# Arithmetic/Integer

Arithmetic/Integer
You are encouraged to solve this task according to the task description, using any language you may know.

Basic Data Operation
This is a basic data operation. It represents a fundamental action on a basic data type.

You may see other such operations in the Basic Data Operations category, or:

Integer Operations
Arithmetic | Comparison

Boolean Operations
Bitwise | Logical

String Operations
Concatenation | Interpolation | Comparison | Matching

Memory Operations

Get two integers from the user,   and then (for those two integers), display their:

•   sum
•   difference
•   product
•   integer quotient
•   remainder
•   exponentiation   (if the operator exists)

Don't include error handling.

For quotient, indicate how it rounds   (e.g. towards zero, towards negative infinity, etc.).

For remainder, indicate whether its sign matches the sign of the first operand or of the second operand, if they are different.

## 0815

|~>|~#:end:>
<:61:x<:3d:=<:20:$==$~$=${~>%<:2c:~$<:20:~$
<:62:x<:3d:=<:20:$==$~$=${~>%<:a:~$$<:61:x<:2b:=<:20:==~=<:62:x<:3d:=<:20:==~={x{x~>~>~+%<:a:~ <:61:x<:2d:=<:20:==~=<:62:x<:3d:=<:20:==~={x{x~>~>~-%<:a:~ <:61:x<:2a:=<:20:==~=<:62:x<:3d:=<:20:==~={x{x~>~>~*%<:a:~ <:61:x<:2f:=<:20:==~=<:62:x<:3d:=<:20:==~={x{x~>~>~/%<:a:~ <:61:x<:25:=<:20:==~=<:62:x<:3d:=<:20:==~={x{x~>~>~/=%<:a:~ {~>>{x<:1:-^:u: <:61:x<:5e:=<:20:==~$$=$<:62:x<:3D:=<:20:$==$~$=${{~%#:end: }:u:=>{x{=>~*>{x<:2:-#:ter: }:ml:x->{x{=>~*>{x<:1:-#:ter:^:ml: }:ter:<:61:x<:5e:=<:20:$==~=<:62:x<:3D:=<:20:==~={{~% Output: a = 6, b = 4 a + b = A a - b = 2 a * b = 18 a / b = 1 a % b = 2 a ^^ b = 510 ## 360 Assembly From the principles of operation: Operands are signed and 32 bits long. Negative quantities are held in two's-complement form. Multiplication: The product of the multiplier (the second operand) and the multiplicand (the first operand) replaces the multiplicand. Both multiplier and multiplicand are 32-bit signed integers. The product is always a 64-bit signed integer and occupies an even/odd register pair. Division: The dividend (first operand) is divided by the divisor (second operand) and replaced by the quotient and remainder. The dividend is a 64-bit signed integer and occupies the even/odd pair of registers. A 32-bit signed remainder and a 32-bit signed quotient replace the dividend in the even-numbered and odd-numbered registers, respectively. The sign of the quotient is determined by the rules of algebra. The remainder has the same sign as the dividend. * Arithmetic/Integer 04/09/2015 ARITHINT CSECT USING ARITHINT,R12 LR R12,R15 ADD L R1,A A R1,B r1=a+b XDECO R1,BUF MVI BUF,C'+' XPRNT BUF,12 SUB L R1,A S R1,B r1=a-b XDECO R1,BUF MVI BUF,C'-' XPRNT BUF,12 MUL L R1,A M R0,B r0r1=a*b XDECO R1,BUF so r1 has the lower part MVI BUF,C'*' XPRNT BUF,12 DIV L R0,A SRDA R0,32 to shift the sign D R0,B r1=a/b and r0 has the remainder XDECO R1,BUF so r1 has quotient MVI BUF,C'/' XPRNT BUF,12 MOD L R0,A SRDA R0,32 to shift the sign D R0,B r1=a/b and r0 has the remainder XDECO R0,BUF so r0 has the remainder MVI BUF,C'R' XPRNT BUF,12 RETURN XR R15,R15 BR R14 CNOP 0,4 A DC F'53' B DC F'11' BUF DC CL12' ' YREGS END ARITHINT Inputs are in the code: a=53, b=11 Output: + 64 - 42 * 583 / 4 R 9 ## 6502 Assembly Code is called as a subroutine (i.e. JSR Arithmetic). Specific OS/hardware routines for user input and printing are left unimplemented. Arithmetic: PHA ;push accumulator and X register onto stack TXA PHA JSR GetUserInput ;routine not implemented ;two integers now in memory locations A and B ;addition LDA A CLC ADC B JSR DisplayAddition ;routine not implemented ;subtraction LDA A SEC SBC B JSR DisplaySubtraction ;routine not implemented ;multiplication - overflow not handled LDA A LDX B Multiply: CLC ADC A DEX BNE Multiply JSR DisplayMultiply ;routine not implemented ;division - rounds up LDA A LDX #0 SEC Divide: INX SBC B BCS Divide TXA ;get result into accumulator JSR DisplayDivide ;routine not implemented ;modulus LDA A SEC Modulus: SBC B BCS Modulus ADC B JSR DisplayModulus ;routine not implemented PLA ;restore accumulator and X register from stack TAX PLA RTS ;return from subroutine The 6502 has no opcodes for multiplication, division, or modulus; the routines for multiplication, division, and modulus given above can be heavily optimized at the expense of some clarity. ## ABAP report zz_arithmetic no standard page heading. " Read in the two numbers from the user. selection-screen begin of block input. parameters: p_first type i, p_second type i. selection-screen end of block input. " Set the text value that is displayed on input request. at selection-screen output. %_p_first_%_app_%-text = 'First Number: '. %_p_second_%_app_%-text = 'Second Number: '. end-of-selection. data: lv_result type i. lv_result = p_first + p_second. write: / 'Addition:', lv_result. lv_result = p_first - p_second. write: / 'Substraction:', lv_result. lv_result = p_first * p_second. write: / 'Multiplication:', lv_result. lv_result = p_first div p_second. write: / 'Integer quotient:', lv_result. " Truncated towards zero. lv_result = p_first mod p_second. write: / 'Remainder:', lv_result. ## ACL2 :set-state-ok t (defun get-two-nums (state) (mv-let (_ a state) (read-object *standard-oi* state) (declare (ignore _)) (mv-let (_ b state) (read-object *standard-oi* state) (declare (ignore _)) (mv a b state)))) (defun integer-arithmetic (state) (mv-let (a b state) (get-two-nums state) (mv state (progn (cw "Sum: ~x0~%" (+ a b)) (cw "Difference: ~x0~%" (- a b)) (cw "Product: ~x0~%" (* a b)) (cw "Quotient: ~x0~%" (floor a b)) (cw "Remainder: ~x0~%" (mod a b)))))) ## Ada with Ada.Text_Io; with Ada.Integer_Text_IO; procedure Integer_Arithmetic is use Ada.Text_IO; use Ada.Integer_Text_Io; A, B : Integer; begin Get(A); Get(B); Put_Line("a+b = " & Integer'Image(A + B)); Put_Line("a-b = " & Integer'Image(A - B)); Put_Line("a*b = " & Integer'Image(A * B)); Put_Line("a/b = " & Integer'Image(A / B)); Put_Line("a mod b = " & Integer'Image(A mod B)); -- Sign matches B Put_Line("remainder of a/b = " & Integer'Image(A rem B)); -- Sign matches A Put_Line("a**b = " & Integer'Image(A ** B)); end Integer_Arithmetic; ## Aikido var a = 0 var b = 0 stdin -> a // read int from stdin stdin -> b // read int from stdin println ("a+b=" + (a + b)) println ("a-b=" + (a - b)) println ("a*b=" + (a * b)) println ("a/b=" + (a / b)) println ("a%b=" + (a % b)) ## ALGOL 68 Translation of: C Works with: ALGOL 68 version Revision 1 - no extensions to language used Works with: ALGOL 68G version Any - tested with release 1.18.0-9h.tiny main:( LONG INT a=355, b=113; printf(("a+b = "gl, a + b)); printf(("a-b = "gl, a - b)); printf(("a*b = a×b = "gl, a * b)); printf(("a/b = "gl, a / b)); printf(("a OVER b = a%b = a÷b = "gl, a % b)); printf(("a MOD b = a%*b = a%×b = a÷×b = a÷*b = "gl, a %* b)); printf(("a UP b = a**b = a↑b = "gl, a ** b)) ) Output: a+b = +468 a-b = +242 a*b = a×b = +40115 a/b = +3.141592920353982300884955752e +0 a OVER b = a%b = a÷b = +3 a MOD b = a%*b = a%×b = a÷×b = a÷*b = +16 a UP b = a**b = a↑b = +1.499007808785573768814747570e+288 ALGOL 68R has the curious (and consequently non-standard) '/:=' operator. This operator is equivalent to the OVERAB operator of the revised report, except it delivers the remainder as a result. So a '/:=' b sets a to the quotient of a%b and returns the remainder of a%b as a result. Note that it must be "stropped" i.e. enclosed in single quotes. eg. INT quotient:=355, remainder; remainder := quotient '/:=' 113; Giving a quotient of 3, and a remainder of 16. ## ALGOL W The Algol W integer division operator (called div) truncates towards zero. The result of the modulo operator (called rem) has the sign of the first operand when the operands have different signs. begin integer a, b; write( "Enter 2 integers> " ); read( a, b ); write( "a + b: ", a + b ); % addition % write( "a - b: ", a - b ); % subtraction % write( "a * b: ", a * b ); % multiplication % write( "a / b: ", a div b ); % integer division % write( "a mod b: ", a rem b ); % modulo % % the ** operator returns a real result even with integer operands % % ( the right-hand operand must always be an integer, the left-hand % % operand can be integer, real or complex ) % write( "a ^ b: ", round( a ** b ) ) end. ## AmigaE PROC main() DEF a, b, t WriteF('A = ') ReadStr(stdin, t) a := Val(t) WriteF('B = ') ReadStr(stdin, t) b := Val(t) WriteF('A+B=\d\nA-B=\d\n', a+b, a-b) WriteF('A*B=\d\nA/B=\d\n', a*b, a/b) /* * and / are 16 bit ops; Mul and Div are 32bit ops */ WriteF('A*B=\d\nA/B=\d\n', Mul(a,b), Div(a,b)) WriteF('A mod B =\d\n', Mod(a,b)) ENDPROC ## APL ∇res ← integer_arithmetic; l; r l ← ⎕ r ← ⎕ res ← 6 2 ⍴ 'sum' (l+r) 'diff' (l-r) 'prod' (l×r) 'quot' (⌊l÷r) 'rem' (r|l) 'pow' (l*r) Quotient will round down in this version. ## ARM Assembly Works with: as version Raspberry Pi /* ARM assembly Raspberry PI */ /* program arith.s */ /* Constantes */ .equ STDOUT, 1 .equ WRITE, 4 .equ EXIT, 1 /***********************/ /* Initialized data */ /***********************/ .data szMessError: .asciz " Two numbers in command line please ! \n" @ message szRetourLigne: .asciz "\n" szMessResult: .asciz "Resultat " @ message result sMessValeur: .fill 12, 1, ' ' .asciz "\n" szMessAddition: .asciz "addition :" szMessSoustraction: .asciz "soustraction :" szMessMultiplication: .asciz "multiplication :" szMessDivision: .asciz "division :" szMessReste: .asciz "reste :" /***********************/ /* No Initialized data */ /***********************/ .bss iValeur: .skip 4 @ reserve 4 bytes in memory .text .global main main: push {fp,lr} /* save des 2 registres */ add fp,sp,#8 /* fp <- adresse début */ ldr r0,[fp] @ recup number of parameter in command line cmp r0,#3 blt error ldr r0,[fp,#8] @ adresse of 1er number bl conversionAtoD mov r3,r0 ldr r0,[fp,#12] @ adresse of 2eme number bl conversionAtoD mov r4,r0 @ addition add r0,r3,r4 ldr r1,iAdrsMessValeur @ result in r0 bl conversion10S @ call function with 2 parameter (r0,r1) ldr r0,iAdrszMessResult bl affichageMess @ display message ldr r0,iAdrszMessAddition bl affichageMess @ display message ldr r0,iAdrsMessValeur bl affichageMess @ display message @ soustraction sub r0,r3,r4 ldr r1,=sMessValeur bl conversion10S @ call function with 2 parameter (r0,r1) ldr r0,iAdrszMessResult bl affichageMess @ display message ldr r0,iAdrszMessSoustraction bl affichageMess @ display message ldr r0,iAdrsMessValeur bl affichageMess @ display message @ multiplication mul r0,r3,r4 ldr r1,=sMessValeur bl conversion10S @ call function with 2 parameter (r0,r1) ldr r0,iAdrszMessResult bl affichageMess @ display message ldr r0,iAdrszMessMultiplication bl affichageMess @ display message ldr r0,iAdrsMessValeur bl affichageMess @ display message @ division mov r0,r3 mov r1,r4 bl division mov r0,r2 @ quotient ldr r1,=sMessValeur bl conversion10S @ call function with 2 parameter (r0,r1) ldr r0,iAdrszMessResult bl affichageMess @ display message ldr r0,iAdrszMessDivision bl affichageMess @ display message ldr r0,iAdrsMessValeur bl affichageMess @ display message mov r0,r3 @ remainder ldr r1,=sMessValeur bl conversion10S @ call function with 2 parameter (r0,r1) ldr r0,iAdrszMessResult bl affichageMess @ display message ldr r0,iAdrszMessReste bl affichageMess @ display message ldr r0,iAdrsMessValeur bl affichageMess @ display message mov r0, #0 @ return code b 100f error: ldr r0,iAdrszMessError bl affichageMess @ call function with 1 parameter (r0) mov r0, #1 @ return code 100: /* end of program */ mov r7, #EXIT @ request to exit program swi 0 @ perform the system call iAdrsMessValeur: .int sMessValeur iAdrszMessResult: .int szMessResult iAdrszMessError: .int szMessError iAdrszMessAddition: .int szMessAddition iAdrszMessSoustraction: .int szMessSoustraction iAdrszMessMultiplication: .int szMessMultiplication iAdrszMessDivision: .int szMessDivision iAdrszMessReste: .int szMessReste /******************************************************************/ /* affichage des messages avec calcul longueur */ /******************************************************************/ /* r0 contient l adresse du message */ affichageMess: push {fp,lr} /* save des 2 registres */ push {r0,r1,r2,r7} /* save des autres registres */ mov r2,#0 /* compteur longueur */ 1: /*calcul de la longueur */ ldrb r1,[r0,r2] /* recup octet position debut + indice */ cmp r1,#0 /* si 0 c est fini */ beq 1f add r2,r2,#1 /* sinon on ajoute 1 */ b 1b 1: /* donc ici r2 contient la longueur du message */ mov r1,r0 /* adresse du message en r1 */ mov r0,#STDOUT /* code pour écrire sur la sortie standard Linux */ mov r7, #WRITE /* code de l appel systeme 'write' */ swi #0 /* appel systeme */ pop {r0,r1,r2,r7} /* restaur des autres registres */ pop {fp,lr} /* restaur des 2 registres */ bx lr /* retour procedure */ /***************************************************/ /* conversion registre en décimal signé */ /***************************************************/ /* r0 contient le registre */ /* r1 contient l adresse de la zone de conversion */ conversion10S: push {fp,lr} /* save des 2 registres frame et retour */ push {r0-r5} /* save autres registres */ mov r2,r1 /* debut zone stockage */ mov r5,#'+' /* par defaut le signe est + */ cmp r0,#0 /* nombre négatif ? */ movlt r5,#'-' /* oui le signe est - */ mvnlt r0,r0 /* et inversion en valeur positive */ addlt r0,#1 mov r4,#10 /* longueur de la zone */ 1: /* debut de boucle de conversion */ bl divisionpar10 /* division */ add r1,#48 /* ajout de 48 au reste pour conversion ascii */ strb r1,[r2,r4] /* stockage du byte en début de zone r5 + la position r4 */ sub r4,r4,#1 /* position précedente */ cmp r0,#0 bne 1b /* boucle si quotient different de zéro */ strb r5,[r2,r4] /* stockage du signe à la position courante */ subs r4,r4,#1 /* position précedente */ blt 100f /* si r4 < 0 fin */ /* sinon il faut completer le debut de la zone avec des blancs */ mov r3,#' ' /* caractere espace */ 2: strb r3,[r2,r4] /* stockage du byte */ subs r4,r4,#1 /* position précedente */ bge 2b /* boucle si r4 plus grand ou egal a zero */ 100: /* fin standard de la fonction */ pop {r0-r5} /*restaur des autres registres */ pop {fp,lr} /* restaur des 2 registres frame et retour */ bx lr /***************************************************/ /* division par 10 signé */ /* Thanks to http://thinkingeek.com/arm-assembler-raspberry-pi/* /* and http://www.hackersdelight.org/ */ /***************************************************/ /* r0 contient le dividende */ /* r0 retourne le quotient */ /* r1 retourne le reste */ divisionpar10: /* r0 contains the argument to be divided by 10 */ push {r2-r4} /* save autres registres */ mov r4,r0 ldr r3, .Ls_magic_number_10 /* r1 <- magic_number */ smull r1, r2, r3, r0 /* r1 <- Lower32Bits(r1*r0). r2 <- Upper32Bits(r1*r0) */ mov r2, r2, ASR #2 /* r2 <- r2 >> 2 */ mov r1, r0, LSR #31 /* r1 <- r0 >> 31 */ add r0, r2, r1 /* r0 <- r2 + r1 */ add r2,r0,r0, lsl #2 /* r2 <- r0 * 5 */ sub r1,r4,r2, lsl #1 /* r1 <- r4 - (r2 * 2) = r4 - (r0 * 10) */ pop {r2-r4} bx lr /* leave function */ .align 4 .Ls_magic_number_10: .word 0x66666667 /******************************************************************/ /* Conversion d une chaine en nombre stocké dans un registre */ /******************************************************************/ /* r0 contient l adresse de la zone terminée par 0 ou 0A */ conversionAtoD: push {fp,lr} /* save des 2 registres */ push {r1-r7} /* save des autres registres */ mov r1,#0 mov r2,#10 /* facteur */ mov r3,#0 /* compteur */ mov r4,r0 /* save de l adresse dans r4 */ mov r6,#0 /* signe positif par defaut */ mov r0,#0 /* initialisation à 0 */ 1: /* boucle d élimination des blancs du debut */ ldrb r5,[r4,r3] /* chargement dans r5 de l octet situé au debut + la position */ cmp r5,#0 /* fin de chaine -> fin routine */ beq 100f cmp r5,#0x0A /* fin de chaine -> fin routine */ beq 100f cmp r5,#' ' /* blanc au début */ bne 1f /* non on continue */ add r3,r3,#1 /* oui on boucle en avançant d un octet */ b 1b 1: cmp r5,#'-' /* premier caracteres est - */ moveq r6,#1 /* maj du registre r6 avec 1 */ beq 3f /* puis on avance à la position suivante */ 2: /* debut de boucle de traitement des chiffres */ cmp r5,#'0' /* caractere n est pas un chiffre */ blt 3f cmp r5,#'9' /* caractere n est pas un chiffre */ bgt 3f /* caractère est un chiffre */ sub r5,#48 ldr r1,iMaxi /*verifier le dépassement du registre */ cmp r0,r1 bgt 99f mul r0,r2,r0 /* multiplier par facteur */ add r0,r5 /* ajout à r0 */ 3: add r3,r3,#1 /* avance à la position suivante */ ldrb r5,[r4,r3] /* chargement de l octet */ cmp r5,#0 /* fin de chaine -> fin routine */ beq 4f cmp r5,#10 /* fin de chaine -> fin routine */ beq 4f b 2b /* boucler */ 4: cmp r6,#1 /* test du registre r6 pour le signe */ bne 100f mov r1,#-1 mul r0,r1,r0 /* si negatif, on multiplie par -1 */ b 100f 99: /* erreur de dépassement */ ldr r1,=szMessErrDep bl afficheerreur mov r0,#0 /* en cas d'erreur on retourne toujours zero */ 100: pop {r1-r7} /* restaur des autres registres */ pop {fp,lr} /* restaur des 2 registres */ bx lr /* retour procedure */ /* constante programme */ iMaxi: .int 1073741824 szMessErrDep: .asciz "Nombre trop grand : dépassement de capacite de 32 bits. :\n" .align 4 /*=============================================*/ /* division entiere non signée */ /*============================================*/ division: /* r0 contains N */ /* r1 contains D */ /* r2 contains Q */ /* r3 contains R */ push {r4, lr} mov r2, #0 /* r2 ? 0 */ mov r3, #0 /* r3 ? 0 */ mov r4, #32 /* r4 ? 32 */ b 2f 1: movs r0, r0, LSL #1 /* r0 ? r0 << 1 updating cpsr (sets C if 31st bit of r0 was 1) */ adc r3, r3, r3 /* r3 ? r3 + r3 + C. This is equivalent to r3 ? (r3 << 1) + C */ cmp r3, r1 /* compute r3 - r1 and update cpsr */ subhs r3, r3, r1 /* if r3 >= r1 (C=1) then r3 ? r3 - r1 */ adc r2, r2, r2 /* r2 ? r2 + r2 + C. This is equivalent to r2 ? (r2 << 1) + C */ 2: subs r4, r4, #1 /* r4 ? r4 - 1 */ bpl 1b /* if r4 >= 0 (N=0) then branch to .Lloop1 */ pop {r4, lr} bx lr ## AutoHotkey The quotient rounds towards 0 if both inputs are integers or towards negative infinity if either input is floating point. The sign of the remainder is always the same as the sign of the first parameter (dividend). Gui, Add, Edit, va, 5 Gui, Add, Edit, vb, -3 Gui, Add, Button, Default, Compute Gui, Show Return ButtonCompute: Gui, Submit MsgBox,% (Joins"n" a "+" b " = " a+b a "-" b " = " a-b a "*" b " = " a*b a "//" b " = " a//b " remainder " Mod(a,b) a "**" b " = " a**b ) ; fallthrough GuiClose: ExitApp ## AWK /^[ \t]*-?[0-9]+[ \t]+-?[0-9]+[ \t]*/ { print "add:", 1 + 2 print "sub:", 1 - 2 print "mul:", 1 * 2 print "div:", int(1 / 2) # truncates toward zero print "mod:", 1 % 2 # same sign as first operand print "exp:", 1 ^ 2 exit } For division and modulus, Awk should act like C. Exponentiation's note: With nawk or gawk, 1 ** 2 acts like 1 ^ 2. With mawk, 1 ** 2 is a syntax error. Nawk allows **, but its manual page only has ^. Gawk's manual warns, "The POSIX standard only specifies the use of ^' for exponentiation. For maximum portability, do not use the **' operator." ## BASIC Works with: QuickBasic version 4.5 FUNCTION math(a!, b!) PRINT a + b PRINT a - b PRINT a * b PRINT a / b PRINT a MOD b END FUNCTION Truncate towards: 0 Remainder sign matches: first operand ### BaCon ' Arthimetic/Integer DECLARE a%, b% INPUT "Enter integer A: ", a% INPUT "Enter integer B: ", b% PRINT PRINT a%, " + ", b%, " is ", a% + b% PRINT a%, " - ", b%, " is ", a% - b% PRINT a%, " * ", b%, " is ", a% * b% PRINT a%, " / ", b%, " is ", a% / b%, ", trucation toward zero" PRINT "MOD(", a%, ", ", b%, ") is ", MOD(a%, b%), ", same sign as first operand" PRINT "POW(", a%, ", ", b%, ") is ", INT(POW(a%, b%)) ### Commodore BASIC 10 INPUT "ENTER A NUMBER"; A% 20 INPUT "ENTER ANOTHER NUMBER"; B% 30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B% 40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B% 50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B% 60 PRINT "INTEGER DIVISION:";A%;"/";B%;"=";INT(A%/B%) 70 PRINT "REMAINDER OR MODULO:";A%;"%";B%;"=";A%-INT(A%/B%)*B% 80 PRINT "POWER:";A%;"^";B%;"=";A%^B% ### True BASIC ! RosettaCode: Integer Arithmetic ! True BASIC v6.007 ! Translated from BaCon example. PROGRAM Integer_Arithmetic INPUT PROMPT "Enter integer A: ": a INPUT PROMPT "Enter integer B: ": b PRINT PRINT a;" + ";b;" is ";a+b PRINT a;" - ";b;" is ";a-b PRINT a;" * ";b;" is ";a*b PRINT a;" / ";b;" is ";INT(a/b); PRINT "MOD(";a;", ";b;") is "; MOD(a,b) PRINT "POW(";a;", ";b;") is ";INT(a^b) GET KEY done END ## BASIC256 input "enter a number ?", a input "enter another number ?", b print "addition " + a + " + " + b + " = " + (a + b) print "subtraction " + a + " - " + b + " = " + (a - b) print "multiplication " + a + " * " + b + " = " + (a * b) print "integer division " + a + " \ " + b + " = " + (a \ b) print "remainder or modulo " + a + " % " + b + " = " + (a % b) print "power " + a + " ^ " + b + " = " + (a ^ b) ## Batch File Works with: Windows NT version 4 or later (includes Windows XP and onward) @echo off set /P A=Enter 1st Number : set /P B=Enter 2nd Number : set D=%A% + %B% & call :printC set D=%A% - %B% & call :printC set D=%A% * %B% & call :printC set D=%A% / %B% & call :printC & rem truncates toward 0 set D=%A% %% %B% & call :printC & rem matches sign of 1st operand exit /b :printC set /A C=%D% echo %D% = %C% ## BBC BASIC INPUT "Enter the first integer: " first% INPUT "Enter the second integer: " second% PRINT "The sum is " ; first% + second% PRINT "The difference is " ; first% - second% PRINT "The product is " ; first% * second% PRINT "The integer quotient is " ; first% DIV second% " (rounds towards 0)" PRINT "The remainder is " ; first% MOD second% " (sign matches first operand)" PRINT "The first raised to the power of the second is " ; first% ^ second% ## bc define f(a, b) { "add: "; a + b "sub: "; a - b "mul: "; a * b "div: "; a / b /* truncates toward zero */ "mod: "; a % b /* same sign as first operand */ "pow: "; a ^ b } ## Befunge &&00p"=A",,:."=B ",,,00g.55+,v v,+55.+g00:,,,,"A+B="< >"=B-A",,,,:00g-.55+,v v,+55.*g00:,,,,"A*B="< >"=B/A",,,,:00g/.55+,v @,+55.%g00,,,,"A%B="< ## Bracmat The remainder returned by mod is non-negative. Furthermore, div(!a.!d)*!d+mod(!a.!d):!a for all integer !a and !d, !d:~0. ( enter = put"Enter two integer numbers, separated by space:" & get':(~/#?k_~/#?m|quit:?k) | out "You must enter two integer numbers! Enter \"quit\" if you don't know how to do that." & !enter ) & !enter & !k:~quit & out("You entered" !k and !m ". Now look:") & out("Sum:" !k+!m) & out("Difference:" !k+-1*!m) & out("Product:" !k*!m) & out("Integer division:" div(!k.!m)) & out("Remainder:" mod(!k.!m)) & out("Exponentiation:" !k^!m) & done; ## Brat Inspired by the second VBScript version. x = ask("First number: ").to_i y = ask("Second number: ").to_i #Division uses floating point #Remainder uses sign of right hand side [:+ :- :* :/ :% :^].each { op | p "#{x} #{op} #{y} = #{x.call_method op, y}" ## C #include <stdio.h> #include <stdlib.h> int main(int argc, char *argv[]) { int a, b; if (argc < 3) exit(1); b = atoi(argv[--argc]); if (b == 0) exit(2); a = atoi(argv[--argc]); printf("a+b = %d\n", a+b); printf("a-b = %d\n", a-b); printf("a*b = %d\n", a*b); printf("a/b = %d\n", a/b); /* truncates towards 0 (in C99) */ printf("a%%b = %d\n", a%b); /* same sign as first operand (in C99) */ return 0; } ## C++ #include <iostream> int main() { int a, b; std::cin >> a >> b; std::cout << "a+b = " << a+b << "\n"; std::cout << "a-b = " << a-b << "\n"; std::cout << "a*b = " << a*b << "\n"; std::cout << "a/b = " << a/b << ", remainder " << a%b << "\n"; return 0; } ## C# using System; class Program { static void Main(string[] args) { int a = Convert.ToInt32(args[0]); int b = Convert.ToInt32(args[1]); Console.WriteLine("{0} + {1} = {2}", a, b, a + b); Console.WriteLine("{0} - {1} = {2}", a, b, a - b); Console.WriteLine("{0} * {1} = {2}", a, b, a * b); Console.WriteLine("{0} / {1} = {2}", a, b, a / b); // truncates towards 0 Console.WriteLine("{0} % {1} = {2}", a, b, a % b); // matches sign of first operand Console.WriteLine("{0} to the power of {1} = {2}", a, b, Math.Pow(a, b)); } } Output: 5 + 3 = 8 5 - 3 = 2 5 * 3 = 15 5 / 3 = 1 5 % 3 = 2 5 to the power of 3 = 125 ## Chef Number Soup. Only reads single values. Ingredients. 1 g Numbers 3 g Water 5 g Soup Method. Take Numbers from refrigerator. Take Soup from refrigerator. Put Numbers into 1st mixing bowl. Add Soup into the 1st mixing bowl. Pour contents of the 1st mixing bowl into 1st baking dish. Clean 1st mixing bowl. Put Numbers into 1st mixing bowl. Remove Soup from 1st mixing bowl. Pour contents of the 1st mixing bowl into 2nd baking dish. Clean 1st mixing bowl. Put Numbers into 1st mixing bowl. Combine Soup into 1st mixing bowl. Pour contents of the 1st mixing bowl into 3rd baking dish. Clean 1st mixing bowl. Put Numbers into 1st mixing bowl. Divide Soup into 1st mixing bowl. Pour contents of the 1st mixing bowl into 4th baking dish. Clean 1st mixing bowl. Put Water into 1st mixing bowl. Verb the Soup. Combine Numbers into 1st mixing bowl. Verb the Soup until verbed. Pour contents of the 1st mixing bowl into 5th baking dish. Clean 1st mixing bowl. Serves 5. ## Clipper procedure Test( a, b ) ? "a+b", a + b ? "a-b", a - b ? "a*b", a * b // The quotient isn't integer, so we use the Int() function, which truncates it downward. ? "a/b", Int( a / b ) // Remainder: ? "a%b", a % b // Exponentiation is also a base arithmetic operation ? "a**b", a ** b return ## Clojure (defn myfunc [] (println "Enter x and y") (let [x (read), y (read)] (doseq [op '(+ - * / Math/pow rem)] (let [exp (list op x y)] (printf "%s=%s\n" exp (eval exp)))))) user=> (myfunc) Enter x and y 3 6 (+ 3 6)=9 (- 3 6)=-3 (* 3 6)=18 (/ 3 6)=1/2 (Math/pow 3 6)=729.0 (rem 3 6)=3 nil ## COBOL IDENTIFICATION DIVISION. PROGRAM-ID. Int-Arithmetic. DATA DIVISION. WORKING-STORAGE SECTION. 01 A PIC S9(10). 01 B PIC S9(10). 01 Result PIC S9(10). PROCEDURE DIVISION. DISPLAY "First number: " WITH NO ADVANCING ACCEPT A DISPLAY "Second number: " WITH NO ADVANCING ACCEPT B * *> Note: The various ADD/SUBTRACT/etc. statements can be * *> replaced with COMPUTE statements, which allow those * *> operations to be defined similarly to other languages, * *> e.g. COMPUTE Result = A + B ADD A TO B GIVING Result DISPLAY "A + B = " Result SUBTRACT B FROM A GIVING Result DISPLAY "A - B = " Result MULTIPLY A BY B GIVING Result DISPLAY "A * B = " Result * *> Division here truncates towards zero. DIVIDE can take a * *> ROUNDED clause, which will round the result to the nearest * *> integer. DIVIDE A BY B GIVING Result DISPLAY "A / B = " Result COMPUTE Result = A ^ B DISPLAY "A ^ B = " Result * *> Matches sign of first argument. DISPLAY "A % B = " FUNCTION REM(A, B) GOBACK . ## Common Lisp (defun arithmetic (&optional (a (read *query-io*)) (b (read *query-io*))) (mapc (lambda (op) (format t "~a => ~a~%" (list op a b) (funcall (symbol-function op) a b))) '(+ - * mod rem floor ceiling truncate round expt)) (values)) Common Lisp's integer division functions are floor, ceiling, truncate, and round. They differ in how they round their quotient. The function rounds its quotient towards floor negative infinity ceiling positive infinity truncate zero round the nearest integer (preferring the even integer if the mathematical quotient is equidistant from two integers) Each function also returns a remainder as its secondary value, such that quotient * divisor + remainder = dividend . (mod a b) and (rem a b) return numbers equal to the secondary values of (floor a b) and (truncate a b), respectively. ## Component Pascal Works with Gardens Point Component Pascal MODULE Arithmetic; IMPORT CPmain,Console,RTS; VAR x,y : INTEGER; arg : ARRAY 128 OF CHAR; status : BOOLEAN; PROCEDURE Error(IN str : ARRAY OF CHAR); BEGIN Console.WriteString(str);Console.WriteLn; HALT(1) END Error; BEGIN IF CPmain.ArgNumber() < 2 THEN Error("Give me two integers!") END; CPmain.GetArg(0,arg); RTS.StrToInt(arg,x,status); IF ~status THEN Error("Can't convert '"+arg+"' to Integer") END; CPmain.GetArg(1,arg); RTS.StrToInt(arg,y,status); IF ~status THEN Error("Can't convert '"+arg+"' to Integer") END; Console.WriteString("x + y >");Console.WriteInt(x + y,6);Console.WriteLn; Console.WriteString("x - y >");Console.WriteInt(x - y,6);Console.WriteLn; Console.WriteString("x * y >");Console.WriteInt(x * y,6);Console.WriteLn; Console.WriteString("x / y >");Console.WriteInt(x DIV y,6);Console.WriteLn; Console.WriteString("x MOD y >");Console.WriteInt(x MOD y,6);Console.WriteLn; END Arithmetic. command: cprun Arithmetic 12 23 Output: x + y > 35 x - y > -11 x * y > 276 x / y > 0 x MOD y > 12 Works with BlackBox Component Builder MODULE Arithmetic; IMPORT StdLog,DevCommanders,TextMappers; PROCEDURE DoArithmetic(x,y: INTEGER); BEGIN StdLog.String("x + y >");StdLog.Int(x + y);StdLog.Ln; StdLog.String("x - y >");StdLog.Int(x - y);StdLog.Ln; StdLog.String("x * y >");StdLog.Int(x * y);StdLog.Ln; StdLog.String("x / y >");StdLog.Int(x DIV y);StdLog.Ln; StdLog.String("x MOD y >");StdLog.Int(x MOD y);StdLog.Ln; END DoArithmetic; PROCEDURE Go*; VAR params: DevCommanders.Par; s: TextMappers.Scanner; p : ARRAY 2 OF INTEGER; current: INTEGER; BEGIN current := 0; params := DevCommanders.par; s.ConnectTo(params.text); s.SetPos(params.beg); s.Scan; WHILE(~s.rider.eot) DO IF (s.type = TextMappers.int) THEN p[current] := s.int; INC(current); END; s.Scan; END; IF current = 2 THEN DoArithmetic(p[0],p[1]) END; END Go; END Arithmetic. Command: Arithmetic.Go 12 23 ~ Output: x + y > 35 x - y > -11 x * y > 276 x / y > 0 x MOD y > 12 ## D import std.stdio, std.string, std.conv; void main() { int a = 10, b = 20; try { a = readln().strip().to!int(); b = readln().strip().to!int(); } catch (StdioException e) {} writeln("a = ", a, ", b = ", b); writeln("a + b = ", a + b); writeln("a - b = ", a - b); writeln("a * b = ", a * b); writeln("a / b = ", a / b); writeln("a % b = ", a % b); writeln("a ^^ b = ", a ^^ b); } Output: a = -16, b = 5 a + b = -11 a - b = -21 a * b = -80 a / b = -3 a % b = -1 a ^^ b = -1048576 ### Shorter Version Same output. import std.stdio, std.string, std.conv, std.meta; void main() { int a = -16, b = 5; try { a = readln().strip().to!int(); b = readln().strip().to!int(); } catch (StdioException e) {} writeln("a = ", a, ", b = ", b); foreach (op; AliasSeq!