r2,r7} /* save others registers */
mov r2,#0 /* counter length */
1: /* loop length calculation */
ldrb r1,[r0,r2] /* read octet start position + index */
cmp r1,#0 /* if 0 its over */
addne r2,r2,#1 /* else add 1 in the length */
bne 1b /* and loop */
/* so here r2 contains the length of the message */
mov r1,r0 /* address message in r1 */
mov r0,#STDOUT /* code to write to the standard output Linux */
mov r7, #WRITE /* code call system "write" */
swi #0 /* call systeme */
pop {r0,r1,r2,r7} /* restaur others registers */
pop {fp,lr} /* restaur des 2 registres */
bx lr /* return */
/***************************************************/
/* conversion register signed décimal */
/***************************************************/
/* r0 contient le registre */
/* r1 contient l adresse de la zone de conversion */
conversion10S:
push {r0-r5,lr} /* save des registres */
mov r2,r1 /* debut zone stockage */
mov r5,#'+' /* par defaut le signe est + */
cmp r0,#0 /* nombre négatif ? */
movlt r5,#'-' /* oui le signe est - */
mvnlt r0,r0 /* et inversion en valeur positive */
addlt r0,#1
mov r4,#10 /* longueur de la zone */
1: /* debut de boucle de conversion */
bl divisionpar10 /* division */
add r1,#48 /* ajout de 48 au reste pour conversion ascii */
strb r1,[r2,r4] /* stockage du byte en début de zone r5 + la position r4 */
sub r4,r4,#1 /* position précedente */
cmp r0,#0
bne 1b /* boucle si quotient different de zéro */
strb r5,[r2,r4] /* stockage du signe à la position courante */
subs r4,r4,#1 /* position précedente */
blt 100f /* si r4 < 0 fin */
/* sinon il faut completer le debut de la zone avec des blancs */
mov r3,#' ' /* caractere espace */
2:
strb r3,[r2,r4] /* stockage du byte */
subs r4,r4,#1 /* position précedente */
bge 2b /* boucle si r4 plus grand ou egal a zero */
100: /* fin standard de la fonction */
pop {r0-r5,lr} /*restaur desregistres */
bx lr
 
/***************************************************/
/* division par 10 signé */
/* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/*
/* and http://www.hackersdelight.org/ */
/***************************************************/
/* r0 contient le dividende */
/* r0 retourne le quotient */
/* r1 retourne le reste */
divisionpar10:
/* r0 contains the argument to be divided by 10 */
push {r2-r4} /* save registers */
mov r4,r0
ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */
smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */
mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */
mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */
add r0, r2, r1 /* r0 <- r2 + r1 */
add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */
sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */
pop {r2-r4}
bx lr /* leave function */
bx lr /* leave function */
.Ls_magic_number_10: .word 0x66666667
 
 
</syntaxhighlight>
=={{header|Arturo}}==
 
<syntaxhighlight lang="rebol">print to :integer first "a"
print to :integer `a`
print to :char 97</syntaxhighlight>
 
{{out}}
 
<pre>97
97
a</pre>
=={{header|AutoHotkey}}==
<syntaxhighlight lang="autohotkey">MsgBox % Chr(97)
MsgBox % Asc("a")</syntaxhighlight>
=={{header|AWK}}==
AWK has no built-in way to convert a character into ASCII (or whatever) code;
but a function that does so can be easily built using an associative array (where the keys are the characters).
The opposite can be done using <tt>printf</tt> (or <tt>sprintf</tt>) with <tt>%c</tt>
<syntaxhighlight lang="awk">function ord(c)
{
return chmap[c]
}
BEGIN {
for(i=0; i < 256; i++) {
chmap[sprintf("%c", i)] = i
}
print ord("a"), ord("b")
printf "%c %c\n", 97, 98
s = sprintf("%c%c", 97, 98)
print s
}</syntaxhighlight>
=={{header|Axe}}==
<syntaxhighlight lang="axe">Disp 'a'▶Dec,i
Disp 97▶Char,i</syntaxhighlight>
=={{header|Babel}}==
 
<syntaxhighlight lang="babel">'abcdefg' str2ar
{%d nl <<} eachar</syntaxhighlight>
 
{{Out}}<pre>
97
98
99
100
101
102
103
</pre>
 
<syntaxhighlight lang="babel">(98 97 98 101 108) ls2lf ar2str nl <<
</syntaxhighlight>
{{out}}
babel
=={{header|BASIC}}==
{{works with|QBasic|1.1}}
{{works with|QuickBasic|4.5}}
<syntaxhighlight lang="qbasic">charCode = 97
char = "a"
PRINT CHR$(charCode) 'prints a
PRINT ASC(char) 'prints 97</syntaxhighlight>
 
On the ZX Spectrum string variable names must be a single letter but numeric variables can be multiple characters:
{{works with|ZX Spectrum Basic}}
<syntaxhighlight lang="zxbasic">10 LET c = 97: REM c is a character code
20 LET d$ = "b": REM d$ holds the character
30 PRINT CHR$(c): REM this prints a
40 PRINT CODE(d$): REM this prints 98</syntaxhighlight>
 
==={{header|Applesoft BASIC}}===
CHR$(97) is used in place of "a" because on the older model Apple II, lower case is difficult to input.
<syntaxhighlight lang="qbasic">?CHR$(97)"="ASC(CHR$(97))</syntaxhighlight>
{{Out}}<pre>a=97</pre>
 
Output as it appears on the text display on the Apple II and Apple II plus, with the original text character ROM:
<pre>!=97</pre>
 
==={{header|BaCon}}===
<syntaxhighlight lang="qbasic">' ASCII
c$ = "$"
PRINT c$, ": ", ASC(c$)
 
' UTF-8
uc$ = "€"
PRINT uc$, ": ", UCS(uc$), ", ", UCS(c$)</syntaxhighlight>
 
{{out}}
<pre>
$: 36
€: 8364, 36</pre>
 
==={{header|Chipmunk Basic}}===
<syntaxhighlight lang="qbasic">10 print "a - > ";asc("a")
20 print "98 -> ";chr$(98)</syntaxhighlight>
 
==={{header|Commodore BASIC}}===
Commodore BASIC uses PETSCII code for its character set.
<syntaxhighlight lang="gwbasic">10 CH = 65: REM IN PETSCII CODE FOR 'A' IS 65
20 D$ = "B": REM D$ HOLDS THE CHARACTER 'B'
30 PRINT CHR$(CH): REM THIS PRINTS 'A'
40 PRINT ASC(D$): REM THIS PRINTS 66</syntaxhighlight>
{{Out}}<pre>A
66</pre>
 
==={{header|GW-BASIC}}===
{{works with|PC-BASIC|any}}
{{works with|BASICA}}
<syntaxhighlight lang="qbasic">10 PRINT "a - > "; ASC("a")
20 PRINT "98 -> "; CHR$(98)</syntaxhighlight>
 
==={{header|IS-BASIC}}===
<syntaxhighlight lang="is-basic">100 PRINT ORD("A")
110 PRINT CHR$(65)</syntaxhighlight>
 
==={{header|MSX Basic}}===
{{works with|MSX BASIC|any}}
<syntaxhighlight lang="qbasic">10 PRINT "a - > "; ASC("a")
20 PRINT "98 -> "; CHR$(98)</syntaxhighlight>
 
==={{header|QBasic}}===
{{works with|BASICA}}
{{works with|Chipmunk Basic}}
{{works with|FreeBASIC}}
{{works with|GW-BASIC}}
{{works with|MSX BASIC}}
{{works with|PC-BASIC}}
{{works with|Run BASIC}}
{{works with|Yabasic}}
<syntaxhighlight lang="qbasic">PRINT "a - > "; ASC("a")
PRINT "98 -> "; CHR$(98)</syntaxhighlight>
 
==={{header|Sinclair ZX81 BASIC}}===
<syntaxhighlight lang="basic">10 REM THE ZX81 USES ITS OWN NON-ASCII CHARACTER SET
20 REM WHICH DOES NOT INCLUDE LOWER-CASE LETTERS
30 PRINT CODE "A"
40 PRINT CHR$ 38</syntaxhighlight>
{{out}}
<pre>38
A</pre>
 
==={{header|SmallBASIC}}===
<syntaxhighlight lang="qbasic">
Print "a -> "; Asc("a")
Print "98 -> "; Chr(98)
</syntaxhighlight>
 
==={{header|True BASIC}}===
<syntaxhighlight lang="qbasic">PRINT "a - > "; ord("a")
PRINT "98 -> "; chr$(98)
END</syntaxhighlight>
 
==={{header|XBasic}}===
{{works with|Windows XBasic}}
{{works with|Linux XBasic}}
<syntaxhighlight lang="qbasic">PROGRAM "Character codes"
VERSION "0.0000"
 
DECLARE FUNCTION Entry ()
 
FUNCTION Entry ()
PRINT "a - >"; ASC("a")
PRINT "98 -> "; CHR$(98)
END FUNCTION
END PROGRAM</syntaxhighlight>
 
==={{header|Yabasic}}===
<syntaxhighlight lang="yabasic">print "a - > ", asc("a")
print "98 -> ", chr$(98)</syntaxhighlight>
=={{header|BASIC256}}==
<syntaxhighlight lang="freebasic"># ASCII char
charCode = 97
char$ = "a"
print chr(97) #prints a
print asc("a") #prints 97
 
# Unicode char
charCode = 960
char$ = "π"
print chr(960) #prints π
print asc("π") #prints 960</syntaxhighlight>
{{out}}
<pre>a
97
π
960</pre>
=={{header|Batch File}}==
<syntaxhighlight lang="dos">
@echo off
 
:: Supports all ASCII characters and codes from 34-126 with the exceptions of:
:: 38 &
:: 60 <
:: 62 >
:: 94 ^
:: 124 |
 
:_main
call:_toCode a
call:_toChar 97
pause>nul
exit /b
 
:_toCode
setlocal enabledelayedexpansion
set codecount=32
 
for /l %%i in (33,1,126) do (
set /a codecount+=1
cmd /c exit %%i
if %1==!=exitcodeAscii! (
echo !codecount!
exit /b
)
)
 
:_toChar
setlocal
cmd /c exit %1
echo %=exitcodeAscii%
exit /b
</syntaxhighlight>
{{in}}
<pre>
toCode a
toChar 97
</pre>
{{out}}
<pre>
97
a
</pre>
=={{header|BBC BASIC}}==
<syntaxhighlight lang="bbcbasic"> charCode = 97
char$ = "a"
PRINT CHR$(charCode) : REM prints a
PRINT ASC(char$) : REM prints 97</syntaxhighlight>
=={{header|Befunge}}==
The instruction <tt>.</tt> will output as an integer. <tt>,</tt> will output as ASCII character.
<syntaxhighlight lang="befunge">"a". 99*44*+, @</syntaxhighlight>
=={{header|BQN}}==
BQN's character arithmetic makes it easy to convert between numbers and characters. Since arithmetic generalizes to arrays, the same function works for both integers and arrays. Here, only the conversion from number to character is defined, since it can be automatically inverted with Undo (<code>⁼</code>): the inverse simply subtracts <code>@</code>.
 
<syntaxhighlight lang="bqn"> FromCharCode ← @⊸+
@⊸+
FromCharCode 97
'a'
FromCharCode 97‿67‿126
"aC~"
FromCharCode⁼ 'a'
97</syntaxhighlight>
=={{header|Bracmat}}==
<syntaxhighlight lang="bracmat">( put
$ ( str
$ ( "\nLatin a
ISO-9959-1: "
asc$a
" = "
chr$97
"
UTF-8: "
utf$a
" = "
chu$97
\n
"Cyrillic а (UTF-8): "
utf$а
" = "
chu$1072
\n
)
)
)</syntaxhighlight>
{{Out}}<pre>Latin a
ISO-9959-1: 97 = a
UTF-8: 97 = a
Cyrillic а (UTF-8): 1072 = а</pre>
=={{header|C}}==
<codett>char</codett> is already an integer type in C, and it gets automatically promoted to <codett>int</codett>. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as <codett>char</codett> is smaller.
 
<syntaxhighlight lang="c">#include <stdio.h>
 
int main() {
Line 43 ⟶ 723:
printf("%c\n", 97); /* prints "a"; we don't have to cast because printf is type agnostic */
return 0;
}</csyntaxhighlight>
=={{header|C sharp|C#}}==
C# represents strings and characters internally as Unicode,
so casting a char to an int returns its Unicode character encoding.
<syntaxhighlight lang="csharp">using System;
 
namespace RosettaCode.CharacterCode
{
class Program
{
static void Main(string[] args)
{
Console.WriteLine((int) 'a'); //Prints "97"
Console.WriteLine((char) 97); //Prints "a"
}
}
}</syntaxhighlight>
=={{header|C++}}==
<codett>char</codett> is already an integer type in C++, and it gets automatically promoted to <codett>int</codett>. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as <codett>char</codett> is smaller.
 