("+", "-", "*", "/", "%", "^^")) mixin(writeln("a  ~ op ~  b = ", a ~ op ~ b);); } Division and modulus are defined as in C99. ## dc [Enter 2 integers on 1 line. Use whitespace to separate. Example: 2 3 Use underscore for negative integers. Example: _10 ]P ? sb sa [add: ]P la lb + p sz [sub: ]P la lb - p sz [mul: ]P la lb * p sz [div: ]P la lb / p sz [truncates toward zero]sz [mod: ]P la lb % p sz [sign matches first operand]sz [pow: ]P la lb ^ p sz ## DCL inquire a "Enter first number" a = finteger( a ) inquire b "Enter second number" b = finteger( b ) write sysoutput "a + b = ", a + b write sysoutput "a - b = ", a - b write sysoutput "a * b = ", a * b write sysoutput "a / b = ", a / b ! truncates down Output: @arithmetic_integer Enter first number: 2 Enter second number: 5 a + b = 7 a - b = -3 a * b = 10 a / b = 0 @arithmetic_integer Enter first number: -5 Enter second number: -2 a + b = -7 a - b = -3 a * b = 10 a / b = 2 ## Delphi program IntegerArithmetic; {APPTYPE CONSOLE} uses SysUtils, Math; var a, b: Integer; begin a := StrToInt(ParamStr(1)); b := StrToInt(ParamStr(2)); WriteLn(Format('%d + %d = %d', [a, b, a + b])); WriteLn(Format('%d - %d = %d', [a, b, a - b])); WriteLn(Format('%d * %d = %d', [a, b, a * b])); WriteLn(Format('%d / %d = %d', [a, b, a div b])); // rounds towards 0 WriteLn(Format('%d %% %d = %d', [a, b, a mod b])); // matches sign of the first operand WriteLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))])); end. ## DWScript var a := StrToInt(ParamStr(0)); var b := StrToInt(ParamStr(1)); PrintLn(Format('%d + %d = %d', [a, b, a + b])); PrintLn(Format('%d - %d = %d', [a, b, a - b])); PrintLn(Format('%d * %d = %d', [a, b, a * b])); PrintLn(Format('%d / %d = %d', [a, b, a div b])); PrintLn(Format('%d mod %d = %d', [a, b, a mod b])); PrintLn(Format('%d ^ %d = %d', [a, b, Trunc(Power(a, b))])); ## E def arithmetic(a :int, b :int) { return \ Sum: {a + b} Difference: {a - b} Product: {a * b} Quotient: {a // b} Remainder: {a % b}\n } ## ECL ArithmeticDemo(INTEGER A,INTEGER B) := FUNCTION ADDit := A + B; SUBTRACTit := A - B; MULTIPLYit := A * B; INTDIVIDEit := A DIV B; //INTEGER DIVISION DIVIDEit := A / B; //standard division Remainder := A % B; EXPit := POWER(A,B); DS := DATASET([{A,B,'A PLUS B is:',ADDit}, {A,B,'A MINUS B is:',SUBTRACTit}, {A,B,'A TIMES B is:',MULTIPLYit}, {A,B,'A INT DIVIDE BY B is:',INTDIVIDEit}, {A,B,'REMAINDER is:',Remainder}, {A,B,'A DIVIDE BY B is:',DIVIDEit}, {A,B,'A RAISED TO B:',EXPit}], {INTEGER AVal,INTEGER BVal,STRING18 valuetype,STRING val}); RETURN DS; END; ArithmeticDemo(1,1); ArithmeticDemo(2,2); ArithmeticDemo(50,5); ArithmeticDemo(10,3); ArithmeticDemo(-1,2); /* NOTE:Division by zero defaults to generating a zero result (0), rather than reporting a “divide by zero” error. This avoids invalid or unexpected data aborting a long job. This default behavior can be changed */ ## Efene @public run = fn () { First = io.get_line("First number: ") Second = io.get_line("Second number: ") A = list_to_integer(lists.delete(\n, First)) B = list_to_integer(lists.delete(\n, Second)) io.format("Sum: ~p~n", [A + B]) io.format("Difference: ~p~n", [A - B]) io.format("Product: ~p~n", [A * B]) io.format("Quotient: ~p~n", [A / B]) io.format("Remainder: ~p~n", [A % B]) } ## Eiffel Works with: SmartEiffel version 2.4 In a file called main.e: class MAIN creation make feature make is local a, b: REAL; do print("a = "); io.read_real; a := io.last_real; print("b = "); io.read_real; b := io.last_real; print("a + b = "); io.put_real(a + b); print("%Na - b = "); io.put_real(a - b); print("%Na * b = "); io.put_real(a * b); print("%Na / b = "); io.put_real(a / b); print("%Na %% b = "); io.put_real(((a / b) - (a / b).floor) * b); print("%Na ^ b = "); io.put_real(a.pow(b)); print("%N"); end end Note that there actually is a builtin modulo operator (\\). However, it seems impossible to use that instruction with SmartEiffel. ## Elena ELENA 3.4 : import system'math. import extensions. public program [ var a := console readLineTo(Integer new). var b := console readLineTo(Integer new). console printLine(a," + ",b," = ",a + b). console printLine(a," - ",b," = ",a - b). console printLine(a," * ",b," = ",a * b). console printLine(a," / ",b," = ",a / b). // truncates towards 0 console printLine(a," % ",b," = ",a mod:b). // matches sign of first operand ] ## Elixir Works with: Elixir version 1.4 defmodule Arithmetic_Integer do # Function to remove line breaks and convert string to int defp get_int(msg) do IO.gets(msg) |> String.strip |> String.to_integer end def task do # Get user input a = get_int("Enter your first integer: ") b = get_int("Enter your second integer: ") IO.puts "Elixir Integer Arithmetic:\n" IO.puts "Sum: #{a + b}" IO.puts "Difference: #{a - b}" IO.puts "Product: #{a * b}" IO.puts "True Division: #{a / b}" # Float IO.puts "Division: #{div(a,b)}" # Truncated Towards 0 IO.puts "Floor Division: #{Integer.floor_div(a,b)}" # floored integer division IO.puts "Remainder: #{rem(a,b)}" # Sign from first digit IO.puts "Modulo: #{Integer.mod(a,b)}" # modulo remainder (uses floored division) IO.puts "Exponent: #{:math.pow(a,b)}" # Float, using Erlang's :math end end Arithmetic_Integer.task Output: C:\Elixir>elixir Arithmetic_Integer.exs Enter your first integer: 7 Enter your second integer: 3 Elixir Integer Arithmetic: Sum: 10 Difference: 4 Product: 21 True Division: 2.3333333333333335 Division: 2 Floor Division: 2 Remainder: 1 Modulo: 1 Exponent: 343.0 C:\Elixir>elixir Arithmetic_Integer.exs Enter your first integer: -7 Enter your second integer: 3 Elixir Integer Arithmetic: Sum: -4 Difference: -10 Product: -21 True Division: -2.3333333333333335 Division: -2 Floor Division: -3 Remainder: -1 Modulo: 2 Exponent: -343.0 C:\Elixir>elixir Arithmetic_Integer.exs Enter your first integer: 7 Enter your second integer: -3 Elixir Integer Arithmetic: Sum: 4 Difference: 10 Product: -21 True Division: -2.3333333333333335 Division: -2 Floor Division: -3 Remainder: 1 Modulo: -2 Exponent: 0.0029154518950437317 C:\Elixir>elixir Arithmetic_Integer.exs Enter your first integer: -7 Enter your second integer: -3 Elixir Integer Arithmetic: Sum: -10 Difference: -4 Product: 21 True Division: 2.3333333333333335 Division: 2 Floor Division: 2 Remainder: -1 Modulo: -1 Exponent: -0.0029154518950437317 ## Erlang % Implemented by Arjun Sunel -module(arith). -export([start/0]). start() -> case io:fread("","~d~d") of {ok, [A,B]} -> io:format("Sum = ~w~n",[A+B]), io:format("Difference = ~w~n",[A-B]), io:format("Product = ~w~n",[A*B]), io:format("Quotient = ~w~n",[A div B]), % truncates towards zero io:format("Remainder= ~w~n",[A rem B]), % same sign as the first operand halt() end. ## ERRE PROGRAM INTEGER_ARITHMETIC ! ! for rosettacode.org ! !INTEGER BEGIN INPUT("Enter a number ",A) INPUT("Enter another number ",B) PRINT("Addition ";A;"+";B;"=";(A+B)) PRINT("Subtraction ";A;"-";B;"=";(A-B)) PRINT("Multiplication ";A;"*";B;"=";(A*B)) PRINT("Integer division ";A;"div";B;"=";(A DIV B)) PRINT("Remainder or modulo ";A;"mod";B;"=";(A MOD B)) PRINT("Power ";A;"^";B;"=";(A^B)) END PROGRAM Output: Enter a number ? 12 Enter another number ? 5 Addition 12 + 5 = 17 Subtraction 12 - 5 = 7 Multiplication 12 * 5 = 60 Integer division 12 div 5 = 2 Remainder or modulo 12 mod 5 = 2 Power 12 ^ 5 = 248832 Truncate towards: 0 Remainder sign matches: first operand In C-64 ERRE version you must use INT(A/B) for division and A-B*INT(A/B) for modulus. ## Euphoria include get.e integer a,b a = floor(prompt_number("a = ",{})) b = floor(prompt_number("b = ",{})) printf(1,"a + b = %d\n", a+b) printf(1,"a - b = %d\n", a-b) printf(1,"a * b = %d\n", a*b) printf(1,"a / b = %g\n", a/b) -- does not truncate printf(1,"remainder(a,b) = %d\n", remainder(a,b)) -- same sign as first operand printf(1,"power(a,b) = %g\n", power(a,b)) Output: a = 2 b = 3 a + b = 5 a - b = -1 a * b = 6 a / b = 0.666667 remainder(a,b) = 2 power(a,b) = 8 ## Excel If the numbers are typed into cells A1 and B1 For sum, type in C1 =A1+B1 For difference, type in D1 =A1-B1 For product, type in E1 =A1*B1 For quotient, type in F1 =QUOTIENT(A1,B1) For remainder, type in G1 =MOD(A1,B1) For exponentiation, type in H1 =A1^B1 ## Factor USING: combinators io kernel math math.functions math.order math.parser prettyprint ; "a=" "b=" [ write readln string>number ] [email protected] { [ + "sum: " write . ] [ - "difference: " write . ] [ * "product: " write . ] [ / "quotient: " write . ] [ /i "integer quotient: " write . ] [ rem "remainder: " write . ] [ mod "modulo: " write . ] [ max "maximum: " write . ] [ min "minimum: " write . ] [ gcd "gcd: " write . drop ] [ lcm "lcm: " write . ] } 2cleave Output: a=8 b=12 sum: 20 difference: -4 product: 96 quotient: 2/3 integer quotient: 0 remainder: 8 modulo: 8 maximum: 12 minimum: 8 gcd: 4 lcm: 24 This example illustrates the use of cleave and apply combinators to alleviate the usage of shuffle words in a concatenative language. [email protected] applies a quotation to 2 inputs and 2cleave applies a sequence of quotations to 2 inputs. ## FALSE 12 7 \[email protected][email protected][email protected][email protected][email protected][email protected][email protected][email protected][email protected][email protected]\ { 6 copies } "sum = "+." difference = "-." product = "*." quotient = "/." modulus = "/*-." " ## Forth To keep the example simple, the word takes the two numbers from the stack. /mod returns two results; the stack effect is ( a b -- a%b a/b ). : arithmetic ( a b -- ) cr ." a=" over . ." b=" dup . cr ." a+b=" 2dup + . cr ." a-b=" 2dup - . cr ." a*b=" 2dup * . cr ." a/b=" /mod . cr ." a mod b = " . cr ; Different host systems have different native signed division behavior. ANS Forth defines two primitive double-precision signed division operations, from which the implementation may choose the most natural to implement the basic divide operations ( / , /mod , mod , */ ). This is partly due to differing specifications in the two previous standards, Forth-79 and Forth-83. FM/MOD ( d n -- mod div ) \ floored SM/REM ( d n -- rem div ) \ symmetric M* ( n n -- d ) In addition, there are unsigned variants. UM/MOD ( ud u -- umod udiv ) UM* ( u u -- ud ) ## Fortran In ANSI FORTRAN 77 or later: INTEGER A, B PRINT *, 'Type in two integer numbers separated by white space', + ' and press ENTER' READ *, A, B PRINT *, ' A + B = ', (A + B) PRINT *, ' A - B = ', (A - B) PRINT *, ' A * B = ', (A * B) PRINT *, ' A / B = ', (A / B) PRINT *, 'MOD(A,B) = ', MOD(A,B) PRINT * PRINT *, 'Even though you did not ask, ', + 'exponentiation is an intrinsic op in Fortran, so...' PRINT *, ' A ** B = ', (A ** B) END ## FreeBASIC ' FB 1.05.0 Win64 Dim As Integer i, j Input "Enter two integers separated by a comma"; i, j Print i;" + "; j; " = "; i + j Print i;" - "; j; " = "; i - j Print i;" * "; j; " = "; i * j Print i;" / "; j; " = "; i \ j Print i;" % "; j; " = "; i Mod j Print i;" ^ "; j; " = "; i ^ j Sleep ' Integer division (for which FB uses the '\' operator) rounds towards zero ' Remainder (for which FB uses the Mod operator) will, if non-zero, match the sign ' of the first operand Sample input and output:- Output: Enter two integers separated by a comma? -12, 7 -12 + 7 = -5 -12 - 7 = -19 -12 * 7 = -84 -12 / 7 = -1 -12 % 7 = -5 -12 ^ 7 = -35831808 ## F# As F# is a functional language, we can easily create a list of pairs of the string name of a function and the function itself to iterate over printing the operation and applying the function to obtain the result: do let a, b = int Sys.argv.[1], int Sys.argv.[2] for str, f in ["+", ( + ); "-", ( - ); "*", ( * ); "/", ( / ); "%", ( % )] do printf "%d %s %d = %d\n" a str b (f a b) For example, the output with the arguments 4 and 3 is: 4 + 3 = 7 4 - 3 = 1 4 * 3 = 12 4 / 3 = 1 4 % 3 = 1 ## friendly interactive shell read a read b echo 'a + b =' (math "a + b") # Sum echo 'a - b =' (math "a - b") # Difference echo 'a * b =' (math "a * b") # Product echo 'a / b =' (math "a / b") # Integer quotient echo 'a % b =' (math "a % b") # Remainder echo 'a ^ b =' (math "a ^ b") # Exponentation ## Frink This demonstrates normal division (which produces rational numbers when possible), div, and mod. div rounds toward negative infinity (defined as floor[x/y]). mod uses the sign of the second number (defined as x - y * floor[x/y]). All operators automatically produce big integers or exact rational numbers when necessary. [a,b] = input["Enter numbers",["a","b"]] ops=["+", "-", "*", "/", "div" ,"mod" ,"^"] for op = ops { str = "a op b" println["str = " + eval[str]] } Output: 10 + 20 = 30 10 - 20 = -10 10 * 20 = 200 10 / 20 = 1/2 (exactly 0.5) 10 div 20 = 0 10 mod 20 = 10 10 ^ 20 = 100000000000000000000 ## FutureBasic include "ConsoleWindow" dim as Str31 a, b dim as long i1, i2 input "Enter the first integer: "; a print input "Enter the second integer: "; b print : print i1 = val(a) : i2 = val(b) print " Number 1:"; i1 print " Number 2:"; i2 print print " Add: "; i1; " +"; i2; " ="; i1 + i2 print " Subtract: "; i1; " -"; i2; " ="; i1 - i2 print " Multiply: "; i1; " *"; i2; " ="; i1 * i2 if i2 != 0 print " Divide: "; i1; " /"; i2; " ="; i1 / i2 print i1; " mod"; i2; " ="; i1 MOD i2; " remainder" print i1; " raised to power of"; i2; " ="; i1 ^ i2 else print "Cannot divide by zero." end if Output: Enter the first integer: 25 Enter the second integer: 53 Number 1: 25 Number 2: 53 Add: 25 + 53 = 78 Subtract: 25 - 53 =-28 Multiply: 25 * 53 = 1325 Divide: 25 / 53 = 0 25 mod 53 = 25 remainder 25 raised to power of 53 = 1.23259516e+74 ## GAP run := function() local a, b, f; f := InputTextUser(); Print("a =\n"); a := Int(Chomp(ReadLine(f))); Print("b =\n"); b := Int(Chomp(ReadLine(f))); Display(Concatenation(String(a), " + ", String(b), " = ", String(a + b))); Display(Concatenation(String(a), " - ", String(b), " = ", String(a - b))); Display(Concatenation(String(a), " * ", String(b), " = ", String(a * b))); Display(Concatenation(String(a), " / ", String(b), " = ", String(QuoInt(a, b)))); # toward 0 Display(Concatenation(String(a), " mod ", String(b), " = ", String(RemInt(a, b)))); # nonnegative Display(Concatenation(String(a), " ^ ", String(b), " = ", String(a ^ b))); CloseStream(f); end; ## GEORGE R (m) ; R (n) ; m n + P; m n - P; m n × P; m n div P; m n rem P; ## Go ### int package main import "fmt" func main() { var a, b int fmt.Print("enter two integers: ") fmt.Scanln(&a, &b) fmt.Printf("%d + %d = %d\n", a, b, a+b) fmt.Printf("%d - %d = %d\n", a, b, a-b) fmt.Printf("%d * %d = %d\n", a, b, a*b) fmt.Printf("%d / %d = %d\n", a, b, a/b) // truncates towards 0 fmt.Printf("%d %% %d = %d\n", a, b, a%b) // same sign as first operand // no exponentiation operator } Example run: enter two integers: -5 3 -5 + 3 = -2 -5 - 3 = -8 -5 * 3 = -15 -5 / 3 = -1 -5 % 3 = -2 ### big.Int package main import ( "fmt" "math/big" ) func main() { var a, b, c big.Int fmt.Print("enter two integers: ") fmt.Scan(&a, &b) fmt.Printf("%d + %d = %d\n", &a, &b, c.Add(&a, &b)) fmt.Printf("%d - %d = %d\n", &a, &b, c.Sub(&a, &b)) fmt.Printf("%d * %d = %d\n", &a, &b, c.Mul(&a, &b)) // Quo, Rem functions work like Go operators on int: // quo truncates toward 0, // and a non-zero rem has the same sign as the first operand. fmt.Printf("%d quo %d = %d\n", &a, &b, c.Quo(&a, &b)) fmt.Printf("%d rem %d = %d\n", &a, &b, c.Rem(&a, &b)) // Div, Mod functions do Euclidean division: // the result m = a mod b is always non-negative, // and for d = a div b, the results d and m give d*y + m = x. fmt.Printf("%d div %d = %d\n", &a, &b, c.Div(&a, &b)) fmt.Printf("%d mod %d = %d\n", &a, &b, c.Mod(&a, &b)) // as with int, no exponentiation operator } Example run: enter two integers: -5 3 -5 + 3 = -2 -5 - 3 = -8 -5 * 3 = -15 -5 quo 3 = -1 -5 rem 3 = -2 -5 div 3 = -2 -5 mod 3 = 1 ## Groovy def arithmetic = { a, b -> println """ a + b = {a} + {b} = {a + b} a - b = {a} - {b} = {a - b} a * b = {a} * {b} = {a * b} a / b = {a} / {b} = {a / b} !!! Converts to floating point! (int)(a / b) = (int)({a} / {b}) = {(int)(a / b)} !!! Truncates downward after the fact a.intdiv(b) = {a}.intdiv({b}) = {a.intdiv(b)} !!! Behaves as if truncating downward, actual implementation varies a % b = {a} % {b} = {a % b} Exponentiation is also a base arithmetic operation in Groovy, so: a ** b = {a} ** {b} = {a ** b} """ } Program: arithmetic(5,3) Output: a + b = 5 + 3 = 8 a - b = 5 - 3 = 2 a * b = 5 * 3 = 15 a / b = 5 / 3 = 1.6666666667 !!! Converts to floating point! (int)(a / b) = (int)(5 / 3) = 1 !!! Truncates downward after the fact a.intdiv(b) = 5.intdiv(3) = 1 !!! Behaves as if truncating downward, actual implementation varies a % b = 5 % 3 = 2 Exponentiation is also a base arithmetic operation in Groovy, so: a ** b = 5 ** 3 = 125 ## Harbour procedure Test( a, b ) ? "a+b", a + b ? "a-b", a - b ? "a*b", a * b // The quotient isn't integer, so we use the Int() function, which truncates it downward. ? "a/b", Int( a / b ) // Remainder: ? "a%b", a % b // Exponentiation is also a base arithmetic operation ? "a**b", a ** b return ## Haskell main = do a <- readLn :: IO Integer b <- readLn :: IO Integer putStrLn "a + b = " ++ show (a + b) putStrLn "a - b = " ++ show (a - b) putStrLn "a * b = " ++ show (a * b) putStrLn "a to the power of b = " ++ show (a ** b) putStrLn "a to the power of b = " ++ show (a ^ b) putStrLn "a to the power of b = " ++ show (a ^^ b) putStrLn "a div b = " ++ show (a div b) -- truncates towards negative infinity putStrLn "a mod b = " ++ show (a mod b) -- same sign as second operand putStrLn "a divMod b = " ++ show (a divMod b) putStrLn "a quot b = " ++ show (a quot b) -- truncates towards 0 putStrLn "a rem b = " ++ show (a rem b) -- same sign as first operand putStrLn "a quotRem b = " ++ show (a quotRem b) ## Haxe class BasicIntegerArithmetic { public static function main() { var args =Sys.args(); if (args.length < 2) return; var a = Std.parseFloat(args[0]); var b = Std.parseFloat(args[1]); trace("a+b = " + (a+b)); trace("a-b = " + (a-b)); trace("a*b = " + (a*b)); trace("a/b = " + (a/b)); trace("a%b = " + (a%b)); } } ## HicEst All numeric is 8-byte-float. Conversions are by INT, NINT, FLOOR, CEILING, or Formatted IO DLG(Edit=A, Edit=B, TItle='Enter numeric A and B') WRITE(Name) A, B WRITE() ' A + B = ', A + B WRITE() ' A - B = ', A - B WRITE() ' A * B = ', A * B WRITE() ' A / B = ', A / B ! no truncation WRITE() 'truncate A / B = ', INT(A / B) ! truncates towards 0 WRITE() 'round next A / B = ', NINT(A / B) ! truncates towards next integer WRITE() 'round down A / B = ', FLOOR(A / B) ! truncates towards minus infinity WRITE() 'round up A / B = ', CEILING(A / B) ! truncates towards plus infinity WRITE() 'remainder of A / B = ', MOD(A, B) ! same sign as A WRITE() 'A to the power of B = ', A ^ B WRITE() 'A to the power of B = ', A ** B A=5; B=-4; A + B = 1 A - B = 9 A * B = -20 A / B = -1.25 truncate A / B = -1 round next A / B = -1 round down A / B = -2 round up A / B = -1 remainder of A / B = 1 A to the power of B = 16E-4 A to the power of B = 16E-4 ## HolyC I64 *a, *b; a = Str2I64(GetStr("Enter your first number: ")); b = Str2I64(GetStr("Enter your second number: ")); if (b == 0) Print("Error: The second number must not be zero.\n"); else { Print("a + b = %d\n", a + b); Print("a - b = %d\n", a - b); Print("a * b = %d\n", a * b); Print("a / b = %d\n", a / b); /* rounds down */ Print("a % b = %d\n", a % b); /* same sign as first operand */ Print("a  b = %d\n", a  b); } ## i software { a = number(read(' ')) b = number(read('\n')) print("Sum: " , a + b) print("Difference: " , a - b) print("Product: " , a * b) print("Quotient: " , a / b) // rounds towards zero print("Modulus: " , a % b) // same sign as first operand print("Exponent: " , a ^ b) } ## Icon and Unicon procedure main() writes("Input 1st integer a := ") a := integer(read()) writes("Input 2nd integer b := ") b := integer(read()) write(" a + b = ",a+b) write(" a - b = ",a-b) write(" a * b = ",a*b) write(" a / b = ",a/b, " rounds toward 0") write(" a % b = ",a%b, " remainder sign matches a") write(" a ^ b = ",a^b) end ## Inform 7 Enter Two Numbers is a room. Numerically entering is an action applying to one number. Understand "[number]" as numerically entering. The first number is a number that varies. After numerically entering for the first time: now the first number is the number understood. After numerically entering for the second time: let A be the first number; let B be the number understood; say "[A] + [B] = [A + B]."; [operator syntax] say "[A] - [B] = [A minus B]."; [English syntax] let P be given by P = A * B where P is a number; [inline equation] say "[A] * [B] = [P]."; let Q be given by the Division Formula; [named equation] say "[A] / [B] = [Q]."; say "[A] mod [B] = [remainder after dividing A by B]."; end the story. Equation - Division Formula Q = A / B where Q is a number, A is a number, and B is a number. This solution shows four syntaxes: mathematical operators, English operators, inline equations, and named equations. Division rounds toward zero, and the remainder has the same sign as the quotient. ## J calc =: + , - , * , <[email protected]% , |~ , ^ The function calc constructs a list of numeric results for this task. The implementation of integer division we use here (<[email protected]%.) rounds down (towards negative infinity), and this is compatible with the remainder implementation we use here. 17 calc 3 20 14 51 5 2 4913 The function bia assembles these results, textually: labels =: ];.2 'Sum: Difference: Product: Quotient: Remainder: Exponentiation: ' combine =: ,. ":@,. bia =: labels combine calc 17 bia 3 Sum: 20 Difference: 14 Product: 51 Quotient: 5 Remainder: 2 Exponentiation: 4913 ## Java import java.util.Scanner; public class IntegerArithmetic { public static void main(String[] args) { // Get the 2 numbers from command line arguments Scanner sc = new Scanner(System.in); int a = sc.nextInt(); int b = sc.nextInt(); int sum = a + b; // The result of adding 'a' and 'b' (Note: integer addition is discouraged in print statements due to confusion with string concatenation) int difference = a - b; // The result of subtracting 'b' from 'a' int product = a * b; // The result of multiplying 'a' and 'b' int division = a / b; // The result of dividing 'a' by 'b' (Note: 'division' does not contain the fractional result) int remainder = a % b; // The remainder of dividing 'a' by 'b' System.out.println("a + b = " + sum); System.out.println("a - b = " + difference); System.out.println("a * b = " + product); System.out.println("quotient of a / b = " + division); // truncates towards 0 System.out.println("remainder of a / b = " + remainder); // same sign as first operand } } ## JavaScript ### WScript Works with: JScript Works with: SpiderMonkey Note that the operators work the same in all versions of JavaScript; the requirement for specific implementations is in order to get user input. var a = parseInt(get_input("Enter an integer"), 10); var b = parseInt(get_input("Enter an integer"), 10); WScript.Echo("a = " + a); WScript.Echo("b = " + b); WScript.Echo("sum: a + b = " + (a + b)); WScript.Echo("difference: a - b = " + (a - b)); WScript.Echo("product: a * b = " + (a * b)); WScript.Echo("quotient: a / b = " + (a / b | 0)); // "| 0" casts it to an integer WScript.Echo("remainder: a % b = " + (a % b)); function get_input(prompt) { output(prompt); try { return WScript.StdIn.readLine(); } catch(e) { return readline(); } } function output(prompt) { try { WScript.Echo(prompt); } catch(e) { print(prompt); } } Output: Enter an integer -147 Enter an integer 63 a = -147 b = 63 sum: a + b = -84 difference: a - b = -210 product: a * b = -9261 quotient: a / b = -2 remainder: a % b = -21 ### Node.JS // Invoked as node script_name.js <a> <b>. Positions 0 and 1 in the argv array contain 'node' and 'script_name.js' respectively var a = parseInt(process.argv[2], 10); var b = parseInt(process.argv[3], 10); var sum = a + b; var difference = a - b; var product = a * b; var division = a / b; var remainder = a % b; // This produces the remainder after dividing 'b' into 'a'. The '%' operator is called the 'modulo' operator console.log('a + b = %d', sum); // The %d syntax is a placeholder that is replaced by the sum console.log('a - b = %d', difference); console.log('a * b = %d', product); console.log('a / b = %d', division); console.log('a % b = %d', remainder); Output: a + b = 17 a - b = 3 a * b = 70 a / b = 1.4285714285714286 a % b = 3 ## jq # Lines which do not have two integers are skipped: def arithmetic: split(" ") | select(length > 0) | map(tonumber) | if length > 1 then .[0] as a | .[1] as b | "For a = \(a) and b = \(b):\n" + "a + b = \(a + b)\n" + "a - b = \(a - b)\n" + "a * b = \(a * b)\n" + "a/b|floor = \(a / b | floor)\n" + "a % b = \(a % b)\n" + "a | exp = \(a | exp)\n" else empty end ; arithmetic Output: jq -R -r -f arithmetic.jq 7 -2 For a = 7 and b = -2: a + b = 5 a - b = 9 a * b = -14 a/b|floor = -4 a % b = 1 a | exp = 1096.6331584284585 2 -7 For a = 2 and b = -7: a + b = -5 a - b = 9 a * b = -14 a/b|floor = -1 a % b = 2 a | exp = 7.38905609893065 -2 -7 For a = -2 and b = -7: a + b = -9 a - b = 5 a * b = 14 a/b|floor = 0 a % b = -2 a | exp = 0.1353352832366127 ## Julia function arithmetic (a = parse(Int, readline()), b = parse(Int, readline())) for op in [+,-,*,div,rem] println("a op b = (op(a,b))") end end Output: julia> arithmetic() 4 5 a + b = 9 a - b = -1 a * b = 20 a div b = 0 a rem b = 4 ## Kotlin // version 1.1 fun main(args: Array<String>) { val r = Regex("""-?\d+[ ]+-?\d+""") while(true) { print("Enter two integers separated by space(s) or q to quit: ") val input: String = readLine()!!.trim() if (input == "q" || input == "Q") break if (!input.matches(r)) { println("Invalid input, try again") continue } val index = input.lastIndexOf(' ') val a = input.substring(0, index).trimEnd().toLong() val b = input.substring(index + 1).toLong() println("a + b = {a + b}") println("a - b = {a - b}") println("a * b = {a * b}") if (b != 0L) { println("a / b = {a / b}") // rounds towards zero println("a % b = {a % b}") // if non-zero, matches sign of first operand } else { println("a / b = undefined") println("a % b = undefined") } val d = Math.pow(a.toDouble(), b.toDouble()) print("a ^ b = ") if (d % 1.0 == 0.0) { if (d >= Long.MIN_VALUE.toDouble() && d <= Long.MAX_VALUE.toDouble()) println("{d.toLong()}") else println("out of range") } else if (!d.isFinite()) println("not finite") else println("not integral") println() } } Output: Enter two integers separated by space(s) or q to quit: 2 63 2 + 63 = 65 2 - 63 = -61 2 * 63 = 126 2 / 63 = 0 2 % 63 = 2 2 ^ 63 = 9223372036854775807 Enter two integers separated by space(s) or q to quit: -3 50 -3 + 50 = 47 -3 - 50 = -53 -3 * 50 = -150 -3 / 50 = 0 -3 % 50 = -3 -3 ^ 50 = out of range Enter two integers separated by space(s) or q to quit: q ## LabVIEW This image is a VI Snippet, an executable image of LabVIEW code. The LabVIEW version is shown on the top-right hand corner. You can download it, then drag-and-drop it onto the LabVIEW block diagram from a file browser, and it will appear as runnable, editable code. ## Lasso local(a = 6, b = 4) #a + #b // 10 #a - #b // 2 #a * #b // 24 #a / #b // 1 #a % #b // 2 math_pow(#a,#b) // 1296 math_pow(#b,#a) // 4096 ## LFE (defmodule arith (export all)) (defun demo-arith () (case (: io fread '"Please enter two integers: " '"~d~d") ((tuple 'ok (a b)) (: io format '"~p + ~p = ~p~n" (list a b (+ a b))) (: io format '"~p - ~p = ~p~n" (list a b (- a b))) (: io format '"~p * ~p = ~p~n" (list a b (* a b))) (: io format '"~p^~p = ~p~n" (list a b (: math pow a b))) ; div truncates towards zero (: io format '"~p div ~p = ~p~n" (list a b (div a b))) ; rem's result takes the same sign as the first operand (: io format '"~p rem ~p = ~p~n" (list a b (rem a b)))))) Usage from the LFE REPL: > (slurp '"arith.lfe") #(ok arith) > (demo-arith) Please enter two integers: 2 8 2 + 8 = 10 2 - 8 = -6 2 * 8 = 16 2^8 = 256.0 2 div 8 = 0 2 rem 8 = 2 ok ## Liberty BASIC Note that raising to a power can display very large integers without going to approximate power-of-ten notation. input "Enter the first integer: "; first input "Enter the second integer: "; second print "The sum is " ; first + second print "The difference is " ; first -second print "The product is " ; first *second if second <>0 then print "The integer quotient is " ; int( first /second); " (rounds towards 0)" else print "Division by zero not allowed." print "The remainder is " ; first MOD second; " (sign matches first operand)" print "The first raised to the power of the second is " ; first ^second ## Lingo -- X, Y: 2 editable field members, shown as sprites in the current GUI x = integer(member("X").text) y = integer(member("Y").text) put "Sum: " , x + y put "Difference: ", x - y put "Product: " , x * y put "Quotient: " , x / y -- Truncated towards zero put "Remainder: " , x mod y -- Result has sign of left operand put "Exponent: " , power(x, y) ## Little # Maybe you need to import the mathematical funcions # from Tcl with: # eval("namespace path ::tcl::mathfunc"); void main() { int a, b; puts("Enter two integers:"); a = (int)(gets(stdin)); b = (int)(gets(stdin)); puts("{a} + {b} = {a+b}"); puts("{a} - {b} = {a-b}"); puts("{a} * {b} = {a*b}"); puts("{a} / {b} = {a/b}, remainder {a%b}"); puts("{a} to the power of {b} = {(int)pow(a,b)}"); } ## LiveCode ask "enter 2 numbers (comma separated)" if it is not empty then put item 1 of it into n1 put item 2 of it into n2 put sum(n1,n2) into ai["sum"] put n1 * n2 into ai["product"] put n1 div n2 into ai["quotient"] -- truncates put n1 mod n2 into ai["remainder"] put n1^n2 into ai["power"] combine ai using comma and colon put ai end if Examples -2,4 - power:16,product:-8,quotient:0,remainder:-2,sum:2 2,-4 - power:0.0625,product:-8,quotient:0,remainder:2,sum:-2 -2,-4 - power:0.0625,product:8,quotient:0,remainder:-2,sum:-6 2,4 - power:16,product:8,quotient:0,remainder:2,sum:6 11,4 - power:14641,product:44,quotient:2,remainder:3,sum:15 ## Logo to operate :a :b (print [a =] :a) (print [b =] :b) (print [a + b =] :a + :b) (print [a - b =] :a - :b) (print [a * b =] :a * :b) (print [a / b =] int :a / :b) (print [a mod b =] modulo :a :b) end Each infix operator also has a prefix synonym (sum, difference, product, quotient). Sum and product can also have arity greater than two when used in parentheses (sum 1 2 3). Infix operators in general have high precedence; you may need to enclose their arguments in parentheses to obtain the correct expression. ## LSE64 over : 2 pick 2dup : over over arithmetic : \ " A=" ,t over , sp " B=" ,t dup , nl \ " A+B=" ,t 2dup + , nl \ " A-B=" ,t 2dup - , nl \ " A*B=" ,t 2dup * , nl \ " A/B=" ,t 2dup / , nl \ " A%B=" ,t % , nl ## Lua local x = io.read() local y = io.read() print ("Sum: " , (x + y)) print ("Difference: ", (x - y)) print ("Product: " , (x * y)) print ("Quotient: " , (x / y)) -- Does not truncate print ("Remainder: " , (x % y)) -- Result has sign of right operand print ("Exponent: " , (x ^ y)) ## M2000 Interpreter We can use variables with %, which are double inside with no decimal part. These can have 17 digits. Also A%=1.5 make it 2, not 1. This has a tricky situation: A%=1/2 give 1 to A%. We can use FLOOR() or INT() is the same, or CEIL(), and there is a BANK() which is a Banker Round: BANK(2.5)=2 and BANK(3.5)=4. MODULE LikeCommodoreBasic { \\ ADDITION: EUCLIDEAN DIV# & MOD# AND ** FOR POWER INCLUDING ^ 10 INPUT "ENTER A NUMBER:"; A% 20 INPUT "ENTER ANOTHER NUMBER:"; B% 30 PRINT "ADDITION:";A%;"+";B%;"=";A%+B% 40 PRINT "SUBTRACTION:";A%;"-";B%;"=";A%-B% 50 PRINT "MULTIPLICATION:";A%;"*";B%;"=";A%*B% 60 PRINT "INTEGER DIVISION:";A%;"DIV";B%;"=";A% DIV B% 65 PRINT "INTEGER EUCLIDEAN DIVISION:";A%;"DIV";B%;"=";A% DIV# B% 70 PRINT "REMAINDER OR MODULO:";A%;"MOD";B%;"=";A% MOD B% 75 PRINT "EUCLIDEAN REMAINDER OR MODULO:";A%;"MOD#";B%;"=";A% MOD# B% 80 PRINT "POWER:";A%;"^";B%;"=";A%^B% 90 PRINT "POWER:";A%;"**";B%;"=";A%**B% } LikeCommodoreBasic Module IntegerTypes { a=12% ' Integer 16 bit b=12& ' Long 32 bit [email protected]' Decimal (29 digits) Def ExpType(x)=Type(x) Print ExpType(a+1)="Double" Print ExpType(a+1%)="Integer" Print ExpType(a div 5)="Double" Print ExpType(a div 5%)="Double" Print ExpType(a mod 5)="Double" Print ExpType(a mod 5%)="Double" Print ExpType(a**2)="Double" Print ExpType(b+1)="Double" Print ExpType(b+1&)="Long" Print ExpType(b div 5)="Double" Print ExpType(b div 5&)="Double" Print ExpType(b mod 5)="Double" Print ExpType(b mod 5&)="Double" Print ExpType(b**2)="Double" Print ExpType(c+1)="Decimal" Print ExpType([email protected])="Decimal" Print ExpType(c div 5)="Decimal" Print ExpType(c div [email protected])="Decimal" Print ExpType(c mod 5)="Decimal" Print ExpType(c mod [email protected])="Decimal" Print ExpType(c**2)="Double" } IntegerTypes ## M4 Because of the particular nature of M4, the only user-input is the code itself. Anyway the following code can be used: eval(A+B) eval(A-B) eval(A*B) eval(A/B) eval(A%B) once saved in a file, e.g. operations.m4: m4 -DA=4 -DB=6 operations.m4 or using a sort of driver: define(A', 4)dnl define(B', 6)dnl include(operations.m4') ## Maple These operations are all built-in. As all operations are exact, there are no rounding issues involved. DoIt := proc() local a := readstat( "Input an integer: " ): local b := readstat( "Input another integer: " ): printf( "Sum = %d\n", a + b ): printf( "Difference = %d\n", a - b ): printf( "Product = %d\n", a * b ): printf( "Quotient = %d\n", iquo( a, b, 'c' ) ): printf( "Remainder = %d\n", c ); # or irem( a, b ) NULL # quiet return end proc: Here is an example of calling DoIt. > DoIt(); Input an integer: 15; Input another integer: 12; Sum = 27 Difference = 3 Product = 180 Quotient = 1 Remainder = 3 > ## Mathematica Mathematica has all the function built-in to handle this task. Example: a = Input["Give me an integer please!"]; b = Input["Give me another integer please!"]; Print["You gave me ", a, " and ", b]; Print["sum: ", a + b]; Print["difference: ", a - b]; Print["product: ", a b]; Print["integer quotient: ", IntegerPart[a/b]]; Print["remainder: ", Mod[a, b]]; Print["exponentiation: ", a^b]; gives back for input 17 and 3: <preMathematica>You gave me 17 and 3 sum: 20 difference: 14 product: 51 integer quotient: 5 remainder: 2 exponentiation: 4913</pre> ## MATLAB / Octave disp("integer a: "); a = scanf("%d", 1); disp("integer b: "); b = scanf("%d", 1); a+b a-b a*b floor(a/b) mod(a,b) a^b ## Maxima block( [a: read("a"), b: read("b")], print(a + b), print(a - b), print(a * b), print(a / b), print(quotient(a, b)), print(remainder(a, b)), a^b ); ## MAXScript x = getKBValue prompt:"First number" y = getKBValue prompt:"Second number:" format "Sum: %\n" (x + y) format "Difference: %\n" (x - y) format "Product: %\n" (x * y) format "Quotient: %\n" (x / y) format "Remainder: %\n" (mod x y) ## Mercury :- module arith_int. :- interface. :- import_module io. :- pred main(io::di, io::uo) is det. :- implementation. :- import_module int, list, string. main(!IO) :- io.command_line_arguments(Args, !IO), ( if Args = [AStr, BStr], string.to_int(AStr, A), string.to_int(BStr, B) then io.format("A + B = %d\n", [i(A + B)], !IO), io.format("A - B = %d\n", [i(A - B)], !IO), io.format("A * B = %d\n", [i(A * B)], !IO), % Division: round towards zero. % io.format("A / B = %d\n", [i(A / B)], !IO), % Division: round towards minus infinity. % io.format("A div B = %d\n", [i(A div B)], !IO), % Modulus: X mod Y = X - (X div Y) * Y. % io.format("A mod B = %d\n", [i(A mod B)], !IO), % Remainder: X rem Y = X - (X / Y) * Y. % io.format("A rem B = %d\n", [i(A rem B)], !IO), % Exponentiation is done using the function int.pow/2. % io.format("A pow B = %d\n", [i(A pow B)], !IO) else io.set_exit_status(1, !IO) ). ## Metafont string s[]; message "input number a: "; s1 := readstring; message "input number b: "; s2 := readstring; a := scantokens s1; b := scantokens s2; def outp(expr op) = message "a " & op & " b = " & decimal(a scantokens(op) b) enddef; outp("+"); outp("-"); outp("*"); outp("div"); outp("mod"); end ## МК-61/52 П1 <-> П0 + С/П ИП0 ИП1 - С/П ИП0 ИП1 * С/П ИП0 ИП1 / [x] С/П ИП0 ^ ИП1 / [x] ИП1 * - С/П ИП1 ИП0 x^y С/П ## ML/I ML/I will read two integers from 'standard input' or similar, and then output the results to 'standard output' or similar. MCSKIP "WITH" NL "" Arithmetic/Integer "" assumes macros on input stream 1, terminal on stream 2 MCSKIP MT,<> MCINS %. MCDEF SL SPACES NL AS <MCSET T1=%A1. MCSET T2=%A2. a + b = %%T1.+%T2.. a - b = %%T1.-%T2.. a * b = %%T1.*%T2.. a / b = %%T1./%T2.. a rem b = %%T1.-%%%T1./%T2..*%T2... Division is truncated to the greatest integer that does not exceed the exact result. Remainder matches the sign of the second operand, if the signs differ. ## Modula-2 MODULE ints; IMPORT InOut; VAR a, b : INTEGER; BEGIN InOut.WriteString ("Enter two integer numbers : "); InOut.WriteBf; InOut.ReadInt (a); InOut.ReadInt (b); InOut.WriteString ("a + b = "); InOut.WriteInt (a + b, 9); InOut.WriteLn; InOut.WriteString ("a - b = "); InOut.WriteInt (a - b, 9); InOut.WriteLn; InOut.WriteString ("a * b = "); InOut.WriteInt (a * b, 9); InOut.WriteLn; InOut.WriteString ("a / b = "); InOut.WriteInt (a DIV b, 9); InOut.WriteLn; InOut.WriteString ("a MOD b = "); InOut.WriteInt (a MOD b, 9); InOut.WriteLn; InOut.WriteLn; END ints. Producing: ints Enter two integer numbers : 12 7 a + b = 19 a - b = 5 a * b = 84 a / b = 1 a MOD b = 5 $$ints Enter two integer numbers : 123 -111 a + b = 12 a - b = 234 a * b = -13653 a / b = -1 a MOD b = 12 ## Modula-3 MODULE Arith EXPORTS Main; IMPORT IO, Fmt; VAR a, b: INTEGER; BEGIN a := IO.GetInt(); b := IO.GetInt(); IO.Put("a+b = " & Fmt.Int(a + b) & "\n"); IO.Put("a-b = " & Fmt.Int(a - b) & "\n"); IO.Put("a*b = " & Fmt.Int(a * b) & "\n"); IO.Put("a DIV b = " & Fmt.Int(a DIV b) & "\n"); IO.Put("a MOD b = " & Fmt.Int(a MOD b) & "\n"); END Arith. ## MUMPS Note: M[UMPS] has an operator called "modulo". When both operands are positive numbers, "modulo" has a result that looks a lot like "remainder"; however, there is an important difference. To better understand the intricacies of "modulo" and how it is different from "remainder", see Donald Knuth's definition (Volume 1 of the "big books"), or find out the beauty of cyclic algebra as formulated by Niels Henrik Abel (August 5, 1802 – April 6, 1829). Arith(first,second) ; Mathematical operators Write "Plus",?12,first,"+",second,?25," = ",first+second,! Write "Minus",?12,first,"-",second,?25," = ",first-second,! Write "Multiply",?12,first,"*",second,?25," = ",first*second,! Write "Divide",?12,first,"/",second,?25," = ",first/second,! Write "Int Divide",?12,first,"\",second,?25," = ",first\second,! Write "Power",?12,first,"**",second,?25," = ",first**second,! Write "Modulo",?12,first,"#",second,?25," = ",first#second,! Write "And",?12,first,"&",second,?25," = ",first&second,! Write "Or",?12,first,"!",second,?25," = ",first!second,! Quit Do Arith(2,3) Plus 2+3 = 5 Minus 2-3 = -1 Multiply 2*3 = 6 Divide 2/3 = .6666666666666666667 Int Divide 2\3 = 0 Power 2**3 = 8 Modulo 2#3 = 2 And 2&3 = 1 Or 2!3 = 1 Do Arith(16,0.5) Plus 16+.5 = 16.5 Minus 16-.5 = 15.5 Multiply 16*.5 = 8 Divide 16/.5 = 32 Int Divide 16\.5 = 32 Power 16**.5 = 4 Modulo 16#.5 = 0 And 16&.5 = 1 Or 16!.5 = 1 Do Arith(0,2) Plus 0+2 = 2 Minus 0-2 = -2 Multiply 0*2 = 0 Divide 0/2 = 0 Int Divide 0\2 = 0 Power 0**2 = 0 Modulo 0#2 = 0 And 0&2 = 0 Or 0!2 = 1 ## Nemerle Adapted nearly verbatim from C# solution above. Note that I've used the exponentiation operator (**), but Math.Pow() as used in the C# solution would also work. using System; class Program { static Main(args : array[string]) : void { def a = Convert.ToInt32(args[0]); def b = Convert.ToInt32(args[1]); Console.WriteLine("{0} + {1} = {2}", a, b, a + b); Console.WriteLine("{0} - {1} = {2}", a, b, a - b); Console.WriteLine("{0} * {1} = {2}", a, b, a * b); Console.WriteLine("{0} / {1} = {2}", a, b, a / b); // truncates towards 0 Console.WriteLine("{0} % {1} = {2}", a, b, a % b); // matches sign of first operand Console.WriteLine("{0} ** {1} = {2}", a, b, a ** b); } } ## NetRexx Translation of: REXX /* NetRexx */ options replace format comments java crossref symbols binary say "enter 2 integer values separated by blanks" parse ask a b say a "+" b "=" a + b say a "-" b "=" a - b say a "*" b "=" a * b say a "/" b "=" a % b "remaining" a // b "(sign from first operand)" say a "^" b "=" a ** b return Output: enter 2 integer values separated by blanks 17 -4 17 + -4 = 13 17 - -4 = 21 17 * -4 = -68 17 / -4 = -4 remaining 1 (sign from first operand) 17 ^ -4 = 0.0000119730367 ## NewLISP ; integer.lsp ; oofoe 2012-01-17 (define (aski msg) (print msg) (int (read-line))) (setq x (aski "Please type in an integer and press [enter]: ")) (setq y (aski "Please type in another integer : ")) ; Note that +, -, *, / and % are all integer operations. (println) (println "Sum: " (+ x y)) (println "Difference: " (- x y)) (println "Product: " (* x y)) (println "Integer quotient (rounds to 0): " (/ x y)) (println "Remainder: " (setq r (% x y))) (println "Remainder sign matches: " (cond ((= (sgn r) (sgn x) (sgn y)) "both") ((= (sgn r) (sgn x)) "first") ((= (sgn r) (sgn y)) "second"))) (println) (println "Exponentiation: " (pow x y)) (exit) ; NewLisp normally goes to listener after running script. Output: Please type in an integer and press [enter]: 17 Please type in another integer : -4 Sum: 13 Difference: 21 Product: -68 Integer quotient (rounds to 0): -4 Remainder: 1 Remainder sign matches: first Exponentiation: 1.197303672e-005 ## Nial Example tested with Q'Nial7. Define new operator using an atlas of operators: arithmetic is OP A B{[first,last,+,-,*,quotient,mod,power] A B} Test new operator: -23 arithmetic 7 -23 7 -16 -30 -161 -4 5 -3404825447 Negative divisors are not accepted for integer quotient quotient or remainder mod, and in both cases the result is an error with the message ?negative divisor. For quotient, if the divisor B is zero, the result is zero. For mod, if the divisor B is zero, the result is A. The quotient on division by a positive integer B is always an integer on the same side of the origin as A. Nial definition of quotient: A quotient B =f= floor (A / B) floor rounds towards negative infinity (next lower integer). ## Nim import parseopt, strutils var opt: OptParser = initOptParser() str = opt.cmdLineRest.split a: int = 0 b: int = 0 try: a = parseInt(str[0]) b = parseInt(str[1]) except ValueError: quit("Invalid params. Two integers are expected.") echo("a : " & a) echo("b : " & b) echo("a + b : " & (a+b)) echo("a - b : " & (a-b)) echo("a * b : " & (a*b)) echo("a div b: " & (a div b)) echo("a mod b: " & (a mod b)) Execute: Aritmint 10 23 / Output: a : 10 b : 23 a + b : 33 a - b : -13 a * b : 230 a div b: 0 a mod b: 10 ## NSIS All Arithmetic in NSIS is handled by the IntOp instruction. It is beyond the scope of this task to implement user input (a fairly involved task), so I will be providing hard-coded values simulating the user input, with the intention of later adding the user-input piece. Function Arithmetic Push 0 Push 1 Push 2 StrCpy 0 21 StrCpy 1 -2 IntOp 2 0 + 1 DetailPrint "0 + 1 = 2" IntOp 2 0 - 1 DetailPrint "0 - 1 = 2" IntOp 2 0 * 1 DetailPrint "0 * 1 = 2" IntOp 2 0 / 1 DetailPrint "0 / 1 = 2" DetailPrint "Rounding is toward negative infinity" IntOp 2 0 % 1 DetailPrint "0 % 1 = 2" DetailPrint "Sign of remainder matches the first number" Pop 2 Pop 1 Pop 0 FunctionEnd ## Oberon-2 Oxford Oberon-2 MODULE Arithmetic; IMPORT In, Out; VAR x,y:INTEGER; BEGIN Out.String("Give two numbers: ");In.Int(x);In.Int(y); Out.String("x + y >");Out.Int(x + y,6);Out.Ln; Out.String("x - y >");Out.Int(x - y,6);Out.Ln; Out.String("x * y >");Out.Int(x * y,6);Out.Ln; Out.String("x / y >");Out.Int(x DIV y,6);Out.Ln; Out.String("x MOD y >");Out.Int(x MOD y,6);Out.Ln; END Arithmetic. Output: Give two numbers: 12 23 x + y > 35 x - y > -11 x * y > 276 x / y > 0 x MOD y > 12 ## Objeck bundle Default { class Arithmetic { function : Main(args : System.String[]) ~ Nil { DoArithmetic(); } function : native : DoArithmetic() ~ Nil { a := IO.Console->GetInstance()->ReadString()->ToInt(); b := IO.Console->GetInstance()->ReadString()->ToInt(); IO.Console->GetInstance()->Print("a+b = ")->PrintLine(a+b); IO.Console->GetInstance()->Print("a-b = ")->PrintLine(a-b); IO.Console->GetInstance()->Print("a*b = ")->PrintLine(a*b); IO.Console->GetInstance()->Print("a/b = ")->PrintLine(a/b); } } } ## OCaml let _ = let a = read_int () and b = read_int () in Printf.printf "a + b = %d\n" (a + b); Printf.printf "a - b = %d\n" (a - b); Printf.printf "a * b = %d\n" (a * b); Printf.printf "a / b = %d\n" (a / b); (* truncates towards 0 *) Printf.printf "a mod b = %d\n" (a mod b) (* same sign as first operand *) ## Oforth : integers (a b -- ) "a + b =" . a b + .cr "a - b =" . a b - .cr "a * b =" . a b * .cr "a / b =" . a b / .cr "a mod b =" . a b mod .cr "a pow b =" . a b pow .cr ; Output: >12 23 integers a + b = 35 a - b = -11 a * b = 276 a / b = 0 a mod b = 12 a pow b = 6624737266949237011120128 ok ## Ol (define a 8) (define b 12) (print "(+ " a " " b ") => " (+ a b)) (print "(- " a " " b ") => " (- a b)) (print "(* " a " " b ") => " (* a b)) (print "(/ " a " " b ") => " (/ a b)) (print "(quotient " a " " b ") => " (quot a b)) ; same as (quotient a b) (print "(remainder " a " " b ") => " (rem a b)) ; same as (remainder a b) (print "(modulo " a " " b ") => " (mod a b)) ; same as (modulo a b) (import (owl math-extra)) (print "(expt " a " " b ") => " (expt a b)) Output: (+ 8 12) => 20 (- 8 12) => -4 (* 8 12) => 96 (/ 8 12) => 2/3 (quotient 8 12) => 0 (remainder 8 12) => 8 (modulo 8 12) => 8 (expt 8 12) => 68719476736 Additional features: ; you can use more than two arguments for +,-,*,/ functions (print (+ 1 3 5 7 9)) ; ==> 25 (print (- 1 3 5 7 9)) ; ==> -23 (print (* 1 3 5 7 9)) ; ==> 945 - same as (1*3*5*7*9) (print (/ 1 3 5 7 9)) ; ==> 1/945 - same as (((1/3)/5)/7)/9 ## Onyx # Most of this long script is mere presentation. # All you really need to do is push two integers onto the stack # and then execute add, sub, mul, idiv, or pow. ClearScreen { # Using ANSI terminal control \e[2J\e[1;1H' print flush } bind def Say { # string Say - \n' cat print flush } bind def ShowPreamble { To show how integer arithmetic in done in Onyx,' Say we\'ll use two numbers of your choice, which' Say we\'ll call A and B.