In this case, the output operator <codett><<</codett> is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases.
<syntaxhighlight lang="cpp">#include <iostream>
 
int main() {
Line 55 ⟶ 750:
std::cout << (char)97 << std::endl; // prints "a"
return 0;
}</cppsyntaxhighlight>
=={{header|Clojure}}==
<syntaxhighlight lang="clojure">(print (int \a)) ; prints "97"
(print (char 97)) ; prints \a
 
; Unicode is also available, as Clojure uses the underlying java Strings & chars
(print (int \π)) ; prints 960
(print (char 960)) ; prints \π
 
; use String because char in Java can't represent characters outside Basic Multilingual Plane
(print (.codePointAt "𝅘𝅥𝅮" 0)) ; prints 119136
(print (String. (int-array 1 119136) 0 1)) ; prints 𝅘𝅥𝅮</syntaxhighlight>
=={{header|CLU}}==
<syntaxhighlight lang="clu">start_up = proc ()
po: stream := stream$primary_output()
% To turn a character code into an integer, use char$c2i
% (but then to print it, it needs to be turned into a string first
% with int$unparse)
stream$putl(po, int$unparse( char$c2i( 'a' ) ) ) % prints '97'
% To turn an integer into a character code, use char$i2c
stream$putc(po, char$i2c( 97 ) ); % prints 'a'
end start_up</syntaxhighlight>
{{out}}
<pre>97
a</pre>
=={{header|COBOL}}==
Tested with GnuCOBOL on an ASCII based GNU/Linux system.
Running this code on EBCDIC native hardware would display a control code and 000000093.
<syntaxhighlight lang="cobol"> identification division.
program-id. character-codes.
remarks. COBOL is an ordinal language, first is 1.
remarks. 42nd ASCII code is ")" not, "*".
procedure division.
display function char(42)
display function ord('*')
goback.
end program character-codes.</syntaxhighlight>
 
{{out}}
<pre>prompt$ cobc -xj character-codes.cob
)
000000043</pre>
=={{header|CoffeeScript}}==
CoffeeScript transcompiles to JavaScript, so it uses the JS standard library.
<syntaxhighlight lang="coffeescript">console.log 'a'.charCodeAt 0 # 97
console.log String.fromCharCode 97 # a</syntaxhighlight>
=={{header|Common Lisp}}==
<syntaxhighlight lang="lisp">(princ (char-code #\a)) ; prints "97"
(princ (code-char 97)) ; prints "a"</syntaxhighlight>
=={{header|Component Pascal}}==
BlackBox Component Builder
<syntaxhighlight lang="oberon2">PROCEDURE CharCodes*;
VAR
c : CHAR;
BEGIN
c := 'A';
StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln;
c := CHR(3A9H);
StdLog.Char(c);StdLog.String(":> ");StdLog.Int(ORD(c));StdLog.Ln
END CharCodes;</syntaxhighlight>
{{Out}}
<pre>A:> 65
Ω:> 937</pre>
=={{header|D}}==
<syntaxhighlight lang="d">void main() {
import std.stdio, std.utf;
 
string test = "a";
<lisp>(princ (char-code #\a)) ; prints "97"
size_t index = 0;
(princ (code-char 97)) ; prints "a"</lisp>
 
// Get four-byte utf32 value for index 0.
=={{header|Haskell}}==
writefln("%d", test.decode(index));
 
// 'index' has moved to next character input position.
assert(index == 1);
}</syntaxhighlight>
{{out}}
<pre>97</pre>
=={{header|Dc}}==
A dc program cannot look into strings. But it can convert numeric values into single char strings or print numeric codes directly:
<syntaxhighlight lang="dc">97P</syntaxhighlight>
{{out}}
<pre>a</pre>
=={{header|Delphi}}==
Example from Studio 2006.
<syntaxhighlight lang="delphi">program Project1;
 
{$APPTYPE CONSOLE}
 
uses
SysUtils;
var
aChar:Char;
aCode:Byte;
uChar:WideChar;
uCode:Word;
begin
aChar := Chr(97); Writeln(aChar);
aCode := Ord(aChar); Writeln(aCode);
uChar := WideChar(97); Writeln(uChar);
uCode := Ord(uChar); Writeln(uCode);
 
Readln;
end.</syntaxhighlight>
=={{header|Draco}}==
<syntaxhighlight lang="draco">proc nonrec main() void:
writeln(pretend(97, char)); /* prints "a" */
writeln(pretend('a', byte)); /* prints 97 */
corp</syntaxhighlight>
 
=={{header|DWScript}}==
<syntaxhighlight lang="delphi">PrintLn(Ord('a'));
PrintLn(Chr(97));</syntaxhighlight>
 
=={{header|Dyalect}}==
<syntaxhighlight lang="dyalect">print('a'.Order())
print(Char(97))</syntaxhighlight>
=={{header|E}}==
<syntaxhighlight lang="e">? 'a'.asInteger()
# value: 97
 
? <import:java.lang.makeCharacter>.asChar(97)
# value: 'a'</syntaxhighlight>
=={{header|EasyLang}}==
<syntaxhighlight lang="text">print strcode "a"
print strchar 97</syntaxhighlight>
 
=={{header|Ecstasy}}==
<syntaxhighlight lang="java">
module CharacterCodes {
@Inject Console console;
void run() {
for (Char char : ['\0', '\d', 'A', '$', '¢', '~', '˜']) {
// character to its integer value
UInt32 codepoint = char.codepoint;
 
// integer value back to its character value
Char fromCodePoint = codepoint.toChar(); // or: "new Char(codepoint)"
 
console.print($|Character {char.quoted()}:\
| Unicode codepoint={char.codepoint},\
| ASCII={char.ascii},\
| UTF8 bytes={char.utf8()},\
| char from codepoint={fromCodePoint.quoted()}
);
}
}
}
</syntaxhighlight>
 
{{out}}
<pre>
Character '\0': Unicode codepoint=0, ASCII=True, UTF8 bytes=0x00, char from codepoint='\0'
import Data.Char
Character '\d': Unicode codepoint=127, ASCII=True, UTF8 bytes=0x7F, char from codepoint='\d'
Character 'A': Unicode codepoint=65, ASCII=True, UTF8 bytes=0x41, char from codepoint='A'
Character '$': Unicode codepoint=36, ASCII=True, UTF8 bytes=0x24, char from codepoint='$'
Character '¢': Unicode codepoint=162, ASCII=False, UTF8 bytes=0xC2A2, char from codepoint='¢'
Character '~': Unicode codepoint=126, ASCII=True, UTF8 bytes=0x7E, char from codepoint='~'
Character '˜': Unicode codepoint=732, ASCII=False, UTF8 bytes=0xCB9C, char from codepoint='˜'
</pre>
 
=={{header|Eiffel}}==
All characters are of the type CHARACTER_8 (ASCII encoding) or CHARACTER_32 (Unicode encoding). CHARACTER is a synonym for either of these two (depending on the compiler option). Characters can be assigned using character literals (a single character enclosed in single quotes) or code value notation (of the form '%/value/' where value is an integer literal of any of the recognized forms).
<syntaxhighlight lang="eiffel">
class
APPLICATION
inherit
ARGUMENTS
create
make
 
feature {NONE} -- Initialization
 
make
-- Run application.
local
c8: CHARACTER_8
c32: CHARACTER_32
do
c8 := '%/97/' -- using code value notation
c8 := '%/0x61/' -- same as above, but using hexadecimal literal
print(c8.natural_32_code) -- prints "97"
print(c8) -- prints the character "a"
c32 := 'a' -- using character literal
print(c32.natural_32_code) -- prints "97"
print(c32) -- prints "U+00000061"
 
--c8 := 'π' -- compile-time error (c8 does not have enough range)
c32 := 'π' -- assigns Unicode value 960
end
end
</syntaxhighlight>
 
Limitations: There is no "put_character_32" feature for standard io (FILE class), so there appears to be no way to print Unicode characters.
=={{header|Elena}}==
ELENA 6.x :
<syntaxhighlight lang="elena">import extensions;
 
public program()
{
var ch := $97;
 
console.printLine(ch);
console.printLine(ch.toInt())
}</syntaxhighlight>
{{out}}
<pre>
a
97
</pre>
 
=={{header|Elixir}}==
A String in Elixir is a UTF-8 encoded binary.
<syntaxhighlight lang="elixir">iex(1)> code = ?a
97
iex(2)> to_string([code])
"a"</syntaxhighlight>
=={{header|Emacs Lisp}}==
<syntaxhighlight lang="lisp">(string-to-char "a") ;=> 97
(format "%c" 97) ;=> "a"</syntaxhighlight>
 
=={{header|EMal}}==
<syntaxhighlight lang="emal">
^|ord and chr work with Unicode code points|^
writeLine(ord("a")) # prints "97"
writeLine(chr(97)) # prints "a"
writeLine(ord("π")) # prints "960"
writeLine(chr(960)) # prints "π"
writeLine()
var cps = int[]
for each var c in text["a", "π", "字", "🐘"]
var cp = ord(c)
cps.append(cp)
writeLine(c + " = " + cp)
end
writeLine()
for each int i in cps
var c = chr(i)
writeLine(i + " = " + c)
end
</syntaxhighlight>
{{out}}
<pre>
97
a
960
π
 
a = 97
π = 960
字 = 23383
🐘 = 128024
 
97 = a
960 = π
23383 = 字
128024 = 🐘
</pre>
 
=={{header|Erlang}}==
In Erlang, lists and strings are the same, only the representation changes. Thus:
<syntaxhighlight lang="erlang">1> F = fun([X]) -> X end.
#Fun<erl_eval.6.13229925>
2> F("a").
97</syntaxhighlight>
If entered manually, one can also get ASCII codes by prefixing characters with <tt>$</tt>:
<syntaxhighlight lang="erlang">3> $a.
97</syntaxhighlight>
Unicode is fully supported since release R13A only.
=={{header|Euphoria}}==
<syntaxhighlight lang="euphoria">printf(1,"%d\n", 'a') -- prints "97"
printf(1,"%s\n", 97) -- prints "a"</syntaxhighlight>
=={{header|F Sharp|F#}}==
<syntaxhighlight lang="fsharp">let c = 'A'
let n = 65
printfn "%d" (int c)
printfn "%c" (char n)</syntaxhighlight>
{{Out}}<pre>65
A</pre>
=={{header|Factor}}==
<syntaxhighlight lang="factor">CHAR: katakana-letter-a .
"ア" first .
 
12450 1string print</syntaxhighlight>
=={{header|FALSE}}==
<syntaxhighlight lang="false">'A."
"65,</syntaxhighlight>
=={{header|Fantom}}==
A character is represented in single quotes: the 'toInt' method returns the code for the character. The 'toChar' method converts an integer into its respective character.
<syntaxhighlight lang="fantom">fansh> 97.toChar
a
fansh> 'a'.toInt
97</syntaxhighlight>
 
=={{header|Fennel}}==
<syntaxhighlight lang="fennel">
(string.byte :A) ; 65
(string.char 65) ; "A"
</syntaxhighlight>
 
=={{header|Forth}}==
As with C, characters are just integers on the stack which are treated as ASCII.
<syntaxhighlight lang="forth">char a
dup . \ 97
emit \ a</syntaxhighlight>
=={{header|Fortran}}==
Functions ACHAR and IACHAR specifically work with the ASCII character set, while the results of CHAR and ICHAR will depend on the default character set being used.
<syntaxhighlight lang="fortran">WRITE(*,*) ACHAR(97), IACHAR("a")
WRITE(*,*) CHAR(97), ICHAR("a")</syntaxhighlight>
=={{header|Free Pascal}}==
''See [[#Pascal|Pascal]]''
=={{header|FreeBASIC}}==
<syntaxhighlight lang="freebasic">
' FreeBASIC v1.05.0 win64
Print "a - > "; Asc("a")
Print "98 -> "; Chr(98)
Print
Print "Press any key to exit the program"
Sleep
End
</syntaxhighlight>
 
{{out}}
<pre>
a - > 97
98 -> b
</pre>
=={{header|Frink}}==
The function <code>char[x]</code> in Frink returns the numerical Unicode codepoints for a string or character, or returns the Unicode string for an integer value or array of integer values. The <code>chars[x]</code> returns an array even if the string is a single character. These functions also correctly handle upper-plane Unicode characters as a single codepoint.
<syntaxhighlight lang="frink">println[char["a"]] // prints 97
println[chars["a"]] // prints [97] (an array)
println[char[97]] // prints a
println[char["Frink rules!"]] // prints [70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33]
println[[70, 114, 105, 110, 107, 32, 114, 117, 108, 101, 115, 33]] // prints "Frink rules!"</syntaxhighlight>
 
 
=={{header|FutureBasic}}==
<syntaxhighlight lang="futurebasic">
print "a -> "; ASC("a")
print "98 -> "; CHR$(98)
 
handleevents
</syntaxhighlight>
{{output}}
<pre>
a -> 97
98 -> b
</pre>
 
 
=={{header|Gambas}}==
<syntaxhighlight lang="gambas">Public Sub Form_Open()
Dim sChar As String
 
sChar = InputBox("Enter a character")
Print "Character " & sChar & " = ASCII " & Str(Asc(sChar))
 
sChar = InputBox("Enter a ASCII code")
Print "ASCII code " & sChar & " represents " & Chr(Val(sChar))
 