\n' Say } bind def Prompt { # stack: string -- stdout exch write pop flush } def GetInt { # stack: name -- integer dup cvs Enter integer ' exch cat : ' cat Prompt stdin readline pop cvx eval def } bind def Template { # arithmetic_operator_name label_string Template result_string A cvs  ' B cvs  ' 5 ncat over cvs  gives ' 3 ncat exch A B dn cvx eval cvs .' 3 ncat Say } bind def ShowResults { add Addition: ' Template sub Subtraction: ' Template mul Multiplication: ' Template idiv Division: ' Template Note that the result of integer division is rounded toward zero.' Say pow Exponentiation: ' Template Note that the result of raising to a negative power always gives a real number.' Say } bind def ClearScreen ShowPreamble A GetInt B GetInt ShowResults Output: To show how integer arithmetic in done in Onyx, we'll use two numbers of your choice, which we'll call A and B. Enter integer A: 34 Enter integer B: 2 Addition: 34 2 add gives 36. Subtraction: 34 2 sub gives 32. Multiplication: 34 2 mul gives 68. Division: 34 2 idiv gives 17. Note that the result of integer division is rounded toward zero. Exponentiation: 34 2 pow gives 1156. Note that the result of raising to a negative power always gives a real number. ## Openscad echo (a+b); /* Sum */ echo (a-b); /* Difference */ echo (a*b); /* Product */ echo (a/b); /* Quotient */ echo (a%b); /* Modulus */ ## Oz declare StdIn = {New class from Open.file Open.text end init(name:stdin)} fun {ReadInt} {String.toInt {StdIn getS()}} end A = {ReadInt} B = {ReadInt} in {ForAll ["A+B = "#A+B "A-B = "#A-B "A*B = "#A*B "A/B = "#A div B %% truncates towards 0 "remainder "#A mod B %% has the same sign as A "A^B = "#{Pow A B} ] System.showInfo} ## PARI/GP Integer division with \ rounds to ${\displaystyle -\infty }$. There also exists the \/ round-to-nearest (ties to ${\displaystyle +\infty }$) operator. Ordinary division / does not round but returns rationals if given integers with a non-integral quotient. arith(a,b)={ print(a+b); print(a-b); print(a*b); print(a\b); print(a%b); print(a^b); }; ## Panda Use reflection to get all functions defined on numbers taking number and returning number. a=3 b=7 func:_bbf__number_number_number =>f.name.<b> '(' a b ')' ' => ' f(a b) nl Output: atan2 ( 3 7 ) => 0.40489178628508343 divide ( 3 7 ) => 0.42857142857142855 gt ( 3 7 ) => UNDEFINED! gte ( 3 7 ) => UNDEFINED! lt ( 3 7 ) => 3 lte ( 3 7 ) => 3 max ( 3 7 ) => 7 min ( 3 7 ) => 3 minus ( 3 7 ) => -4 mod ( 3 7 ) => 3 plus ( 3 7 ) => 10 pow ( 3 7 ) => 2187 ## Pascal program arithmetic(input, output) var a, b: integer; begin readln(a, b); writeln('a+b = ', a+b); writeln('a-b = ', a-b); writeln('a*b = ', a*b); writeln('a/b = ', a div b, ', remainder ', a mod b); end. ## Perl Works with: Perl version 5.x my a = <>; my b = <>; print "sum: ", a + b, "\n", "difference: ", a - b, "\n", "product: ", a * b, "\n", "integer quotient: ", int(a / b), "\n", "remainder: ", a % b, "\n", "exponent: ", a ** b, "\n" ; ## Perl 6 Works with: Rakudo version 2015.09 my Int a = get.floor; my Int b = get.floor; say 'sum: ', a + b; say 'difference: ', a - b; say 'product: ', a * b; say 'integer quotient: ', a div b; say 'remainder: ', a % b; say 'exponentiation: ', a**b; Note that div doesn't always do integer division; it performs the operation "most appropriate to the operand types". Synopsis 3 guarantees that div "on built-in integer types is equivalent to taking the floor of a real division". If you want integer division with other types, say floor(a/b). ## Phix integer a = floor(prompt_number("a = ",{})) integer b = floor(prompt_number("b = ",{})) printf(1,"a + b = %d\n", a+b) printf(1,"a - b = %d\n", a-b) printf(1,"a * b = %d\n", a*b) printf(1,"a / b = %g\n", a/b) -- does not truncate printf(1,"remainder(a,b) = %d\n", remainder(a,b)) -- same sign as first operand printf(1,"power(a,b) = %g\n", power(a,b)) Output: a = 2 b = 3 a + b = 5 a - b = -1 a * b = 6 a / b = 0.666667 remainder(a,b) = 2 power(a,b) = 8 ## PHL module arith; extern printf; extern scanf; @Integer main [ @Pointer<@Integer> a = alloc(4); @Pointer<@Integer> b = alloc(4); scanf("%i %i", a, b); printf("a + b = %i\n", a::get + b::get); printf("a - b = %i\n", a::get - b::get); printf("a * b = %i\n", a::get * b::get); printf("a / b = %i\n", a::get / b::get); printf("a % b = %i\n", a::get % b::get); printf("a ** b = %i\n", a::get ** b::get); return 0; ] ## PHP <?php a = fgets(STDIN); b = fgets(STDIN); echo "sum: ", a + b, "\n", "difference: ", a - b, "\n", "product: ", a * b, "\n", "truncating quotient: ", (int)(a / b), "\n", "flooring quotient: ", floor(a / b), "\n", "remainder: ", a % b, "\n", "power: ", a ** b, "\n"; // PHP 5.6+ only ?> ## PicoLisp (de math (A B) (prinl "Add " (+ A B)) (prinl "Subtract " (- A B)) (prinl "Multiply " (* A B)) (prinl "Divide " (/ A B)) # Trucates towards zero (prinl "Div/rnd " (*/ A B)) # Rounds to next integer (prinl "Modulus " (% A B)) # Sign of the first operand (prinl "Power " (** A B)) ) ## Piet command stack in(int) A duplicate AA duplicate AAA duplicate AAAA duplicate AAAAA in(int) BAAAAA duplicate BBAAAAA duplicate BBBAAAAA duplicate BBBBAAAAA duplicate BBBBBAAAAA push 9 9BBBBBAAAAA push 1 19BBBBBAAAAA roll BBBBAAAABA push 7 7BBBBAAAABA push 1 17BBBBAAAABA roll BBBAAABABA push 5 5BBBAAABABA push 1 15BBBAAABABA roll BBAABABABA push 3 3BBAABABABA push 1 13BBAABABABA roll BABABABABA add (A+B)BABABABA out(int) BABABABA sub (A-B)BABABA out(int) BABABA mult (A*B)BABA out(int) BABA divide (A/B)BA out(int) BA mod (A%B) out(int) NULL push 1 1 exit How rounding is handled is up to the interpreter, but I believe the intent was round towards 0. ## PL/I get list (a, b); put skip list (a+b); put skip list (a-b); put skip list (a*b); put skip list (trunc(a/b)); /* truncates towards zero. */ put skip list (mod(a, b)); /* Remainder is always positive. */ put skip list (rem(a, b)); /* Sign can be negative. */ ## Pop11 ;;; Setup token reader vars itemrep; incharitem(charin) -> itemrep; ;;; read the numbers lvars a = itemrep(), b = itemrep(); ;;; Print results printf(a + b, 'a + b = %p\n'); printf(a - b, 'a - b = %p\n'); printf(a * b, 'a * b = %p\n'); printf(a div b, 'a div b = %p\n'); printf(a mod b, 'a mod b = %p\n'); ## PostScript /arithInteger { /x exch def /y exch def x y add = x y sub = x y mul = x y idiv = x y mod = x y exp = } def ## PowerShell a = [int] (Read-Host First Number) b = [int] (Read-Host Second Number) Write-Host "Sum: (a + b)" Write-Host "Difference: (a - b)" Write-Host "Product: (a * b)" Write-Host "Quotient: (a / b)" Write-Host "Quotient, round to even: ([Math]::Round(a / b))" Write-Host "Remainder, sign follows first: (a % b)" Numbers are automatically converted to accomodate for the result. This means not only that Int32 will be expanded to Int64 but also that a non-integer quotient will cause the result to be of a floating-point type. The remainder has the sign of the first operand. No exponentiation operator exists, but can be worked around with the .NET BCL: [Math]::Pow(a, b) ## ProDOS IGNORELINE Note: This example includes the math module. include arithmeticmodule :a editvar /newvar /value=a /title=Enter first integer: editvar /newvar /value=b /title=Enter second integer: editvar /newvar /value=c do add -a-,-b-=-c- printline -c- do subtract a,b printline -c- do multiply a,b printline -c- do divide a,b printline -c- do modulus a,b printline -c- editvar /newvar /value=d /title=Do you want to calculate more numbers? if -d- /hasvalue yes goto :a else goto :end :end IGNORELINE Note: This example does not use the math module. :a editvar /newvar /value=a /title=Enter first integer: editvar /newvar /value=b /title=Enter second integer: editvar /newvar /value=-a-+-b-=-c- printline -c- editvar /newvar /value=a*b=c printline -c- editvar /newvar /value=a/b=c printline -c- editvar /newvar /value=a %% b=c printline -c- editvar /newvar /value=d /title=Do you want to calculate more numbers? if -d- /hasvalue yes goto :a else goto :end :end ## Prolog Integer quotient (//) rounds towards 0. Remainder (rem) matches the sign of its first operand. print_expression_and_result(M, N, Operator) :- Expression =.. [Operator, M, N], Result is Expression, format('~w ~8|is ~d~n', [Expression, Result]). arithmetic_integer :- read(M), read(N), maplist( print_expression_and_result(M, N), [+,-,*,//,rem,^] ). Use thus: ?- arithmetic_integer. |: 5. |: 7. 5+7 is 12 5-7 is -2 5*7 is 35 5//7 is 0 5 rem 7 is 5 5^7 is 78125 true. ## PureBasic OpenConsole() Define a, b Print("Number 1: "): a = Val(Input()) Print("Number 2: "): b = Val(Input()) PrintN("Sum: " + Str(a + b)) PrintN("Difference: " + Str(a - b)) PrintN("Product: " + Str(a * b)) PrintN("Quotient: " + Str(a / b)) ; Integer division (rounding mode=truncate) PrintN("Remainder: " + Str(a % b)) PrintN("Power: " + Str(Pow(a, b))) Input() CloseConsole() ## Python x = int(raw_input("Number 1: ")) y = int(raw_input("Number 2: ")) print "Sum: %d" % (x + y) print "Difference: %d" % (x - y) print "Product: %d" % (x * y) print "Quotient: %d" % (x / y) # or x // y for newer python versions. # truncates towards negative infinity print "Remainder: %d" % (x % y) # same sign as second operand print "Quotient: %d with Remainder: %d" % divmod(x, y) print "Power: %d" % x**y ## Only used to keep the display up when the program ends raw_input( ) Notes: In Python3 raw_input() will be renamed to input() (the old input() built-in will go away, though one could use eval(input()) to emulate the old ... and ill-advised ... behavior). Also a better program would wrap the attempted int() conversions in a try: ... except ValueError:... construct such as: def getnum(prompt): while True: # retrying ... try: n = int(raw_input(prompt)) except ValueError: print "Input could not be parsed as an integer. Please try again."\ continue break return n x = getnum("Number1: ") y = getnum("Number2: ") ... (In general it's good practice to perform parsing of all input in exception handling blocks. This is especially true of interactive user input, but also applies to data read from configuration and other files, and marshaled from other processes via any IPC mechanism). Python also has the procedure divmod that returns both quotient and remainder. eg quotient, remainder = divmod(355,113) Giving a quotient of 3, and a remainder of 16. ### Python 3.0 compatible code def arithmetic(x, y): for op in "+ - * // % **".split(): expr = "%(x)s %(op)s %(y)s" % vars() print("%s\t=> %s" % (expr, eval(expr))) arithmetic(12, 8) arithmetic(input("Number 1: "), input("Number 2: ")) Output: 12 + 8 => 20 12 - 8 => 4 12 * 8 => 96 12 // 8 => 1 12 % 8 => 4 12 ** 8 => 429981696 Number 1: 20 Number 2: 4 20 + 4 => 24 20 - 4 => 16 20 * 4 => 80 20 // 4 => 5 20 % 4 => 0 20 ** 4 => 160000 ## R cat("insert number ") a <- scan(nmax=1, quiet=TRUE) cat("insert number ") b <- scan(nmax=1, quiet=TRUE) print(paste('a+b=', a+b)) print(paste('a-b=', a-b)) print(paste('a*b=', a*b)) print(paste('a%/%b=', a%/%b)) print(paste('a%%b=', a%%b)) print(paste('a^b=', a^b)) ## Racket #lang racket/base (define (arithmetic x y) (for ([op (list + - * / quotient remainder modulo max min gcd lcm)]) (printf "~s => ~s\n" (,(object-name op) ,x ,y) (op x y)))) (arithmetic 8 12) Output: (+ 8 12) => 20 (- 8 12) => -4 (* 8 12) => 96 (/ 8 12) => 2/3 (quotient 8 12) => 0 (remainder 8 12) => 8 (modulo 8 12) => 8 (max 8 12) => 12 (min 8 12) => 8 (gcd 8 12) => 4 (lcm 8 12) => 24 ## Raven ' Number 1: ' print expect 0 prefer as x ' Number 2: ' print expect 0 prefer as y x y + " sum: %d\n" print x y - "difference: %d\n" print x y * " product: %d\n" print x y / " quotient: %d\n" print x y % " remainder: %d\n" print ## REBOL rebol [ Title: "Integer" URL: http://rosettacode.org/wiki/Arithmetic/Integer ] x: to-integer ask "Please type in an integer, and press [enter]: " y: to-integer ask "Please enter another integer: " print "" print ["Sum:" x + y] print ["Difference:" x - y] print ["Product:" x * y] print ["Integer quotient (coercion) :" to-integer x / y] print ["Integer quotient (away from zero) :" round x / y] print ["Integer quotient (halves round towards even digits) :" round/even x / y] print ["Integer quotient (halves round towards zero) :" round/half-down x / y] print ["Integer quotient (round in negative direction) :" round/floor x / y] print ["Integer quotient (round in positive direction) :" round/ceiling x / y] print ["Integer quotient (halves round in positive direction):" round/half-ceiling x / y] print ["Remainder:" r: x // y] ; REBOL evaluates infix expressions from left to right. There are no ; precedence rules -- whatever is first gets evaluated. Therefore when ; performing this comparison, I put parens around the first term ; ("sign? a") of the expression so that the value of /a/ isn't ; compared to the sign of /b/. To make up for it, notice that I don't ; have to use a specific return keyword. The final value in the ; function is returned automatically. match?: func [a b][(sign? a) = sign? b] result: copy [] if match? r x [append result "first"] if match? r y [append result "second"] ; You can evaluate arbitrary expressions in the middle of a print, so ; I use a "switch" to provide a more readable result based on the ; length of the /results/ list. print [ "Remainder sign matches:" switch length? result [ 0 ["neither"] 1 [result/1] 2 ["both"] ] ] print ["Exponentiation:" x ** y] Output: Please type in an integer, and press [enter]: 17 Please enter another integer: -4 Sum: 13 Difference: 21 Product: -68 Integer quotient (coercion) : -4 Integer quotient (away from zero) : -4 Integer quotient (halves round towards even digits) : -4 Integer quotient (halves round towards zero) : -4 Integer quotient (round in negative direction) : -5 Integer quotient (round in positive direction) : -4 Integer quotient (halves round in positive direction): -4 Remainder: 1 Remainder sign matches: first Exponentiation: 1.19730367213036E-5 ## Retro Retro's arithmetic functions are based on those in Forth. The example is an adaption of the one from Forth. : arithmetic ( ab- ) over "\na = %d" puts dup "\nb = %d" puts 2over + "\na + b = %d" puts 2over - "\na - b = %d" puts 2over * "\na * b = %d" puts /mod "\na / b = %d" puts "\na mod b = %d\n" puts ; ## REXX All operators automatically produce integers where appropriate (up to twenty decimal digits in the program below), or numbers in exponential format when necessary. (The REXX default is nine decimal digits.) For division that produces a floating point number, the result is rounded to the nearest number that can be expressed within the current number of decimal digits (in the example program below, it is twenty decimal digits). /*REXX program obtains two integers from the C.L. (a prompt); displays some operations.