End</syntaxhighlight>
Output:
<pre>
Character W = ASCII 87
ASCII code 35 represents #
</pre>
 
 
{{header|GAP}}==
<syntaxhighlight lang="gap"># Code must be in 0 .. 255.
CharInt(65);
# 'A'
IntChar('Z');
# 90</syntaxhighlight>
 
 
=={{header|Go}}==
In Go, a character literal ''is'' simply an integer constant of the character code:
<syntaxhighlight lang="go">fmt.Println('a') // prints "97"
fmt.Println('π') // prints "960"</syntaxhighlight>
<syntaxhighlight lang="go">package main
 
import (
"fmt"
)
 
func main() {
// Given a character value in your language, print its code
fmt.Printf("%d\n", 'A') // prt 65
// Given a code, print out the corresponding character.
fmt.Printf("%c\n", 65) // prt A
}</syntaxhighlight>
Literal constants in Go are not typed (named constants can be).
The variable and constant types most commonly used for character data are <code>byte</code>, <code>rune</code>, and <code>string</code>.
This example program shows character codes (as literals) stored in typed variables, and printed out with default formatting. Note that since byte and rune are integer types, the default formatting is a printable base 10 number. String is not numeric, and a little extra work must be done to print the character codes.
<syntaxhighlight lang="go">package main
 
import "fmt"
 
func main() {
// yes, there is more concise syntax, but this makes
// the data types very clear.
var b byte = 'a'
var r rune = 'π'
var s string = "aπ"
 
fmt.Println(b, r, s)
fmt.Println("string cast to []rune:", []rune(s))
// A range loop over a string gives runes, not bytes
fmt.Print(" string range loop: ")
for _, c := range s {
fmt.Print(c, " ") // c is type rune
}
// We can also print the bytes of a string without an explicit loop
fmt.Printf("\n string bytes: % #x\n", s)
}</syntaxhighlight>
{{out}}
<pre>
97 960 aπ
string cast to []rune: [97 960]
string range loop: 97 960
string bytes: 0x61 0xcf 0x80
</pre>
For the second part of the task, printing the character of a given code, the <code>%c</code> verb of <code>fmt.Printf</code> will do this directly from integer values, emitting the UTF-8 encoding of the code, (which will typically print the character depending on your hardware and operating system configuration).
<syntaxhighlight lang="go">b := byte(97)
r := rune(960)
fmt.Printf("%c %c\n%c %c\n", 97, 960, b, r)</syntaxhighlight>
{{out}}
<pre>
a π
a π</pre>
You can think of the default formatting of strings as being the printable characters of the string. In fact however, it is even simpler.
Since we expect our output device to interpret UTF-8, and we expect our string to contain UTF-8, the default formatting simply dumps the bytes of the string to the output.
 
Examples showing strings constructed from integer constants and then printed:
<syntaxhighlight lang="go">fmt.Println(string(97)) // prints "a"
fmt.Println(string(960)) // prints "π"
fmt.Println(string([]rune{97, 960})) // prints "aπ"</syntaxhighlight>
=={{header|Golfscript}}==
To convert a number to a string, we use the array to string coercion.
<syntaxhighlight lang="golfscript">97[]+''+p</syntaxhighlight>
To convert a string to a number, we have a many options, of which the simplest and shortest are:
<syntaxhighlight lang="golfscript">'a')\;p
'a'(\;p
'a'0=p
'a'{}/p</syntaxhighlight>
=={{header|Groovy}}==
Groovy does not have a character literal at all, so one-character strings have to be ''coerced'' to '''char'''. Groovy '''printf''' (like Java, but unlike C) is ''not type-agnostic'', so the cast or coercion from '''char''' to '''int''' is also required. The reverse direction is considerably simpler.
<syntaxhighlight lang="groovy">printf ("%d\n", ('a' as char) as int)
printf ("%c\n", 97)</syntaxhighlight>
{{Out}}
<pre>97
a</pre>
=={{header|Haskell}}==
<syntaxhighlight lang="haskell">import Data.Char
 
main = do
print (ord 'a') -- prints "97"
print (chr 97) -- prints "'a'"
print (ord 'π') -- prints "960"
</pre>
print (chr 960) -- prints "'\960'"</syntaxhighlight>
=={{header|HicEst}}==
<syntaxhighlight lang="hicest">WRITE(Messagebox) ICHAR('a'), CHAR(97)</syntaxhighlight>
=={{header|HolyC}}==
<syntaxhighlight lang="holyc">Print("%d\n", 'a'); /* prints "97" */
Print("%c\n", 97); /* prints "a" */</syntaxhighlight>
=={{header|Hoon}}==
<syntaxhighlight lang="hoon">|%
++ enc
|= char=@t `@ud`char
++ dec
|= code=@ud `@t`code
--</syntaxhighlight>
=={{header|i}}==
<syntaxhighlight lang="i">software {
print(number('a'))
print(text([97]))
}</syntaxhighlight>
=={{header|Icon}} and {{header|Unicon}}==
<syntaxhighlight lang="icon">procedure main(arglist)
if *arglist > 0 then L := arglist else L := [97, "a"]
 
every x := !L do
=={{header|Java}}==
write(x, " ==> ", char(integer(x)) | ord(x) ) # char produces a character, ord produces a number
<code>char</code> is already an integer type in Java, and it gets automatically promoted to <code>int</code>. So you can use a character where you would otherwise use an integer. Conversely, you can use an integer where you would normally use a character, except you may need to cast it, as <code>char</code> is smaller.
end</syntaxhighlight>
Icon and Unicon do not currently support double byte character sets.
{{Out}}<pre>97 ==> a
a ==> 97</pre>
=={{header|Io}}==
Here character is a sequence (string) of length one.
<syntaxhighlight lang="io">"a" at(0) println // --> 97
97 asCharacter println // --> a
 
"π" at(0) println // --> 960
In this case, the <code>println</code> method is overloaded to handle integer (outputs the decimal representation) and character (outputs just the character) types differently, so we need to cast it in both cases.
960 asCharacter println // --> π</syntaxhighlight>
<java>public class Foo {
=={{header|J}}==
public static void main(String[] args) {
<syntaxhighlight lang="j"> 4 u: 97 98 99 9786
System.out.println((int)'a'); // prints "97"
abc☺
System.out.println((char)97); // prints "a"
}
}</java>
 
3 u: 7 u: 'abc☺'
Java characters support Unicode:
97 98 99 9786</syntaxhighlight>
<java>public class Bar {
 
public static void main(String[] args) {
<code>7 u:</code> converts to utf-16 (<code>8 u:</code> would convert to utf-8, and <code>9 u:</code> would convert to utf-32), and <code>3 u:</code> converts what the uncode consortium calls "code points" to numeric form. Since J character literals are utf-8 (primarily because that's how OS interfaces work), by itself <code>3 u:</code> would give us:
System.out.println((int)'π'); // prints "960"
 
System.out.println((char)960); // prints "π"
<syntaxhighlight lang="j"> 3 u: 'abc☺'
}
97 98 99 226 152 186</syntaxhighlight>
}</java>
 
Also, if we limit ourselves to ascii, we have other ways of accomplishing the same thing. <code>a.</code> is a list of the 8 bit character codes and we can index from it, or search it (though that's mostly a notational convenience, since the underlying type already gives us all we need to know).
 
<syntaxhighlight lang="j"> 97 98 99{a.
abc
a.i.'abc'
97 98 99</syntaxhighlight>
 
=={{header|Java}}==
In Java, a <code>char</code> is a 2-byte unsigned value, so it will fit within an 4-byte <code>int</code>.<br />
<br />
To convert a character to it's ASCII code, cast the <code>char</code> to an <code>int</code>.<br />
The following will yield <kbd>97</kbd>.
<syntaxhighlight lang="java">
(int) 'a'
</syntaxhighlight>
You could also specify a unicode hexadecimal value, using the <kbd>\u</kbd> escape sequence.
<syntaxhighlight lang="java">
(int) '\u0061'
</syntaxhighlight>
To convert an ASCII code to it's ASCII representation, cast the <code>int</code> value to a <code>char</code>.
<syntaxhighlight lang="java">
(char) 97
</syntaxhighlight>
<br />
Java also offers the <code>Character</code> class, comprised of several utilities for Unicode based operations.<br />
Here are a few examples.<br /><br />
Get the integer value represented by the ASCII character.<br />
The second parameter here, is the radix.
This will return an <code>int</code> with the value of <kbd>1</kbd>.
<syntaxhighlight lang="java">
Character.digit('1', 10)
</syntaxhighlight>
Inversely, get the ASCII representation of the integer.<br />
Again, the second parameter is the radix.
This will return a <code>char</code> with the value of '<kbd>1</kbd>'.
<syntaxhighlight lang="java">
Character.forDigit(1, 10)
</syntaxhighlight>
 
=={{header|JavaScript}}==
Here character is just a string of length 1
<syntaxhighlight lang="javascript">documentconsole.writelog('a'.charCodeAt(0)); // prints "97"
documentconsole.writelog(String.fromCharCode(97)); // prints "a"</javascriptsyntaxhighlight>
 
ES6 brings '''String.codePointAt()''' and '''String.fromCodePoint()''', which provide access to 4-byte unicode characters,
in addition to the usual 2-byte unicode characters.
 
<syntaxhighlight lang="javascript">['字'.codePointAt(0), '🐘'.codePointAt(0)]</syntaxhighlight>
 
{{Out}}
 
<syntaxhighlight lang="javascript">[23383, 128024]</syntaxhighlight>
 
and
 
<syntaxhighlight lang="javascript">[23383, 128024].map(function (x) {
return String.fromCodePoint(x);
})</syntaxhighlight>
 
{{Out}}
 
<syntaxhighlight lang="javascript">["字", "🐘"]</syntaxhighlight>
=={{header|Joy}}==
<syntaxhighlight lang="joy">'a ord.
97 chr.</syntaxhighlight>
=={{header|jq}}==
jq data strings are JSON strings, which can be "explode"d into an array of integers, each representing a Unicode codepoint. The inverse of the <tt>explode</tt> filter is <tt>implode</tt>. <tt>explode</tt> can of course be used for single-character strings, and so for example:
<syntaxhighlight lang="jq">"a" | explode # => [ 97 ]
[97] | implode # => "a"</syntaxhighlight>
Here is a filter which can be used to convert an integer to the corresponding
character:<syntaxhighlight lang="jq">def chr: [.] | implode;
</syntaxhighlight>
Example:
1024 | chr # => "Ѐ"
=={{header|Julia}}==
Julia character constants (of type <code>Char</code>) are treated as an integer type representing the Unicode codepoint of the character, and can easily be converted to and from other integer types.
 
<syntaxhighlight lang="julia">println(Int('a'))
println(Char(97))</syntaxhighlight>
 
{{out}}<pre>97
a</pre>
=={{header|K}}==
<syntaxhighlight lang="k"> _ic "abcABC"
97 98 99 65 66 67
 
_ci 97 98 99 65 66 67
"abcABC"</syntaxhighlight>
=={{header|Kotlin}}==
<syntaxhighlight lang="kotlin">fun main() {
var c = 'a'
var i = c.code
println("$c <-> $i")
i += 2
c = i.toChar()
println("$i <-> $c")
}</syntaxhighlight>
 
{{out}}
<pre>
a <-> 97
99 <-> c
</pre>
 
=={{header|LabVIEW}}==
{{VI snippet}}<br/>
[[File:LabVIEW_Character_codes.png]]
 
=={{header|Lang}}==
{{trans|Python}}
<syntaxhighlight lang="lang">
fn.println(fn.toValue(a)) # Prints "97"
fn.println(fn.toChar(97)) # Prints "a"
 
# Unicode
fn.println(fn.toValue(π)) # Prints "960"
fn.println(fn.toChar(960)) # Prints "π"
</syntaxhighlight>
 
=={{header|Lang5}}==
<syntaxhighlight lang="lang5">: CHAR "!\"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[" comb
'\\ comb -1 remove append "]^_`abcdefghijklmnopqrstuvwxyz{|}~" comb append ;
: CODE 95 iota 33 + ; : comb "" split ;
: extract' rot 1 compress index subscript expand drop ;
: chr CHAR CODE extract' ;
: ord CODE CHAR extract' ;
 
'a ord . # 97
97 chr . # a</syntaxhighlight>
=={{header|langur}}==
Langur has code point literals (enclosed in straight single quotes), which may use escape codes. They are integers.
 
The s2cp(), cp2s(), and s2gc() functions convert between code point integers, grapheme clusters and strings. Also, string indexing is by code point.
 
<syntaxhighlight lang="langur">val .a1 = 'a'
val .a2 = 97
val .a3 = "a"[1]
val .a4 = s2cp "a", 1
val .a5 = [.a1, .a2, .a3, .a4]
 
writeln .a1 == .a2
writeln .a2 == .a3
writeln .a3 == .a4
writeln "numbers: ", join ", ", [.a1, .a2, .a3, .a4, .a5]
writeln "letters: ", join ", ", map cp2s, [.a1, .a2, .a3, .a4, .a5]</syntaxhighlight>
 
{{out}}
<pre>true
true
true
numbers: 97, 97, 97, 97, [97, 97, 97, 97]
letters: a, a, a, a, aaaa
</pre>
 
=={{header|Lasso}}==
<syntaxhighlight lang="lasso">'a'->integer
'A'->integer
97->bytes
65->bytes</syntaxhighlight>
{{out}}<pre>97
65
a
A</pre>
=={{header|LFE}}==
In LFE/Erlang, lists and strings are the same, only the representation changes. For example:
<syntaxhighlight lang="lisp">> (list 68 111 110 39 116 32 80 97 110 105 99 46)
"Don't Panic."</syntaxhighlight>
 
As for this exercise, here's how you could print out the ASCII code for a letter, and a letter from the ASCII code:
<syntaxhighlight lang="lisp">> (: io format '"~w~n" '"a")
97
ok
> (: io format '"~p~n" (list '(97)))
"a"
ok</syntaxhighlight>
=={{header|Liberty BASIC}}==
<syntaxhighlight lang="lb">charCode = 97
char$ = "a"
print chr$(charCode) 'prints a
print asc(char$) 'prints 97</syntaxhighlight>
=={{header|LIL}}==
LIL does not handle NUL bytes in character strings, char 0 returns an empty string.
<syntaxhighlight lang="tcl">print [char 97]
print [codeat "a" 0]</syntaxhighlight>
 
{{out}}
<pre>a
97</pre>
=={{header|Lingo}}==
<syntaxhighlight lang="lingo">-- returns Unicode code point (=ASCII code for ASCII characters) for character
put chartonum("a")
-- 97
 
-- returns character for Unicode code point (=ASCII code for ASCII characters)
put numtochar(934)
-- Φ</syntaxhighlight>
=={{header|Little}}==
<syntaxhighlight lang="c">puts("Unicode value of ñ is ${scan("ñ", "%c")}");
printf("The code 241 in Unicode is the letter: %c.\n", 241);
</syntaxhighlight>
=={{header|LiveCode}}==
<syntaxhighlight lang="livecode">Since 7.0.x works with unicode
put charToNum("") && numToChar(240)</syntaxhighlight>
=={{header|Logo}}==
Logo characters are words of length 1.
<syntaxhighlight lang="logo">print ascii "a ; 97
print char 97 ; a</syntaxhighlight>
=={{header|Logtalk}}==
<syntaxhighlight lang="logtalk">|?- char_code(Char, 97), write(Char).
a
Char = a
yes</syntaxhighlight>
<syntaxhighlight lang="logtalk">|?- char_code(a, Code), write(Code).
97
Code = 97
yes</syntaxhighlight>
=={{header|Lua}}==
<syntaxhighlight lang="lua">print(string.byte("a")) -- prints "97"
print(string.char(97)) -- prints "a"</syntaxhighlight>
=={{header|M2000 Interpreter}}==
<syntaxhighlight lang="m2000 interpreter">
\\ ANSI
Print Asc("a")
Print Chr$(Asc("a"))
\\ Utf16-Le
Print ChrCode("a")
Print ChrCode$(ChrCode("a"))
 
\\ (,) is an empty array.
 
Function Codes(a$) {
If Len(A$)=0 then =(,) : Exit
Buffer Mem as byte*Len(a$)
\\ Str$(string) return one byte character
Return Mem, 0:=Str$(a$)
Inventory Codes
For i=0 to len(Mem)-1
Append Codes, i:=Eval(Mem, i)
Next i
=Codes
}
Print Codes("abcd")
\\ 97 98 99 100
</syntaxhighlight>
=={{header|Maple}}==
There are two ways to do this in Maple. First, there are procedures in StringTools for this purpose.
<syntaxhighlight lang="maple">> use StringTools in Ord( "A" ); Char( 65 ) end;
65
 
"A"
</syntaxhighlight>
Second, the procedure convert handles conversions to and from byte values.
<syntaxhighlight lang="maple">> convert( "A", bytes );
[65]
 
> convert( [65], bytes );
"A"
</syntaxhighlight>
=={{header|Mathematica}} / {{header|Wolfram Language}}==
Use the FromCharacterCode and ToCharacterCode functions:
<syntaxhighlight lang="mathematica">ToCharacterCode["abcd"]
FromCharacterCode[{97}]</syntaxhighlight>
{{Out}}<pre>{97, 98, 99, 100}
 
"a"</pre>
=={{header|MATLAB}} / {{header|Octave}}==
There are two built-in function that perform these tasks.
To convert from a number to a character use:
<syntaxhighlight lang="matlab">character = char(asciiNumber)</syntaxhighlight>
 
To convert from a character to its corresponding ascii character use:
<syntaxhighlight lang="matlab">asciiNumber = double(character)</syntaxhighlight>
 
or if you need this number as an integer not a double use:
<syntaxhighlight lang="matlab">asciiNumber = uint16(character)
asciiNumber = uint32(character)
asciiNumber = uint64(character)</syntaxhighlight>
 
Sample Usage:
<syntaxhighlight lang="matlab">>> char(87)
 
ans =
 
W
 
>> double('W')
 
ans =
 
87
 
>> uint16('W')
 
ans =
 
87</syntaxhighlight>
=={{header|Maxima}}==
<syntaxhighlight lang="maxima">ascii(65);
"A"
 
cint("A");
65</syntaxhighlight>
=={{header|Metafont}}==
Metafont handles only ''ASCII'' (even though codes beyond 127 can be given and used as real ASCII codes)
<syntaxhighlight lang="metafont">message "enter a letter: ";
string a;
a := readstring;
message decimal (ASCII a); % writes the decimal number of the first character
% of the string a
message "enter a number: ";
num := scantokens readstring;
message char num; % num can be anything between 0 and 255; what will be seen
% on output depends on the encoding used by the "terminal"; e.g.
% any code beyond 127 when UTF-8 encoding is in use will give
% a bad encoding; e.g. to see correctly an "è", we should write
message char10; % (this add a newline...)
message char hex"c3" & char hex"a8"; % since C3 A8 is the UTF-8 encoding for "è"
end</syntaxhighlight>
=={{header|Microsoft Small Basic}}==
<syntaxhighlight lang="vb">TextWindow.WriteLine("The ascii code for 'A' is: " + Text.GetCharacterCode("A") + ".")
TextWindow.WriteLine("The character for '65' is: " + Text.GetCharacter(65) + ".")</syntaxhighlight>
 
{{out}}
<syntaxhighlight lang="basic">The ascii code for 'A' is: 65.
The character for '65' is: A.
Press any key to continue...</syntaxhighlight>
=={{header|MiniScript}}==
{{trans|Wren}}
MiniScript does not have a ''character'' type as such but one can use single character strings instead. Strings can contain any Unicode code point.
<syntaxhighlight lang="miniscript">cps = []
for c in ["a", "π", "字", "🐘"]
cp = c.code
cps.push cp
print c + " = " + cp
end for
print
for i in cps
print i + " = " + char(i)
end for</syntaxhighlight>
 
{{out}}
<pre>a = 97
π = 960
字 = 23383
🐘 = 128024
 
97 = a
960 = π
23383 = 字
128024 = 🐘
</pre>
 
=={{header|Modula-2}}==
<syntaxhighlight lang="modula2">MODULE asc;
 
IMPORT InOut;
 
VAR letter : CHAR;
ascii : CARDINAL;
 
BEGIN
letter := 'a';
InOut.Write (letter);
ascii := ORD (letter);
InOut.Write (11C); (* ASCII TAB *)
InOut.WriteCard (ascii, 8);
ascii := ascii - ORD ('0');
InOut.Write (11C); (* ASCII TAB *)
InOut.Write (CHR (ascii));
InOut.WriteLn
END asc.</syntaxhighlight>
{{out}}
<syntaxhighlight lang="modula-2">jan@Beryllium:~/modula/rosetta$ ./asc
a 97 1</syntaxhighlight>
 
=={{header|Modula-3}}==
The built in functions <code>ORD</code> and <code>VAL</code> work on characters, among other things.
<syntaxhighlight lang="modula3">ORD('a') (* Returns 97 *)
VAL(97, CHAR); (* Returns 'a' *)</syntaxhighlight>
=={{header|MUMPS}}==
<syntaxhighlight lang="mumps">WRITE $ASCII("M")
WRITE $CHAR(77)</syntaxhighlight>
=={{header|Nanoquery}}==
<syntaxhighlight lang="nanoquery">println ord("a")
println chr(97)
 
println ord("π")
println chr(960)</syntaxhighlight>
{{out}}
<pre>97
a
960
π</pre>
=={{header|Neko}}==
Neko treats strings as an array of bytes
 
<syntaxhighlight lang="neko">// An 'a' and a 'b'
var s = "a";
var c = 98;
var h = " ";
 
$print("Character code for 'a': ", $sget(s, 0), "\n");
 
$sset(h, 0, c);
$print("Character code ", c, ": ", h, "\n");</syntaxhighlight>
 
{{out}}
<pre>Character code for 'a': 97
Character code 98: b</pre>
 
Neko also has standard primitives for handling the byte array as UTF-8
 
<syntaxhighlight lang="neko">// While Neko also includes some UTF-8 operations,
// native strings are just arrays of bytes
var us = "¥·£·€·$·¢·₡·₢·₣·₤·₥·₦·₧·₨·₩·₪·₫·₭·₮·₯·₹";
 
// load some Std lib primitives
utfGet = $loader.loadprim("std@utf8_get", 2);
utfSub = $loader.loadprim("std@utf8_sub", 3);
utfAlloc = $loader.loadprim("std@utf8_buf_alloc", 1);
utfAdd = $loader.loadprim("std@utf8_buf_add", 2);
utfContent = $loader.loadprim("std@utf8_buf_content", 1);
 
// Pull out the Euro currency symbol from the UTF-8 currency sampler
var uc = utfGet(us, 4);
$print("UFT-8 code for '", utfSub(us, 4, 1), "': ", uc, "\n");
 
// Build a UTF-8 buffer
var buf = utfAlloc(4);
 
// Add a Pound Sterling symbol
uc = 8356;
utfAdd(buf, uc);
$print("UTF-8 code ", uc, ": ", utfContent(buf), "\n");</syntaxhighlight>
 
{{out}}
<pre>UFT-8 code for '€': 8364
UTF-8 code 8356: ₤</pre>
=={{header|NESL}}==
In NESL, character literals are prefixed with a backtick. The functions <tt>char_code</tt> and <tt>code_char</tt> convert between characters and integer character codes.
<syntaxhighlight lang="nesl">char_code(`a);
 
it = 97 : int</syntaxhighlight>
<syntaxhighlight lang="nesl">code_char(97);
 
it = `a : char</syntaxhighlight>
=={{header|NetRexx}}==
NetRexx provides built-in functions to convert between character and decimal/hexadecimal.
<syntaxhighlight lang="netrexx">/* NetRexx */
options replace format comments java crossref symbols nobinary
 
runSample(arg)
return
 
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
method runSample(arg) private static
-- create some sample data: character, hex and unicode
samp = ' ' || 'a'.sequence('e') || '$' || '\xa2'.sequence('\xa5') || '\u20a0'.sequence('\u20b5')
-- use the C2D C2X D2C and X2C built-in functions
say "'"samp"'"
say ' | Chr C2D C2X D2C X2C'
say '---+ --- ------ ---- --- ---'
loop ci = 1 to samp.length
cc = samp.substr(ci, 1)
cd = cc.c2d -- char to decimal
cx = cc.c2x -- char to hexadecimal
dc = cd.d2c -- decimal to char
xc = cx.x2c -- hexadecimal to char
say ci.right(3)"| '"cc"'" cd.right(6) cx.right(4, 0) "'"dc"' '"xc"'"
end ci
return</syntaxhighlight>
{{Out}}
<pre style="height:20ex; overflow:scroll">' abcde$¢£¤¥₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵'
| Chr C2D C2X D2C X2C
---+ --- ------ ---- --- ---
1| ' ' 32 0020 ' ' ' '
2| 'a' 97 0061 'a' 'a'
3| 'b' 98 0062 'b' 'b'
4| 'c' 99 0063 'c' 'c'
5| 'd' 100 0064 'd' 'd'
6| 'e' 101 0065 'e' 'e'
7| '$' 36 0024 '$' '$'
8| '¢' 162 00A2 '¢' '¢'
9| '£' 163 00A3 '£' '£'
10| '¤' 164 00A4 '¤' '¤'
11| '¥' 165 00A5 '¥' '¥'
12| '₠' 8352 20A0 '₠' '₠'
13| '₡' 8353 20A1 '₡' '₡'
14| '₢' 8354 20A2 '₢' '₢'
15| '₣' 8355 20A3 '₣' '₣'
16| '₤' 8356 20A4 '₤' '₤'
17| '₥' 8357 20A5 '₥' '₥'
18| '₦' 8358 20A6 '₦' '₦'
19| '₧' 8359 20A7 '₧' '₧'
20| '₨' 8360 20A8 '₨' '₨'
21| '₩' 8361 20A9 '₩' '₩'
22| '₪' 8362 20AA '₪' '₪'
23| '₫' 8363 20AB '₫' '₫'
24| '€' 8364 20AC '€' '€'
25| '₭' 8365 20AD '₭' '₭'
26| '₮' 8366 20AE '₮' '₮'
27| '₯' 8367 20AF '₯' '₯'
28| '₰' 8368 20B0 '₰' '₰'
29| '₱' 8369 20B1 '₱' '₱'
30| '₲' 8370 20B2 '₲' '₲'
31| '₳' 8371 20B3 '₳' '₳'
32| '₴' 8372 20B4 '₴' '₴'
33| '₵' 8373 20B5 '₵' '₵'</pre>
=={{header|Nim}}==
<syntaxhighlight lang="nim">echo ord('a') # echoes 97
echo chr(97) # echoes a
 