*/ numeric digits 20 /*#s are round at 20th significant dig.*/ parse arg x y . /*maybe the integers are on the C.L. */ do while \datatype(x,'W') | \datatype(y,'W') /*both X and Y must be integers. */ say "─────Enter two integer values (separated by blanks):" parse pull x y . /*accept two thingys from command line.*/ end /*while*/ /* [↓] perform this DO loop twice. */ do j=1 for 2 /*show A oper B, then B oper A.*/ call show 'addition' , "+", x+y call show 'subtraction' , "-", x-y call show 'multiplication' , "*", x*y call show 'int division' , "%", x%y, ' [rounds down]' call show 'real division' , "/", x/y call show 'division remainder', "//", x//y, ' [sign from 1st operand]' call show 'power' , "**", x**y parse value x y with y x /*swap the two values and perform again*/ if j==1 then say copies('═', 79) /*display a fence after the 1st round. */ end /*j*/ exit /*stick a fork in it, we're all done. */ /*──────────────────────────────────────────────────────────────────────────────────────*/ show: parse arg c,o,#,?; say right(c,25)' ' x center(o,4) y " ───► " # ?; return output when using the input of: 17 -4 addition 4 + -17 ───► -13 subtraction 4 - -17 ───► 21 multiplication 4 * -17 ───► -68 int division 4 % -17 ───► 0 [rounds down] real division 4 / -17 ───► -0.23529411764705882353 division remainder 4 // -17 ───► 4 [sign from 1st operand] power 4 ** -17 ───► 5.8207660913467407227E-11 ═══════════════════════════════════════════════════════════════════════════════ addition -17 + 4 ───► -13 subtraction -17 - 4 ───► -21 multiplication -17 * 4 ───► -68 int division -17 % 4 ───► -4 [rounds down] real division -17 / 4 ───► -4.25 division remainder -17 // 4 ───► -1 [sign from 1st operand] power -17 ** 4 ───► 83521 ## Ring func Test a,b see "a+b" + ( a + b ) + nl see "a-b" + ( a - b ) + nl see "a*b" + ( a * b ) + nl // The quotient isn't integer, so we use the Ceil() function, which truncates it downward. see "a/b" + Ceil( a / b ) + nl // Remainder: see "a%b" + ( a % b ) + nl see "a**b" + pow(a,b ) + nl ## Ruby puts 'Enter x and y' x = gets.to_i # to check errors, use x=Integer(gets) y = gets.to_i puts "Sum: #{x+y}", "Difference: #{x-y}", "Product: #{x*y}", "Quotient: #{x/y}", # truncates towards negative infinity "Quotient: #{x.fdiv(y)}", # float "Remainder: #{x%y}", # same sign as second operand "Exponentiation: #{x**y}" ## Run BASIC input "1st integer: "; i1 input "2nd integer: "; i2 print " Sum"; i1 + i2 print " Diff"; i1 - i2 print " Product"; i1 * i2 if i2 <>0 then print " Quotent "; int( i1 / i2); else print "Cannot divide by zero." print "Remainder"; i1 MOD i2 print "1st raised to power of 2nd"; i1 ^ i2 ## Rust Note that this code cannot be run within the Rust playpen as it does not support console input. use std::env; fn main() { let args: Vec<_> = env::args().collect(); let a = args[1].parse::<i32>().unwrap(); let b = args[2].parse::<i32>().unwrap(); println!("sum: {}", a + b); println!("difference: {}", a - b); println!("product: {}", a * b); println!("integer quotient: {}", a / b); // truncates towards zero println!("remainder: {}", a % b); // same sign as first operand } ## Sass/SCSS @function arithmetic(a,b) { @return a + b, a - b, a * b, (a - (a % b))/b, a % b; } Which you use with: nth(arithmetic(10,3),1); Or each of the functions separately: @function sum(a,b) { @return a + b; } @function difference(a,b) { @return a - b; } @function product(a,b) { @return a * b; } @function integer-division(a,b) { @return (a - (a % b))/b; } @function remainder(a,b) { @return a % b; } @function float-division(a,b) { @return a / b; } ## Scala val a = Console.readInt val b = Console.readInt val sum = a + b //integer addition is discouraged in print statements due to confusion with String concatenation println("a + b = " + sum) println("a - b = " + (a - b)) println("a * b = " + (a * b)) println("quotient of a / b = " + (a / b)) // truncates towards 0 println("remainder of a / b = " + (a % b)) // same sign as first operand ## Scheme (define (arithmetic x y) (for-each (lambda (op) (write (list op x y)) (display " => ") (write ((eval op) x y)) (newline)) '(+ - * / quotient remainder modulo max min gcd lcm))) (arithmetic 8 12) quotient - truncates towards 0 remainder - same sign as first operand modulo - same sign as second operand prints this: (+ 8 12) => 20 (- 8 12) => -4 (* 8 12) => 96 (/ 8 12) => 2/3 (quotient 8 12) => 0 (remainder 8 12) => 8 (modulo 8 12) => 8 (max 8 12) => 12 (min 8 12) => 8 (gcd 8 12) => 4 (lcm 8 12) => 24 ## Seed7 include "seed7_05.s7i"; const proc: main is func local var integer: a is 0; var integer: b is 0; begin write("a = "); readln(a); write("b = "); readln(b); writeln("a + b = " <& a + b); writeln("a - b = " <& a - b); writeln("a * b = " <& a * b); writeln("a div b = " <& a div b); # Rounds towards zero writeln("a rem b = " <& a rem b); # Sign of the first operand writeln("a mdiv b = " <& a mdiv b); # Rounds towards negative infinity writeln("a mod b = " <& a mod b); # Sign of the second operand end func; ## Sidef var a = Sys.scanln("First number: ").to_i; var b = Sys.scanln("Second number: ").to_i; %w'+ - * // % ** ^ | & << >>'.each { |op| "#{a} #{op} #{b} = #{a.op(b)}".say; } Output: First number: 1234 Second number: 7 1234 + 7 = 1241 1234 - 7 = 1227 1234 * 7 = 8638 1234 // 7 = 176 1234 % 7 = 2 1234 ** 7 = 4357186184021382204544 1234 ^ 7 = 1237 1234 | 7 = 1239 1234 & 7 = 2 1234 << 7 = 157952 1234 >> 7 = 9 ## Slate [| :a :b | inform: (a + b) printString. inform: (a - b) printString. inform: (a * b) printString. inform: (a / b) printString. inform: (a // b) printString. inform: (a \\ b) printString. ] applyTo: {Integer readFrom: (query: 'Enter a: '). Integer readFrom: (query: 'Enter b: ')}. ## Smalltalk Works with: GNU Smalltalk | a b | 'Input number a: ' display. a := (stdin nextLine) asInteger. 'Input number b: ' display. b := (stdin nextLine) asInteger. ('a+b=%1' % { a + b }) displayNl. ('a-b=%1' % { a - b }) displayNl. ('a*b=%1' % { a * b }) displayNl. ('a/b=%1' % { a // b }) displayNl. ('a%%b=%1' % { a \\ b }) displayNl. ## smart BASIC INPUT "Enter first number.":first INPUT "Enter second number.":second PRINT "The sum of";first;"and";second;"is ";first+second&"." PRINT "The difference between";first;"and";second;"is ";ABS(first-second)&"." PRINT "The product of";first;"and";second;"is ";first*second&"." IF second THEN PRINT "The integer quotient of";first;"and";second;"is ";INTEG(first/second)&"." ELSE PRINT "Division by zero not cool." ENDIF PRINT "The remainder being...";first%second&"." PRINT STR(first);"raised to the power of";second;"is ";first^second&"." NOTES: Some curious aspects of smart BASIC to note in this code example: 1. In smart BASIC, The command INTEG is a true integer function providing only the value of the characteristic. The smart BASIC INT command calculates as a rounding function. This differs from some other versions of BASIC. 2. smart BASIC automatically inserts spaces ahead of and behind numbers. This can cause unexpected formatting issues when combining output from numeric variables with text. In order to suppress the trailing space, you must use the ampersand (&) to concatenate the numeric value with the following text (in this case, a period at the end of each sentence). In the case of leading spaces, you must convert the numeric value to text using the STR command (as with the last line of the code). ## SNOBOL4 output = "Enter first integer:" first = input output = "Enter second integer:" second = input output = "sum = " first + second output = "diff = " first - second output = "prod = " first * second output = "quot = " (qout = first / second) output = "rem = " first - (qout * second) end ## SNUSP As a BF derivative, SNUSP only has increment and decrement as native operations. Here are routines for other basic arithmetic upon single digit numbers and results. See also: Ethiopian Multiplication \ , @ \[email protected]@@[email protected]# atoi > , @ \[email protected]@@[email protected]# < @ # 4 copies \=!/?!/->>+>>+>>+>>+<<<<<<<<?\# > | #\?<<<<<<<<+>>+>>+>>+>>-/ @ | \==/ \>>>>\ />>>>/ @ \==!/===?\# add < \>+<-/ @ \[email protected]@@[email protected]+++++# itoa . < @ \==!/===?\# subtract < \>-<-/ @ \[email protected]@@[email protected]+++++# . ! /\ ?- multiply \/ #/?<<+>+>-==\ /==-<+<+>>?\# /==-<<+>>?\# < \->+>+<<!/?/# #\?\!>>+<+<-/ #\?\!>>+<<-/ @ /==|=========|=====\ /-\ | \======<?!/>@/<-?!\>>>@/<<<-?\=>!\?/>!/@/<# < \=======|==========/ /-\ | @ \done======>>>!\?/<=/ \[email protected]@@[email protected]+++++# . ! /\ ?- zero \/ < divmod @ /-\ \?\<!\?/#!===+<<<\ /-\ | \<[email protected]\>@\>>!/?!/=<?\>!\?/<<# | | | #\->->+</ | \=!\=?!/->>+<<?\# @ #\?<<+>>-/ \[email protected]@@[email protected]+++++# . < @ \[email protected]@@[email protected]+++++# . # ## SQL Works with: Oracle -- test.sql -- Tested in SQL*plus DROP TABLE test; CREATE TABLE test (a INTEGER, b INTEGER); INSERT INTO test VALUES ('&&A','&&B'); commit; SELECT a-b difference FROM test; SELECT a*b product FROM test; SELECT trunc(a/b) integer_quotient FROM test; SELECT MOD(a,b) remainder FROM test; SELECT POWER(a,b) exponentiation FROM test; SQL> @test.sql Table dropped. Table created. Enter value for a: 3 Enter value for b: 4 old 1: insert into test values ('&&A','&&B') new 1: insert into test values ('3','4') 1 row created. Commit complete. DIFFERENCE ---------- -1 PRODUCT ---------- 12 INTEGER_QUOTIENT ---------------- 0 REMAINDER ---------- 3 EXPONENTIATION -------------- 81 ## SSEM The only operation that the SSEM supports natively is substraction. This program uses the 001 Sub. instruction to find the difference between a and b, assuming they are loaded into storage addresses 20 and 21 respectively. 00101000000000100000000000000000 0. -20 to c 10100000000001100000000000000000 1. c to 5 10100000000000100000000000000000 2. -5 to c 10101000000000010000000000000000 3. Sub. 21 00000000000001110000000000000000 4. Stop 00000000000000000000000000000000 5. 0 The routine is slightly more complicated than it would otherwise be, because the SSEM cannot load a value into the accumulator (c register) from storage without negating it in the process—so we have to shuffle the negation of a back out into storage and then negate it again before we can subtract b from it. This does, however, make it easy to implement addition using negation and subtraction. In this program, we first negate a; then subtract b, and store the result; and finally negate that result, thereby obtaining the sum of the two integers. 00101000000000100000000000000000 0. -20 to c 10101000000000010000000000000000 1. Sub. 21 10100000000001100000000000000000 2. c to 5 10100000000000100000000000000000 3. -5 to c 00000000000001110000000000000000 4. Stop 00000000000000000000000000000000 5. 0 A multiplication program will be found at Function definition#SSEM, and one that performs integer division at Loops/For with a specified step#SSEM. ## Standard ML val () = let val a = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn))) val b = valOf (Int.fromString (valOf (TextIO.inputLine TextIO.stdIn))) in print ("a + b = " ^ Int.toString (a + b) ^ "\n"); print ("a - b = " ^ Int.toString (a - b) ^ "\n"); print ("a * b = " ^ Int.toString (a * b) ^ "\n"); print ("a div b = " ^ Int.toString (a div b) ^ "\n"); (* truncates towards negative infinity *) print ("a mod b = " ^ Int.toString (a mod b) ^ "\n"); (* same sign as second operand *) print ("a quot b = " ^ Int.toString (Int.quot (a, b)) ^ "\n");(* truncates towards 0 *) print ("a rem b = " ^ Int.toString (Int.rem (a, b)) ^ "\n"); (* same sign as first operand *) print ("~a = " ^ Int.toString (~a) ^ "\n") (* unary negation, unusual notation compared to other languages *) end ## Swift let a = 6 let b = 4 print("sum =\(a+b)") print("difference = \(a-b)") print("product = \(a*b)") print("Integer quotient = \(a/b)") print("Remainder = (a%b)") print("No operator for Exponential") ## Tcl puts "Please enter two numbers:" set x [expr {int([gets stdin])}]; # Force integer interpretation set y [expr {int([gets stdin])}]; # Force integer interpretation puts "x + y = [expr {x + y}]" puts "x - y = [expr {x - y}]" puts "x * y = [expr {x * y}]" puts "x / y = [expr {x / y}]" puts "x mod y = [expr {x % y}]" puts "x 'to the' y = [expr {x ** y}]" Since Tcl doesn't really know about the "type" of a variable, the "expr" command is used to declare whatever follows as an "expression". This means there is no such thing as "integer arithmetic" and hence the kludge with int([gets stdin]). Often, these operations would be performed in a different way from what is shown here. For example, to increase the variable "x" by the value of the variable "y", one would write incr x y Also, it's important to surround the arguments to the expr in braces, especially when any of the parts of the expression are not literal constants. Discussion of this is on The Tcler's Wiki. ## TI-83 BASIC Pauses added due to TI-83's lack of screen size. Prompt A,B Disp "SUM" Pause A+B Disp "DIFFERENCE" Pause A-B Disp "PRODUCT" Pause AB Disp "INTEGER QUOTIENT" Pause int(A/B) Disp "REMAINDER" Pause A-B*int(A/B) ## TI-89 BASIC Local a, b Prompt a, b Disp "Sum: " & string(a + b) Disp "Difference: " & string(a - b) Disp "Product: " & string(a * b) Disp "Integer quotient: " & string(intDiv(a, b)) Disp "Remainder: " & string(remain(a, b)) ## Toka [ ( a b -- ) 2dup ." a+b = " + . cr 2dup ." a-b = " - . cr 2dup ." a*b = " * . cr 2dup ." a/b = " / . ." remainder " mod . cr ] is mathops ## TUSCRIPT$$ MODE TUSCRIPT a=5 b=3 c=a+b c=a-b c=a*b c=a/b c=a%b Output: a=5 b=3 c=a+b c = 8 c=a-b c = 2 c=a*b c = 15 c=a/b c = 1 c=a%b c = 2 ## UNIX Shell The Unix shell does not directly support arithmetic operations, so external tools, such as expr are used to perform arithmetic calculations when required: Works with: Bourne Shell Works with: Almquist SHell #!/bin/sh read a; read b; echo "a+b = " expra + $b echo "a-b = " expr$a - $b echo "a*b = " expr$a \* $b echo "a/b = " expr$a / $b # truncates towards 0 echo "a mod b = " expr$a % $b # same sign as first operand Notes: Using the  (backtick operators, also available in most Bourne shells via the$(...) syntax) allows us to keep the results on their labels in the most efficient and portable way. The spaces around the operators in the expr command line arguments are required and the shell requires us to quote or escape the * character has shown, to prevent any possible "globbing" --- filename expansion of the * as a wildcard character.