import unicode
 
echo int("π".runeAt(0)) # echoes 960
echo Rune(960) # echoes π</syntaxhighlight>
=={{header|NS-HUBASIC}}==
NS-HUBASIC uses a non-ASCII character set that doesn't include letters in lowercase.
<syntaxhighlight lang="ns-hubasic">10 PRINT CODE "A"
20 PRINT CHR$(38)</syntaxhighlight>
{{Out}}
<pre> 0A
&</pre>
=={{header|Oberon-2}}==
<syntaxhighlight lang="oberon2">MODULE Ascii;
IMPORT Out;
VAR
c: CHAR;
d: INTEGER;
BEGIN
c := CHR(97);
d := ORD("a");
Out.Int(d,3);Out.Ln;
Out.Char(c);Out.Ln
END Ascii.</syntaxhighlight>
{{Out}}<pre>
97
a</pre>
=={{header|Objeck}}==
<syntaxhighlight lang="objeck">'a'->As(Int)->PrintLine();
97->As(Char)->PrintLine();</syntaxhighlight>
=={{header|Object Pascal}}==
''See [[#Pascal|Pascal]]''
=={{header|OCaml}}==
<syntaxhighlight lang="ocaml">Printf.printf "%d\n" (int_of_char 'a'); (* prints "97" *)
Printf.printf "%c\n" (char_of_int 97); (* prints "a" *)</syntaxhighlight>
 
The following are aliases for the above functions:
<ocaml>Printf.printf "%d\n" (int_of_char 'a'); (* prints "97" *)
<syntaxhighlight lang="ocaml"># Char.code ;;
Printf.printf "%c\n" (char_of_int 97); (* prints "a" *)</ocaml>
- : char -> int = <fun>
# Char.chr;;
- : int -> char = <fun></syntaxhighlight>
=={{header|Oforth}}==
 
Oforth has not type or class for characters. A character is an integer which value is its unicode code.
 
<syntaxhighlight lang="oforth">'a' println</syntaxhighlight>
 
{{out}}
<pre>
97
</pre>
=={{header|OpenEdge/Progress}}==
<syntaxhighlight lang="progress (openedge abl)">MESSAGE
CHR(97) SKIP
ASC("a")
VIEW-AS ALERT-BOX.</syntaxhighlight>
=={{header|Oz}}==
Characters in Oz are the same as integers in the range 0-255 (ISO 8859-1 encoding). To print a number as a character, we need to use it as a string (i.e. a list of integers from 0 to 255):
<syntaxhighlight lang="oz">{System.show &a} %% prints "97"
{System.showInfo [97]} %% prints "a"</syntaxhighlight>
=={{header|PARI/GP}}==
<syntaxhighlight lang="parigp">print(Vecsmall("a")[1]);
print(Strchr([72, 101, 108, 108, 111, 44, 32, 119, 111, 114, 108, 100, 33]))</syntaxhighlight>
=={{header|Pascal}}==
<syntaxhighlight lang="pascal">writeln(ord('a'));
writeln(chr(97));</syntaxhighlight>
=={{header|Plain English}}==
<syntaxhighlight>
\ Obs: The little-a byte is a byte equal to 97.
Write the little-a byte's whereabouts on the console.
Put 97 into a number.
Write the number's target on the console.
</syntaxhighlight>
=={{header|Perl}}==
===Narrow===
Here character is just a string of length 1
The code is straightforward when characters are all narrow (single byte).
<perl>print ord('a'), "\n"; # prints "97"
<syntaxhighlight lang="perl">use strict;
print chr(97), "\n"; # prints "a"</perl>
use warnings;
use utf8;
binmode(STDOUT, ':utf8');
use Encode;
use Unicode::UCD 'charinfo';
use List::AllUtils qw(zip natatime);
 
for my $c (split //, 'AΑА薵') {
my $o = ord $c;
my $utf8 = join '', map { sprintf "%x ", ord } split //, Encode::encode("utf8", $c);
my $iterator = natatime 2, zip
@{['Character', 'Character name', 'Ordinal(s)', 'Hex ordinal(s)', 'UTF-8', 'Round trip']},
@{[ $c, charinfo($o)->{'name'}, $o, sprintf("0x%x",$o), $utf8, chr $o, ]};
while ( my ($label, $value) = $iterator->() ) {
printf "%14s: %s\n", $label, $value
}
print "\n";
}</syntaxhighlight>
{{out}}
<pre> Character: A
Character name: LATIN CAPITAL LETTER A
Ordinal(s): 65
Hex ordinal(s): 0x41
UTF-8: 41
Round trip: A
 
Character: Α
Character name: GREEK CAPITAL LETTER ALPHA
Ordinal(s): 913
Hex ordinal(s): 0x391
UTF-8: ce 91
Round trip: Α
 
Character: А
Character name: CYRILLIC CAPITAL LETTER A
Ordinal(s): 1040
Hex ordinal(s): 0x410
UTF-8: d0 90
Round trip: А
 
Character: 薵
Character name: CJK UNIFIED IDEOGRAPH-2A6A5
Ordinal(s): 173733
Hex ordinal(s): 0x2a6a5
UTF-8: f0 aa 9a a5
Round trip: 薵</pre>
 
===Wide===
Have to work a little harder to handle wide (multi-byte) characters.
<syntaxhighlight lang="perl">use strict;
use warnings;
use feature 'say';
use utf8;
binmode(STDOUT, ':utf8');
use Unicode::Normalize 'NFC';
use Unicode::UCD qw(charinfo charprop);
 
while ('Δ̂🇺🇸👨‍👩‍👧‍👦' =~ /(\X)/g) {
my @ordinals = map { ord } split //, my $c = $1;
printf "%14s: %s\n"x7 . "\n",
'Character', NFC $c,
'Character name', join(', ', map { charinfo($_)->{'name'} } @ordinals),
'Unicode property', join(', ', map { charprop($_, "Gc") } @ordinals),
'Ordinal(s)', join(' ', @ordinals),
'Hex ordinal(s)', join(' ', map { sprintf("0x%x", $_) } @ordinals),
'UTF-8', join('', map { sprintf "%x ", ord } (utf8::encode($c), split //, $c)),
'Round trip', join('', map { chr } @ordinals);
}</syntaxhighlight>
{{out}}
<pre> Character: Δ̂
Character name: GREEK CAPITAL LETTER DELTA, COMBINING CIRCUMFLEX ACCENT
Unicode property: Uppercase_Letter, Nonspacing_Mark
Ordinal(s): 916 770
Hex ordinal(s): 0x394 0x302
UTF-8: ce 94 cc 82
Round trip: Δ̂
 
Character: 🇺🇸
Character name: REGIONAL INDICATOR SYMBOL LETTER U, REGIONAL INDICATOR SYMBOL LETTER S
Unicode property: Other_Symbol, Other_Symbol
Ordinal(s): 127482 127480
Hex ordinal(s): 0x1f1fa 0x1f1f8
UTF-8: f0 9f 87 ba f0 9f 87 b8
Round trip: 🇺🇸
 
Character: 👨‍👩‍👧‍👦
Character name: MAN, ZERO WIDTH JOINER, WOMAN, ZERO WIDTH JOINER, GIRL, ZERO WIDTH JOINER, BOY
Unicode property: Other_Symbol, Format, Other_Symbol, Format, Other_Symbol, Format, Other_Symbol
Ordinal(s): 128104 8205 128105 8205 128103 8205 128102
Hex ordinal(s): 0x1f468 0x200d 0x1f469 0x200d 0x1f467 0x200d 0x1f466
UTF-8: f0 9f 91 a8 e2 80 8d f0 9f 91 a9 e2 80 8d f0 9f 91 a7 e2 80 8d f0 9f 91 a6
Round trip: 👨‍👩‍👧‍👦</pre>
=={{header|Phix}}==
{{libheader|Phix/basics}}
Characters and their ascii codes are one and the same. (See also printf, %d / %s / %c.)
<!--<syntaxhighlight lang="phix">(phixonline)-->
<span style="color: #0000FF;">?</span><span style="color: #008000;">'A'</span>
<span style="color: #7060A8;">puts</span><span style="color: #0000FF;">(</span><span style="color: #000000;">1</span><span style="color: #0000FF;">,</span><span style="color: #000000;">65</span><span style="color: #0000FF;">)</span>
<!--</syntaxhighlight>-->
{{out}}
<pre>
65
A
</pre>
 
=={{header|Phixmonti}}==
<syntaxhighlight lang="phixmonti">'a' print nl
97 tochar print</syntaxhighlight>
=={{header|PHP}}==
Here character is just a string of length 1
<syntaxhighlight lang="php">echo ord('a'), "\n"; // prints "97"
echo chr(97), "\n"; // prints "a"</phpsyntaxhighlight>
=={{header|Picat}}==
<syntaxhighlight lang="picat">main =>
println(chr(97)),
println(ord('a')),
println(ord(a)).</syntaxhighlight>
 
{{out}}
<pre>a
97
97</pre>
=={{header|PicoLisp}}==
<syntaxhighlight lang="picolisp">: (char "a")
-> 97
: (char "字")
-> 23383
: (char 23383)
-> "字"
: (chop "文字")
-> ("文" "字")
: (mapcar char @)
-> (25991 23383)</syntaxhighlight>
=={{header|PL/I}}==
<syntaxhighlight lang="pl/i">declare 1 u union,
2 c character (1),
2 i fixed binary (8) unsigned;
c = 'a'; put skip list (i); /* prints 97 */
i = 97; put skip list (c); /* prints 'a' */</syntaxhighlight>
=={{header|PowerShell}}==
Powershell does allow for character literals with [convert]
<syntaxhighlight lang="powershell">$char = [convert]::toChar(0x2f) #=> /</syntaxhighlight>
 
PowerShell does not allow for character literals directly, so to get a character one first needs to convert a single-character string to a char:
<syntaxhighlight lang="powershell">$char = [char] 'a'</syntaxhighlight>
Then a simple cast to int yields the character code:
<syntaxhighlight lang="powershell">$charcode = [int] $char # => 97</syntaxhighlight>
This also works with Unicode:
<syntaxhighlight lang="powershell">[int] [char] '☺' # => 9786</syntaxhighlight>
For converting an integral character code into the actual character, a cast to char suffices:
<syntaxhighlight lang="powershell">[char] 97 # a
[char] 9786 # ☺</syntaxhighlight>
=={{header|Prolog}}==
SWI-Prolog has predefined predicate char_code/2.
<pre>?- char_code(a, X).
X = 97.
 
?- char_code(X, 97).
X = a.</pre>
=={{header|PureBasic}}==
PureBasic allows compiling code so that it will use either Ascii or a Unicode (UCS-2) encoding for representing its string content.
It also allows for the source code that is being compiled to be in either Ascii or UTF-8 encoding.
A one-character string is used here to hold the character and a numerical character type is used to hold the character code.
The character type is either one or two bytes in size, depending on whether compiling for Ascii or Unicode respectively.
<syntaxhighlight lang="purebasic">If OpenConsole()
;Results are the same when compiled for Ascii or Unicode
charCode.c = 97
Char.s = "a"
PrintN(Chr(charCode)) ;prints a
PrintN(Str(Asc(Char))) ;prints 97
 
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf</syntaxhighlight>
 
This version should be compiled with Unicode setting and the source code to be encoded using UTF-8.
<syntaxhighlight lang="purebasic">If OpenConsole()
;UTF-8 encoding compiled for Unicode (UCS-2)
charCode.c = 960
Char.s = "π"
PrintN(Chr(charCode)) ;prints π
PrintN(Str(Asc(Char))) ;prints 960
 
Print(#CRLF$ + #CRLF$ + "Press ENTER to exit")
Input()
CloseConsole()
EndIf</syntaxhighlight>
=={{header|Python}}==
{{works with|Python|2.x}}
Here character is just a string of length 1
 
<python>print ord('a') # prints "97"
8-bit characters:
print chr(97) # prints "a"</python>
<syntaxhighlight lang="python">print ord('a') # prints "97"
print chr(97) # prints "a"</syntaxhighlight>
 
Unicode characters:
<syntaxhighlight lang="python">print ord(u'π') # prints "960"
print unichr(960) # prints "π"</syntaxhighlight>
 
{{works with|Python|3.x}}
Here character is just a string of length 1
<syntaxhighlight lang="python">print(ord('a')) # prints "97" (will also work in 2.x)
print(ord('π')) # prints "960"
print(chr(97)) # prints "a" (will also work in 2.x)
print(chr(960)) # prints "π"</syntaxhighlight>
=={{header|Quackery}}==
 
As a dialogue in the Quackery shell.
 
<pre>Welcome to Quackery.
 
Enter "leave" to leave the shell.
 
/O> char a
...
 
Stack: 97
 
/O> emit
...
a
Stack empty.</pre>
=={{header|R}}==
<syntaxhighlight lang="r">ascii <- as.integer(charToRaw("hello world")); ascii
text <- rawToChar(as.raw(ascii)); text</syntaxhighlight>
=={{header|Racket}}==
<syntaxhighlight lang="racket">#lang racket
 
(define (code ch)
(printf "The unicode number for ~s is ~a\n" ch (char->integer ch)))
(code #\a)
(code #\λ)
 
(define (char n)
(printf "The unicode number ~a is the character ~s\n" n (integer->char n)))
(char 97)
(char 955)</syntaxhighlight>
=={{header|Raku}}==
(formerly Perl 6)
Both Perl 5 and Raku have good Unicode support, though Raku attempts to make working with Unicode effortless. Note that even multi-byte emoji and characters outside the BMP are considered single characters. Also note: all of these routines are built into the base compiler. No need to load external libraries. See [[wp:Unicode_character_property#General_Category|Wikipedia: Unicode character properties]] for explanation of Unicode property.
<syntaxhighlight lang="raku" line>for 'AΑА𪚥🇺🇸👨‍👩‍👧‍👦'.comb {
.put for
[ 'Character',
'Character name',
'Unicode property',
'Unicode script',
'Unicode block',
'Added in Unicode version',
'Ordinal(s)',
'Hex ordinal(s)',
'UTF-8',
'UTF-16LE',
'UTF-16BE',
'Round trip by name',
'Round trip by ordinal'
]».fmt('%25s:')
Z
[ $_,
.uninames.join(', '),
.uniprops.join(', '),
.uniprops('Script').join(', '),
.uniprops('Block').join(', '),
.uniprops('Age').join(', '),
.ords,
.ords.fmt('0x%X'),
.encode('utf8' )».fmt('%02X'),
.encode('utf16le')».fmt('%02X').join.comb(4),
.encode('utf16be')».fmt('%02X').join.comb(4),
.uninames».uniparse.join,
.ords.chrs
];
say '';
}</syntaxhighlight>
{{out}}
<pre> Character: A
Character name: LATIN CAPITAL LETTER A
Unicode property: Lu
Unicode script: Latin
Unicode block: Basic Latin
Added in Unicode version: 1.1
Ordinal(s): 65
Hex ordinal(s): 0x41
UTF-8: 41
UTF-16LE: 4100
UTF-16BE: 0041
Round trip by name: A
Round trip by ordinal: A
 
Character: Α
Character name: GREEK CAPITAL LETTER ALPHA
Unicode property: Lu
Unicode script: Greek
Unicode block: Greek and Coptic
Added in Unicode version: 1.1
Ordinal(s): 913
Hex ordinal(s): 0x391
UTF-8: CE 91
UTF-16LE: 9103
UTF-16BE: 0391
Round trip by name: Α
Round trip by ordinal: Α
 
Character: А
Character name: CYRILLIC CAPITAL LETTER A
Unicode property: Lu
Unicode script: Cyrillic
Unicode block: Cyrillic
Added in Unicode version: 1.1
Ordinal(s): 1040
Hex ordinal(s): 0x410
UTF-8: D0 90
UTF-16LE: 1004
UTF-16BE: 0410
Round trip by name: А
Round trip by ordinal: А
 
Character: 𪚥
Character name: CJK UNIFIED IDEOGRAPH-2A6A5
Unicode property: Lo
Unicode script: Han
Unicode block: CJK Unified Ideographs Extension B
Added in Unicode version: 3.1
Ordinal(s): 173733
Hex ordinal(s): 0x2A6A5
UTF-8: F0 AA 9A A5
UTF-16LE: 69D8 A5DE
UTF-16BE: D869 DEA5
Round trip by name: 𪚥
Round trip by ordinal: 𪚥
 
Character: 🇺🇸
Character name: REGIONAL INDICATOR SYMBOL LETTER U, REGIONAL INDICATOR SYMBOL LETTER S
Unicode property: So, So
Unicode script: Common, Common
Unicode block: Enclosed Alphanumeric Supplement, Enclosed Alphanumeric Supplement
Added in Unicode version: 6.0, 6.0
Ordinal(s): 127482 127480
Hex ordinal(s): 0x1F1FA 0x1F1F8
UTF-8: F0 9F 87 BA F0 9F 87 B8
UTF-16LE: 3CD8 FADD 3CD8 F8DD
UTF-16BE: D83C DDFA D83C DDF8
Round trip by name: 🇺🇸
Round trip by ordinal: 🇺🇸
 
Character: 👨‍👩‍👧‍👦
Character name: MAN, ZERO WIDTH JOINER, WOMAN, ZERO WIDTH JOINER, GIRL, ZERO WIDTH JOINER, BOY
Unicode property: So, Cf, So, Cf, So, Cf, So
Unicode script: Common, Inherited, Common, Inherited, Common, Inherited, Common
Unicode block: Miscellaneous Symbols and Pictographs, General Punctuation, Miscellaneous Symbols and Pictographs, General Punctuation, Miscellaneous Symbols and Pictographs, General Punctuation, Miscellaneous Symbols and Pictographs
Added in Unicode version: 6.0, 1.1, 6.0, 1.1, 6.0, 1.1, 6.0
Ordinal(s): 128104 8205 128105 8205 128103 8205 128102
Hex ordinal(s): 0x1F468 0x200D 0x1F469 0x200D 0x1F467 0x200D 0x1F466
UTF-8: F0 9F 91 A8 E2 80 8D F0 9F 91 A9 E2 80 8D F0 9F 91 A7 E2 80 8D F0 9F 91 A6
UTF-16LE: 3DD8 68DC 0D20 3DD8 69DC 0D20 3DD8 67DC 0D20 3DD8 66DC
UTF-16BE: D83D DC68 200D D83D DC69 200D D83D DC67 200D D83D DC66
Round trip by name: 👨‍👩‍👧‍👦
Round trip by ordinal: 👨‍👩‍👧‍👦</pre>
 
=={{header|RapidQ}}==
<syntaxhighlight lang="vb">
Print Chr$(97)
Print Asc("a")
</syntaxhighlight>
=={{header|Red}}==
<syntaxhighlight lang="red">Red []
print to-integer first "a" ;; -> 97
print to-integer #"a" ;; -> 97
print to-binary "a" ;; -> #{61}
print to-char 97 ;; -> a
</syntaxhighlight>
=={{header|Retro}}==
<syntaxhighlight lang="retro">'c putc</syntaxhighlight>
=={{header|REXX}}==
REXX supports handling of characters with built-in functions (BIFs), whether it be hexadecimal, binary (bits), or decimal code(s).
===ASCII===
<syntaxhighlight lang="rexx">/*REXX program displays a char's ASCII code/value (or EBCDIC if run on an EBCDIC system)*/
yyy= 'c' /*assign a lowercase c to YYY. */
yyy= "c" /* (same as above) */
say 'from char, yyy code=' yyy
 
yyy= '63'x /*assign hexadecimal 63 to YYY. */
yyy= '63'X /* (same as above) */
say 'from hex, yyy code=' yyy
 
yyy= x2c(63) /*assign hexadecimal 63 to YYY. */
say 'from hex, yyy code=' yyy
 
yyy= '01100011'b /*assign a binary 0011 0100 to YYY. */
yyy= '0110 0011'b /* (same as above) */
yyy= '0110 0011'B /* " " " */
say 'from bin, yyy code=' yyy
 
yyy= d2c(99) /*assign decimal code 99 to YYY. */
say 'from dec, yyy code=' yyy
 
say /* [↓] displays the value of YYY in ··· */
say 'char code: ' yyy /* character code (as an 8-bit ASCII character).*/
say ' hex code: ' c2x(yyy) /* hexadecimal */
say ' dec code: ' c2d(yyy) /* decimal */
say ' bin code: ' x2b( c2x(yyy) ) /* binary (as a bit string) */
/*stick a fork in it, we're all done with display*/</syntaxhighlight>
'''output'''
<pre>
from char, yyy code= c
from hex, yyy code= c
from hex, yyy code= c
from bin, yyy code= c
from dec, yyy code= c
 
char code: c
hex code: 63
dec code: 99
bin code: 01100011
</pre>
 
===EBCDIC===
<syntaxhighlight lang="rexx">/* REXX */
yyy='c' /*assign a lowercase c to YYY */
yyy='83'x /*assign hexadecimal 83 to YYY */
/*the X can be upper/lowercase.*/
yyy=x2c(83) /* (same as above) */
yyy='10000011'b /* (same as above) */
yyy='1000 0011'b /* (same as above) */
/*the B can be upper/lowercase.*/
yyy=d2c(129) /*assign decimal code 129 to YYY */
 
say yyy /*displays the value of YYY */
say c2x(yyy) /*displays the value of YYY in hexadecimal. */
say c2d(yyy) /*displays the value of YYY in decimal. */
say x2b(c2x(yyy))/*displays the value of YYY in binary (bit string). */</syntaxhighlight>
{{out}}
<pre>a
81
129
10000001</pre>
=={{header|Ring}}==
<syntaxhighlight lang="ring">
see ascii("a") + nl
see char(97) + nl
</syntaxhighlight>
=={{header|RPL}}==
{{in}}
<pre>
"a" NUM
97 CHR
</pre>
{{out}}
<pre>
2: 97
1: "a"
</pre>
 
=={{header|Ruby}}==
In Ruby currently1.9 characters are usually represented directly as theirlength-1 integerstrings; charactersame code.as Rubyin hasPython. a syntaxThe forprevious "character literal" which evaluates directly to the integer code:syntax <codett>?a</codett> evaluatesis tonow the integersame 97as <tt>"a"</tt>. Subscripting a string also gives justa thelength-1 integerstring. codeThere foris thenow an "ord" method of strings to convert a character into its integer code.
 
<syntaxhighlight lang="ruby">> "a".ord
<ruby>print ?a # prints "97"
=> 97
print 'a'[0] # prints "97"
> 97.chr
print 97.chr # prints "a"; "91.chr" returns a string of length 1</ruby>
=> "a"</syntaxhighlight>
 
=={{header|Run BASIC}}==
<syntaxhighlight lang="runbasic">print chr$(97) 'prints a
print asc("a") 'prints 97</syntaxhighlight>
=={{header|Rust}}==
<syntaxhighlight lang="rust">use std::char::from_u32;
 
fn main() {
//ascii char
println!("{}", 'a' as u8);
println!("{}", 97 as char);
 
//unicode char
println!("{}", 'π' as u32);
println!("{}", from_u32(960).unwrap());
}</syntaxhighlight>
{{out}}
<pre>97
a
960
π</pre>
=={{header|Sather}}==
<syntaxhighlight lang="sather">class MAIN is
main is
#OUT + 'a'.int + "\n"; -- or
#OUT + 'a'.ascii_int + "\n";
#OUT + CHAR::from_ascii_int(97) + "\n";
end;
end;</syntaxhighlight>
=={{header|Scala}}==
{{libheader|Scala}}
Scala supports unicode characters, but each character is UTF-16, so there is not a 1-to-1 relationship for supplementary character sets.
===In a REPL session===
<syntaxhighlight lang="scala">scala> 'a' toInt
res2: Int = 97
 
scala> 97 toChar
res3: Char = a
 
scala> '\u0061'
res4: Char = a
 
scala> "\uD869\uDEA5"
res5: String = 𪚥</syntaxhighlight>
===Full swing workout===
Taken the supplemental character sets in account.
<syntaxhighlight lang="scala">import java.lang.Character._; import scala.annotation.tailrec
 
object CharacterCode extends App {
def intToChars(n: Int): Array[Char] = java.lang.Character.toChars(n)
 
def UnicodeToList(UTFstring: String) = {
@tailrec
def inner(str: List[Char], acc: List[String], surrogateHalf: Option[Char]): List[String] = {
(str, surrogateHalf) match {
case (Nil, _) => acc
case (ch :: rest, None) => if (ch.isSurrogate) inner(rest, acc, Some(ch))
else inner(rest, acc :+ ch.toString, None)
case (ch :: rest, Some(f)) => inner(rest, (acc :+ (f.toString + ch)), None)
}
}
inner(UTFstring.toList, Nil, None)
}
 
def UnicodeToInt(utf: String) = {
def charToInt(high: Char, low: Char) =
{ if (isSurrogatePair(high, low)) toCodePoint(high, low) else high.toInt }
charToInt(utf(0), if (utf.size > 1) utf(1) else 0)
}
 
def UTFtoHexString(utf: String) = { utf.map(ch => f"${ch.toInt}%04X").mkString("\"\\u", "\\u", "\"") }
 
def flags(ch: String) = { // Testing Unicode character properties
(if (ch matches "\\p{M}") "Y" else "N") + (if (ch matches "\\p{Mn}") "Y" else "N")
}
 
val str = '\uFEFF' /*big-endian BOM*/ + "\u0301a" +
"$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀" + intToChars(173733).mkString
 
println(s"Example string: $str")
println(""" | Chr C/C++/Java source Code Point Hex Dec Mn Name
!----+ --- ------------------------- ------- -------- -- """.stripMargin('!') + "-" * 27)
 