With SUSv3 parameter expansions:

Works with: Bourne Again SHell version 3.2
Works with: pdksh version 5.2.14
Works with: Z SHell
#!/bin/sh
echo "a+b = $((a+b))" echo "a-b =$((a-b))"
echo "a*b = $((a*b))" echo "a/b =$((a/b))" # truncates towards 0
</xsl:template>

## Yorick

x = y = 0;
write, "x + y =", x + y;
write, "x - y =", x - y;
write, "x * y =", x * y;
write, "x / y =", x / y; // rounds toward zero
write, "x % y =", x % y; // remainder; matches sign of first operand when operands' signs differ
write, "x ^ y =", x ^ y; // exponentiation

## zkl

println("x+y = ",x + y);
println("x-y = ",x - y);
println("x*y = ",x * y);
println("x/y = ",x / y); // rounds toward zero
println("x%y = ",x % y); // remainder; matches sign of first operand when operands' signs differ
println("x.divr(y) = ",x.divr(y)); // (x/y,remainder); sign as above

## zonnon

module Main;
var
i,j: integer;
begin
writeln("sum: ",i + j);
writeln("difference: ", i - j);
writeln("product: ", i * j);
writeln("quotient: ", i div j);
writeln("remainder: ", i mod j);
end Main.

Output:
A integer?:2
another?: 3
sum:                    5
difference:                   -1
product:                    6
quotient:                    0
remainder:                    2

## ZX Spectrum Basic

5 LET a=5: LET b=3
10 PRINT a;" + ";b;" = ";a+b
20 PRINT a;" - ";b;" = ";a-b
30 PRINT a;" * ";b;" = ";a*b
40 PRINT a;" / ";b;" = ";INT (a/b)
50 PRINT a;" mod ";b;" = ";a-INT (a/b)*b
60 PRINT a;" to the power of ";b;" = ";a^b