(UnicodeToList(str)).zipWithIndex.map {
case (coll, nr) =>
f"$nr%4d: $coll\t${UTFtoHexString(coll)}%27s U+${UnicodeToInt(coll)}%05X" +
f"${"(" + UnicodeToInt(coll).toString}%8s) ${flags(coll)} ${getName(coll(0).toInt)} "
}.foreach(println)
}</syntaxhighlight>
{{Out}}
<pre style="height:20ex; overflow:scroll">
Example string: ́a$áabcde¢£¤¥©ÇßIJijŁłʒλπक्तु•₠₡₢₣₤₥₦₧₨₩₪₫€₭₮₯₰₱₲₳₴₵℃←→⇒∙⌘☃☹☺☻ア字文𠀀𪚥
| Chr C/C++/Java source Code Point Hex Dec Mn Name
----+ --- ------------------------- ------- -------- -- ---------------------------
0:  "\uFEFF" U+0FEFF (65279) NN ZERO WIDTH NO-BREAK SPACE
1: ́ "\u0301" U+00301 (769) YY COMBINING ACUTE ACCENT
2: a "\u0061" U+00061 (97) NN LATIN SMALL LETTER A
3: $ "\u0024" U+00024 (36) NN DOLLAR SIGN
4: á "\u00E1" U+000E1 (225) NN LATIN SMALL LETTER A WITH ACUTE
5: a "\u0061" U+00061 (97) NN LATIN SMALL LETTER A
6: b "\u0062" U+00062 (98) NN LATIN SMALL LETTER B
7: c "\u0063" U+00063 (99) NN LATIN SMALL LETTER C
8: d "\u0064" U+00064 (100) NN LATIN SMALL LETTER D
9: e "\u0065" U+00065 (101) NN LATIN SMALL LETTER E
10: ¢ "\u00A2" U+000A2 (162) NN CENT SIGN
11: £ "\u00A3" U+000A3 (163) NN POUND SIGN
12: ¤ "\u00A4" U+000A4 (164) NN CURRENCY SIGN
13: ¥ "\u00A5" U+000A5 (165) NN YEN SIGN
14: © "\u00A9" U+000A9 (169) NN COPYRIGHT SIGN
15: Ç "\u00C7" U+000C7 (199) NN LATIN CAPITAL LETTER C WITH CEDILLA
16: ß "\u00DF" U+000DF (223) NN LATIN SMALL LETTER SHARP S
17: IJ "\u0132" U+00132 (306) NN LATIN CAPITAL LIGATURE IJ
18: ij "\u0133" U+00133 (307) NN LATIN SMALL LIGATURE IJ
19: Ł "\u0141" U+00141 (321) NN LATIN CAPITAL LETTER L WITH STROKE
20: ł "\u0142" U+00142 (322) NN LATIN SMALL LETTER L WITH STROKE
21: ʒ "\u0292" U+00292 (658) NN LATIN SMALL LETTER EZH
22: λ "\u03BB" U+003BB (955) NN GREEK SMALL LETTER LAMDA
23: π "\u03C0" U+003C0 (960) NN GREEK SMALL LETTER PI
24: क "\u0915" U+00915 (2325) NN DEVANAGARI LETTER KA
25: ् "\u094D" U+0094D (2381) YY DEVANAGARI SIGN VIRAMA
26: त "\u0924" U+00924 (2340) NN DEVANAGARI LETTER TA
27: ु "\u0941" U+00941 (2369) YY DEVANAGARI VOWEL SIGN U
28: • "\u2022" U+02022 (8226) NN BULLET
29: ₠ "\u20A0" U+020A0 (8352) NN EURO-CURRENCY SIGN
30: ₡ "\u20A1" U+020A1 (8353) NN COLON SIGN
31: ₢ "\u20A2" U+020A2 (8354) NN CRUZEIRO SIGN
32: ₣ "\u20A3" U+020A3 (8355) NN FRENCH FRANC SIGN
33: ₤ "\u20A4" U+020A4 (8356) NN LIRA SIGN
34: ₥ "\u20A5" U+020A5 (8357) NN MILL SIGN
35: ₦ "\u20A6" U+020A6 (8358) NN NAIRA SIGN
36: ₧ "\u20A7" U+020A7 (8359) NN PESETA SIGN
37: ₨ "\u20A8" U+020A8 (8360) NN RUPEE SIGN
38: ₩ "\u20A9" U+020A9 (8361) NN WON SIGN
39: ₪ "\u20AA" U+020AA (8362) NN NEW SHEQEL SIGN
40: ₫ "\u20AB" U+020AB (8363) NN DONG SIGN
41: € "\u20AC" U+020AC (8364) NN EURO SIGN
42: ₭ "\u20AD" U+020AD (8365) NN KIP SIGN
43: ₮ "\u20AE" U+020AE (8366) NN TUGRIK SIGN
44: ₯ "\u20AF" U+020AF (8367) NN DRACHMA SIGN
45: ₰ "\u20B0" U+020B0 (8368) NN GERMAN PENNY SIGN
46: ₱ "\u20B1" U+020B1 (8369) NN PESO SIGN
47: ₲ "\u20B2" U+020B2 (8370) NN GUARANI SIGN
48: ₳ "\u20B3" U+020B3 (8371) NN AUSTRAL SIGN
49: ₴ "\u20B4" U+020B4 (8372) NN HRYVNIA SIGN
50: ₵ "\u20B5" U+020B5 (8373) NN CEDI SIGN
51: ℃ "\u2103" U+02103 (8451) NN DEGREE CELSIUS
52: ← "\u2190" U+02190 (8592) NN LEFTWARDS ARROW
53: → "\u2192" U+02192 (8594) NN RIGHTWARDS ARROW
54: ⇒ "\u21D2" U+021D2 (8658) NN RIGHTWARDS DOUBLE ARROW
55: ∙ "\u2219" U+02219 (8729) NN BULLET OPERATOR
56: ⌘ "\u2318" U+02318 (8984) NN PLACE OF INTEREST SIGN
57: ☃ "\u2603" U+02603 (9731) NN SNOWMAN
58: ☹ "\u2639" U+02639 (9785) NN WHITE FROWNING FACE
59: ☺ "\u263A" U+0263A (9786) NN WHITE SMILING FACE
60: ☻ "\u263B" U+0263B (9787) NN BLACK SMILING FACE
61: ア "\u30A2" U+030A2 (12450) NN KATAKANA LETTER A
62: 字 "\u5B57" U+05B57 (23383) NN CJK UNIFIED IDEOGRAPHS 5B57
63: 文 "\u6587" U+06587 (25991) NN CJK UNIFIED IDEOGRAPHS 6587
64:  "\uF8FF" U+0F8FF (63743) NN PRIVATE USE AREA F8FF
65: 𠀀 "\uD840\uDC00" U+20000 (131072) NN HIGH SURROGATES D840
66: 𪚥 "\uD869\uDEA5" U+2A6A5 (173733) NN HIGH SURROGATES D869</pre>[http://illegalargumentexception.blogspot.nl/2009/05/java-rough-guide-to-character-encoding.html More background info: "Java: a rough guide to character encoding"]
=={{header|Scheme}}==
<syntaxhighlight lang="scheme">(display (char->integer #\a)) (newline) ; prints "97"
(display (integer->char 97)) (newline) ; prints "a"</syntaxhighlight>
=={{header|Seed7}}==
<syntaxhighlight lang="seed7">writeln(ord('a'));
writeln(chr(97));</syntaxhighlight>
=={{header|SenseTalk}}==
<syntaxhighlight lang="sensetalk">put CharToNum("a")
put NumToChar(97)</syntaxhighlight>
=={{header|SequenceL}}==
SequenceL natively supports ASCII characters.<br>
'''SequenceL Interpreter Session:'''
<syntaxhighlight lang="sequencel">cmd:>asciiToInt('a')
97
cmd:>intToAscii(97)
'a'</syntaxhighlight>
=={{header|Sidef}}==
<syntaxhighlight lang="ruby">say 'a'.ord; # => 97
say 97.chr; # => 'a'</syntaxhighlight>
=={{header|Slate}}==
<syntaxhighlight lang="slate">$a code.
97 as: String Character.</syntaxhighlight>
=={{header|Smalltalk}}==
<syntaxhighlight lang="smalltalk">($a asInteger) displayNl. "output 97"
(Character value: 97) displayNl. "output a"</syntaxhighlight>
 
{{works with|Smalltalk/X}}
Ansi Smalltalk defines <tt>codePoint</tt>
<syntaxhighlight lang="smalltalk">Transcript showCR:$a codePoint.
Transcript showCR:(Character codePoint:97).
Transcript showCR:(98 asCharacter).
 
'abcmøøse𝔘𝔫𝔦𝔠𝔬𝔡𝔢' do:[:ch |
Transcript showCR:ch codePoint
]</syntaxhighlight>
{{out}}
<pre>97
a
b
97
98
99
109
248
248
115
101
120088
120107
120102
120096
120108
120097
120098</pre>
=={{header|SmileBASIC}}==
<syntaxhighlight lang="smilebasic">PRINT CHR$(97) 'a
PRINT ASC("a") '97</syntaxhighlight>
=={{header|SNOBOL4}}==
Snobol implementations may or may not have built-in char( ) and ord ( ) or asc( ).
These are based on examples in the Snobol4+ tutorial and work with the native (1-byte) charset.
<syntaxhighlight lang="snobol4"> define('chr(n)') :(chr_end)
chr &alphabet tab(n) len(1) . chr :s(return)f(freturn)
chr_end
 
define('asc(str)c') :(asc_end)
asc str len(1) . c
&alphabet break(c) @asc :s(return)f(freturn)
asc_end
 
* # Test and display
output = char(65) ;* Built-in
output = chr(65)
output = asc('A')
end</syntaxhighlight>
{{Out}}
<pre>A
A
65</pre>
 
=={{header|SparForte}}==
As a structured script.
<syntaxhighlight lang="ada">#!/usr/local/bin/spar
pragma annotate( summary, "charcode" )
@( description, "Given a character value in your language, print its code (could be" )
@( description, "ASCII code, Unicode code, or whatever your language uses). For example," )
@( description, "the character 'a' (lowercase letter A) has a code of 97 in ASCII (as" )
@( description, "well as Unicode, as ASCII forms the beginning of Unicode). Conversely," )
@( description, "given a code, print out the corresponding character. " )
@( category, "tutorials" )
@( see_also, "http://rosettacode.org/wiki/Character_codes" )
@( author, "Ken O. Burtch");
pragma license( unrestricted );
 
pragma restriction( no_external_commands );
 
procedure charcode is
code : constant natural := 97;
ch : constant character := 'a';
begin
put_line( "character code" & strings.image( code ) & " = character " & strings.val( code ) );
put_line( "character " & ch & " = character code" & strings.image( numerics.pos( ch ) ) );
end charcode;</syntaxhighlight>
 
=={{header|SPL}}==
In SPL all characters are used in UTF-16LE encoding.
<syntaxhighlight lang="spl">x = #.array("a")
#.output("a -> ",x[1]," ",x[2])
x = [98,0]
#.output("98 0 -> ",#.str(x))</syntaxhighlight>
{{out}}
<pre>
a -> 97 0
98 0 -> b
</pre>
=={{header|Standard ML}}==
<syntaxhighlight lang="sml">print (Int.toString (ord #"a") ^ "\n"); (* prints "97" *)
print (Char.toString (chr 97) ^ "\n"); (* prints "a" *)</syntaxhighlight>
=={{header|Stata}}==
The Mata '''ascii''' function transforms a string into a numeric vector of UTF-8 bytes. For instance:
 
<syntaxhighlight lang="stata">: ascii("α")
1 2
+-------------+
1 | 206 177 |
+-------------+</syntaxhighlight>
 
Where 206, 177 is the UTF-8 encoding of Unicode character 945 (GREEK SMALL LETTER ALPHA).
 
ASCII characters are mapped to single bytes:
 
<syntaxhighlight lang="stata">: ascii("We the People")
1 2 3 4 5 6 7 8 9 10 11 12 13
+-------------------------------------------------------------------------------+
1 | 87 101 32 116 104 101 32 80 101 111 112 108 101 |
+-------------------------------------------------------------------------------+</syntaxhighlight>
 
Conversely, the '''char''' function transforms a byte vector into a string:
 
<syntaxhighlight lang="stata">: char((73,32,115,116,97,110,100,32,104,101,114,101))
I stand here</syntaxhighlight>
=={{header|Swift}}==
The type that represent a Unicode code point is <code>UnicodeScalar</code>.
You can initialize it with a string literal:
<syntaxhighlight lang="swift">let c1: UnicodeScalar = "a"
println(c1.value) // prints "97"
let c2: UnicodeScalar = "π"
println(c2.value) // prints "960"</syntaxhighlight>
Or, you can get it by iterating a string's unicode scalars view:
<syntaxhighlight lang="swift">let s1 = "a"
for c in s1.unicodeScalars {
println(c.value) // prints "97"
}
let s2 = "π"
for c in s2.unicodeScalars {
println(c.value) // prints "960"
}</syntaxhighlight>
 
You can also initialize it from a <code>UInt32</code> integer:
<syntaxhighlight lang="swift">let i1: UInt32 = 97
println(UnicodeScalar(i1)) // prints "a"
let i2: UInt32 = 960
println(UnicodeScalar(i2)) // prints "π"</syntaxhighlight>
=={{header|Tailspin}}==
Tailspin works with Unicode codepoints
<syntaxhighlight lang="tailspin">
'abc' -> $::asCodePoints -> !OUT::write
'$#10;' -> !OUT::write
'$#97;' -> !OUT::write
</syntaxhighlight>
{{out}}
<pre>
[97, 98, 99]
a
</pre>
=={{header|Tcl}}==
<syntaxhighlight lang="tcl"># ASCII
puts [scan "a" %c] ;# ==> 97
puts [format %c 97] ;# ==> a
# Unicode is the same
puts [scan "π" %c] ;# ==> 960
puts [format %c 960] ;# ==> π</syntaxhighlight>
=={{header|TI-83 BASIC}}==
TI-83 BASIC provides no built in way to do this, so in all String<-->List routines and anything else which requires character codes, a workaround using inString( and sub( is used.
In this example, the code of 'A' is displayed, and then the character matching a user-defined code is displayed.
<syntaxhighlight lang="ti83b">"ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789→Str1
Disp inString(Str1,"A
Input "CODE? ",A
Disp sub(Str1,A,1</syntaxhighlight>
=={{header|TI-89 BASIC}}==
The TI-89 uses an 8-bit charset/encoding which is similar to ISO-8859-1, but with more mathematical symbols and Greek letters.
At least codes 14-31, 128-160, 180 differ.
The ASCII region is unmodified. (TODO: Give a complete list.)
 
The TI Connect X desktop software converts between this unique character set and Unicode characters, though sometimes in a consistent but inappropriate fashion. <!-- Only Mac experience went into this statement; info for other platforms? -->
 
The below program will display the character and code for any key pressed. Some keys do not correspond to characters and have codes greater than 255.
The portion of the program actually implementing the task is marked with a line of “©”s.
<syntaxhighlight lang="ti89b">Prgm
Local k, s
ClrIO
Loop
Disp "Press a key, or ON to exit."
getKey() © clear buffer
0 → k : While k = 0 : getKey() → k : EndWhile
ClrIO
If k ≥ 256 Then
Disp "Not a character."
Disp "Code: " & string(k)
Else
 
char(k) → s ©
© char() and ord() are inverses. ©
Disp "Character: " & s ©
Disp "Code: " & string(ord(s)) ©
 
EndIf
EndLoop
EndPrgm</syntaxhighlight>
=={{header|Trith}}==
Characters are Unicode code points, so the solution is the same for Unicode characters as it is for ASCII characters:
<syntaxhighlight lang="trith">"a" ord print
97 chr print</syntaxhighlight>
<syntaxhighlight lang="trith">"π" ord print
960 chr print</syntaxhighlight>
=={{header|TUSCRIPT}}==
<syntaxhighlight lang="tuscript">$$ MODE TUSCRIPT
SET character ="a", code=DECODE (character,byte)
PRINT character,"=",code</syntaxhighlight>
{{Out}}<pre>a=97</pre>
=={{header|uBasic/4tH}}==
uBasic/4tH is an integer BASIC, just like Tiny BASIC. However, the function ORD() is supported, just as CHR(). The latter is only allowed within a PRINT statement.
<syntaxhighlight lang="text">z = ORD("a") : PRINT CHR(z) ' Prints "a"</syntaxhighlight>
=={{header|UNIX Shell}}==
<syntaxhighlight lang="bash">
Aamrun$ printf "%d\n" \'a
97
Aamrun$ printf "\x$(printf %x 97)\n"
a
Aamrun$
</syntaxhighlight>
=={{header|Ursa}}==
<syntaxhighlight lang="ursa"># outputs the character value for 'a'
out (ord "a") endl console
# outputs the character 'a' given its value
out (chr 97) endl console</syntaxhighlight>
=={{header|Ursala}}==
Character code functions are not built in but easily defined as reifications of
the character table.
<syntaxhighlight lang="ursala">#import std
#import nat
 
chr = -: num characters
asc = -:@rlXS num characters
 
#cast %cnX
 
test = (chr97,asc`a)</syntaxhighlight>
{{Out}}<pre>(`a,97)</pre>
 
=={{header|Uxntal}}==
<syntaxhighlight lang="Uxntal">
( uxnasm char-codes.tal char-codes.rom && uxncli char-codes.rom )
 
|00 @System &vector $2 &expansion $2 &wst $1 &rst $1 &metadata $2 &r $2 &g $2 &b $2 &debug $1 &state $1
|10 @Console &vector $2 &read $1 &pad $4 &type $1 &write $1 &error $1
 
|0100
[ LIT "a ] print-hex
newline
#61 .Console/write DEO
newline
 
( exit )
#80 .System/state DEO
BRK
 
@print-hex
DUP #04 SFT print-digit #0f AND print-digit
JMP2r
 
@print-digit
DUP #09 GTH #27 MUL ADD #30 ADD .Console/write DEO
JMP2r
 
@newline
#0a .Console/write DEO
JMP2r</syntaxhighlight>
 
Output:
<pre>61
a</pre>
 
=={{header|VBA}}==
<syntaxhighlight lang="vba">Debug.Print Chr(97) 'Prints a
Debug.Print [Code("a")] ' Prints 97</syntaxhighlight>
=={{header|VBScript}}==
<syntaxhighlight lang="vb">
'prints a
WScript.StdOut.WriteLine Chr(97)
 
'prints 97
WScript.StdOut.WriteLine Asc("a")
</syntaxhighlight>
=={{header|Vim Script}}==
The behavior of the two functions depends on the value of the option <code>encoding</code>.
<syntaxhighlight lang="vim">"encoding is set to utf-8
echo char2nr("a")
"Prints 97
 
echo nr2char(97)
"Prints a</syntaxhighlight>
=={{header|Visual Basic .NET}}==
<syntaxhighlight lang="vbnet">Console.WriteLine(Chr(97)) 'Prints a
Console.WriteLine(Asc("a")) 'Prints 97</syntaxhighlight>
=={{header|V (Vlang)}}==
<syntaxhighlight lang="v (vlang)">fn main() {
println('a'[0]) // prints "97"
println('π'[0]) // prints "207"
 
s := 'aπ'
println('string cast to bytes: ${s.bytes()}')
for c in s {
print('0x${c:x} ')
}
}</syntaxhighlight>
 
{{out}}
<pre>
97
207
string cast to bytes: [a, 0xcf, 0x80]
97->0x61 207->0xcf 128->0x80
</pre>
 
=={{header|Wren}}==
Wren does not have a ''character'' type as such but one can use single character strings instead. Strings can contain any Unicode code point.
<syntaxhighlight lang="wren">var cps = []
for (c in ["a", "π", "字", "🐘"]) {
var cp = c.codePoints[0]
cps.add(cp)
System.print("%(c) = %(cp)")
}
System.print()
for (i in cps) {
var c = String.fromCodePoint(i)
System.print("%(i) = %(c)")
}</syntaxhighlight>
 
{{out}}
<pre>
a = 97
π = 960
字 = 23383
🐘 = 128024
 
97 = a
960 = π
23383 = 字
128024 = 🐘
</pre>
 
=={{header|XLISP}}==
In a REPL:
<syntaxhighlight lang="scheme">[1] (INTEGER->CHAR 97)
 
#\a
[2] (CHAR->INTEGER #\a)
 
97</syntaxhighlight>
=={{header|XPL0}}==
A character is represented by an integer value equal to its ASCII code.
The up-arrow character is used to convert the immediately following
character to an integer equal to its ASCII code.
 
<syntaxhighlight lang="xpl0">IntOut(0, ^a); \(Integer Out) displays "97" on the console (device 0)
ChOut(0, 97); \(Character Out) displays "a" on the console (device 0)</syntaxhighlight>
=={{header|Z80 Assembly}}==
The Z80 doesn't understand what ASCII codes are by itself. Most computers/systems that use it will have firmware that maps each code to its corresponding glyph. Printing a character given its code is trivial. On the Amstrad CPC:
<syntaxhighlight lang="z80">LD A,'a'
call &BB5a</syntaxhighlight>
 
Printing a character code given a character takes slightly more work. You'll need to separate each hexadecimal digit of the ASCII code, convert each digit to ASCII, and print it. Once again, thanks to Keith of [[http://www.chibiakumas.com Chibiakumas]] for this code:
<syntaxhighlight lang="z80">ShowHex:
push af
and %11110000
rrca
rrca
rrca
rrca
call PrintHexChar
pop af
and %00001111
;call PrintHexChar (execution flows into it naturally)
PrintHexChar:
or a ;Clear Carry Flag
daa
add a,&F0
adc a,&40 ;this sequence of instructions converts a single hex digit to ASCII.
 
jp PrintChar ;this is whatever routine prints to the screen on your system.
; It must end in a "ret" and it must take the accumulator as its argument.</syntaxhighlight>
=={{header|Zig}}==
<syntaxhighlight lang="zig">const std = @import("std");
const unicode = std.unicode;
 
pub fn main() !void {
const stdout = std.io.getStdOut().writer();
 
try characterAsciiCodes(stdout);
try characterUnicodeCodes(stdout);
}
 
fn characterAsciiCodes(writer: anytype) !void {
try writer.writeAll("Sample ASCII characters and codes:\n");
 
// Zig's string is just an array of bytes (u8).
const message: []const u8 = "ABCabc";
 
for (message) |val| {
try writer.print(" '{c}' code: {d} [hexa: 0x{x}]\n", .{ val, val, val });
}
try writer.writeByte('\n');
}
 
fn characterUnicodeCodes(writer: anytype) !void {
try writer.writeAll("Sample Unicode characters and codes:\n");
 
const message: []const u8 = "あいうえお";
 
const utf8_view = unicode.Utf8View.initUnchecked(message);
var iter = utf8_view.iterator();
 
while (iter.nextCodepoint()) |val| {
var array: [4]u8 = undefined;
const slice = array[0..try unicode.utf8Encode(val, &array)];
 
try writer.print(" '{s}' code: {d} [hexa: U+{x}]\n", .{ slice, val, val });
}
try writer.writeByte('\n');
}</syntaxhighlight>
 
{{out}}
<pre>Sample ASCII characters and codes:
'A' code: 65 [hexa: 0x41]
'B' code: 66 [hexa: 0x42]
'C' code: 67 [hexa: 0x43]
'a' code: 97 [hexa: 0x61]
'b' code: 98 [hexa: 0x62]
'c' code: 99 [hexa: 0x63]
 
Sample Unicode characters and codes:
'あ' code: 12354 [hexa: U+3042]
'い' code: 12356 [hexa: U+3044]
'う' code: 12358 [hexa: U+3046]
'え' code: 12360 [hexa: U+3048]
'お' code: 12362 [hexa: U+304a]</pre>
 
=={{header|zkl}}==
<scheme>(display (char->integer #\a)) (newline) ; prints "97"
The character set is 8 bit ASCII (but doesn't care if you use UTF-8 or unicode characters).
(display (integer->char 97)) (newline) ; prints "a"</scheme>
<syntaxhighlight lang="zkl"> "a".toAsc() //-->97
(97).toChar() //-->"a"</syntaxhighlight>
=={{header|Zoea}}==
<syntaxhighlight lang="zoea">
program: character_codes
input: a
output: 97
</syntaxhighlight>
=={{header|Zoea Visual}}==
[http://zoea.co.uk/examples/zv-rc/Character_codes.png Character Codes]
=={{header|ZX Spectrum Basic}}==
<syntaxhighlight lang="zxbasic">10 PRINT CHR$ 97: REM prints a
20 PRINT CODE "a": REM prints 97</syntaxhighlight>
{{omit from|bc}}
{{omit from|GUISS}}
18

edits